
Imagine Processor

Incomplete Recovered Document
with document format translation

!! issues !!

IMAGINE 2
The IMAGe engINE

Documentation & User Manual

May 1997

VERSION 0.70

Imagine Processor

Imagine Processor

4. THE REGISTER FILE...25
4.1 introduction..27

4.1.1 the control registers..27
4.1.2 the vector index generators..27
4.1.3 the access modes..27

4.2 The control registers..28

4.2 Register plus register to register mode:..29
4.2.1 accesses to general purpose and control registers..29
4.2.2 vector register accesses..29
4.2.3 The extended-indexed-accesses...30

4.3 Immediate plus register to register mode...30

4.4 The 16 bit constant load...30

4.5 The 32 bit constant load / merge..31

4.6 Vector index generators..32
4.6.1 results of the index generators..32
4.6.2 control input for the Index generators..32
4.6.3 data input for the Index generators...32
4.6.4 Index generator calculations...32
4.6.5 select the data bus used for the offset data...33
4.6.6 select the status for conditional index generation and byte write enables ...33
4.6.7 select between the use of the current or delayed status ...33
4.6.8 generation of the byte write enables...34
4.6.9 generation of the byte presets and byte resets..34

4.7 The extended functions...35
4.7.1 byte write enables...35
4.7.2 On the fly write Functions..35
4.7.3 application of the byte presets and byte resets..36
4.7.4 run time programmable data sizes..36
4.7.5 preserved for compatibility only ...36

4.8 The 7 independent sub units of the register file..37
4.8.1 read port A span of control...37
4.8.2 read port B span of control...37
4.8.3 write port C span of control..37
4.8.4 read port A index generator span of control...37
4.8.5 read port B index generator span of control...38
4.8.6 write port C index generator span of control..38
4.8.7 write Select Unit span of control ...38

4.9 Instruction fields for each of the 7 sub-units of the register file ..38
4.9.1 default values of instruction code fields ..39

4.10 Events which modify the Register File’s control registers..39
4.10.1 events which modify REG_Control..39
4.10.2 events which modify REG_Monitor..39
4.10.3 events which modify REG_Vector..40
4.10.4 events which modify REG_A_Indices..40
4.10.5 events which modify REG_B_Indices..40
4.10.6 events which modify REG_C_Indices..40
4.10.7 events which modify REG_C_Flags...40

4.11 Examples of vector operations with the register file..41
4.11.1 Example 1: Vectored 3 operand ROP with an 8x8 pattern..41
4.11.2 Example 2: Vectored parallel min/ max function...41
4.11.3 Example 3: Vectored parallel table look up function...41
4.11.4 Example 4: Vectored parallel histogram function..42
4.11.5 Example 5: Vectored parallel add / subtract with saturate functions...42
4.11.6 Example 6: Vectored parallel run length encoder..43

Imagine Processor

Imagine Processor

4.12 Interrupt processing:..44

5. BARREL SHIFT/ROTATE UNIT..45
5.1 operations..47

5.1.1 Operand select..47
5.1.2 Barrel shift functions ...47
5.1.3 Shift direction...47
5.1.4 The result register of the Barrel Shifter..47
5.1.4 The extended function of the Barrel Shifter...48

6. ARITHMETIC & LOGIC UNIT...49
6.1 Operand Source select: ...51
6.2 ALU function:...51
6.3 ALU instruction set ..51
6.4 Three port parametrised logic functions..52
6.5 ALU control register: logic_function...52
6.6 The ALU status register..52
6.7 Conditional Control Flow Processing:..52
6.8 using status for conditional register access...53
6.9 using status for the range mask:..53
6.10 direct control register access to the F bus register:...53

7. MULTIPLIER / ACCUMULATOR..54
7.1 Multiplier / Accumulator..56

7.1.1 The multiplier accumulator..56
7.1.2 The pipeline..56
7.1.3 multiplier operand select..56

7.2 The basic set of multiplier operations..57
7.2.1 The Basic Multiply options..57
7.2.2 Multiplications defined in the basic set..57
7.2.3 The multiplier operand types..59
7.2.4 Internal and output formats..59
7.2.5 The Graphics data format...59

7.3 The extended multiplier functions..60

7.4 Description of the multiplier operations ...61
7.4.1 Operands for the multiplier..61
7.4.2 Basic operations...61
7.4.3 8 bit Matrix functions: Quad Inproduct..61
7.4.4 8 bit Matrix functions: 8 bit Matrix Vector multiplication..62
7.4.5 8 bit Matrix functions: 8 bit Blend function..62
7.4.6 Data Pipeline initialisation: ...62
7.4.7 Accumulator file access..62
7.4.8 Reading data from the accumulator file...63
7.4.9 Writing data to the accumulator file...63
7.4.10 Incremental Functions..63
7.4.11 The MAC functions: multiply accumulate (scalar)...63
7.4.12 The MAC functions: multiply accumulate (block)..63
7.4.13 16 bit vector product..63
7.4.14 16 bit complex product...63

7.5 Multiplier / accumulator operand formats...64
7.5.1 Multiplier input and output format definitions...64
7.5.2 Internal format definitions..64

7.6 The range clip unit...65
7.6.1 Operation..65
7.6.2 Range clip activation..65
7.6.3 Data size and data Type...65
7.6.4 Range clip output ..65
7.6.5 The status word: ALU_RC_Status (=cr15)..65
7.6.6 The range mask generator..66

Imagine Processor

Imagine Processor

7.6.7 Balanced signed compares...66

7.7 Overview of the multiplier control registers...67

7.8 Multiplier accumulator control register 1..68
7.8.1 The vector ram read / write control ...68
7.8.2 The operand Data Size field...68
7.8.3 The Data Type control field...68
7.8.4 The Accumulator input selection ..68
7.8.5 Output shift factor..68
7.8.6 The Range clip unit activation flag ...69
7.8.7 The pipeline control field...69
7.8.8 Transposer operation..69

7.9 Multiplier accumulator control register 2..70
7.9.1 blend coefficient selection..70
7.9.2 range unit: 32 or 64 bit compares...70
7.9.3 range unit:...70
 Balanced signed compare:..70
7.9.4 range unit:...70
 Dynamic Limits..70
7.9.5 range unit:...70
 Range Mask selection...70
7.9.6 range unit:...71
 Output clipping...71

7.10 Multiplier accumulator pointer control register..72
7.10.1 Vector register ram read and write pointers...72
7.10.2 Coefficient read and write pointers..72
7.10.3 The data type and signs used for macs()..72

7.11 Multiplier accumulator coefficient register entry..73

7.12 Multiplier accumulator 8 bit data pipeline output...73

7.13 The state save and restore register..73

8. UNARY FUNCTION UNIT ...74
8.1 UNARY FUNCTION UNIT...76

8.1.1 The result register of the UFU ..76
8.1.2 The instructions of the UFU ...76

8.2 The basic unary functions..77
8.2.1 Binary to Unary conversion: U = unary(A)..77
8.2.2 Unary to Binary conversion: U = binary(A) (priority encoder)...77
8.2.3 ..77
Absolute value: U = abs(A), U = abs(F)...77
8.2.4 Sign function: U = sign(A), U = sign(F)..77
8.2.5 Not zero function: U = notzero(A), U = notzero(F)...77
8.2.6 Swap bits function: U = swap(A), U = swap(F)...77

8.3 IEEE 754 floating point operations...78
8.3.1 Handling of floating point numbers:..78
8.3.2 IEEE 754 32 bit floating point definition...78
8.3.3 IEEE 754 32 bit floating point macro functions ...78

8.4 IEEE 754 floating point operation support register cr33..79
8.4.1 Float To Fix offset. cr33 [7:0]..79
8.4.2 Fix To Float offset. cr33 [15:8]..79
8.4.3 The H exponent. cr33 [23:16]..79
8.4.4 EL: exponent offset usage in U = fixed() (see the Float to Fix offset)..79
8.4.5 EX: exponent offset usage in U = floatFd() (see the Fix to Float offset)...79
8.4.6 ..79
UH: Use H exponent..79
8.4.7 MUL: Use H exponent for add or multiply ...79
8.4.8 NAN: Not a Number error flag..79

Imagine Processor

Imagine Processor

8.4.9 UNF: Underflow error flag...79
8.4.10 OVF: Overflow error flag...79
8.4.11 ERR: Floating point error flag...79
8.5 IEEE-754 floating point conversions..80
8.5.1 The pass instruction..80
8.5.2 The IEEE 754 conversion instructions...80
8.5.3 IEEE 32 bit floating point to integer..80
8.5.4 ..80
IEEE 32 bit floating point to fixed..80
8.5.5 Integer to IEEE 32 bit floating point..80
8.5.6 Fixed to IEEE 32 bit floating point..80
8.5.7 Some examples of floating point to integer conversions..82

9. DATA I/O UNIT..84
9.1 general..86

9.1.1 Data memory organisation...86
9.1.2 Data memory address types..86
9.1.3 Internal data representation..86

9.2 Data Access function...87
9.2.1 The use of the 3D graphics pipeline..87

9.3 The Data transport function..87
9.3.1 The data store functions...87
9.3.2 The data load functions..88
9.3.3 The internal zero and sign extend functions..88

9.4 Data I/O control registers...89
9.4.1 The D bus register..89
9.4.2 The DIO_Control register...89
9.4.3 The DIO_Address register...89
9.4.4 The DIO_offset register...89

9.5 Data access unit: detailed operation description...90
9.5.1 Selected Address..90
9.5.2 Higher dimensional addressing via the cache..90
9.5.3 The use of the 3D graphics pipeline with the extended function...91
9.5.4 Vector accesses with the extended function...92
9.5.5 Scratch pad accesses..92

10. VECTOR I/O UNIT..93
10.1 Image I/O function select...95

10.2 Output operation...95
10.2.1 Output source selection..95
10.2.2 ..95
Byte selection..95
10.2.3 True color to 16 bit error diffusion:..96
10.2.4 True color to 16 bit color conversion: ...96
10.2.5 True color to 8 bit pseudo color...96
10.2.6 True color to 8 bit dithering...96
10.2.7 True color to 8 bit dither matrix...97
10.2.8 True color to 8 bit error correction..97
10.2.9 Alpha Compare Test...97
10.2.10 Alpha Dithering..97
10.2.11 Write Disable...97
10.2.10 Transparency color...97

10.3 Input instruction...98
10.3.1 16 bit input c...98
olor conversion: ..98
10.3.2 8 bit input color conversion..98
10.3.3 Alpha generation by color key range..98
10.3.4 Byte selection:..98

Imagine Processor

Imagine Processor

10.3.5 Data Size definition:...98

10.4 Feedback instruction..99

10.5 Simultaneous input and output..99

10.6 Setting up the translation tables..99
10.6.1 The contents of the pseudo color to true color table..99
10.6.2 The contents of the true color to pseudo color table..99

10.7 The control registers of the VIO..100
10.6.1 The Vector I/O Control register no. 1..100
10.6.2 The Vector I/O Control register no. 2..101
10.6.3 The alpha test and alpha generation control register..101
10.6.4 The pseudo  true color conversion tables entry..102
10.6.5 The transparent output color..102
10.6.6 The transparent color input range...102

11. THE PROGRAM SEQUENCER..103
11.1 The program sequencer instruction word..104

11.2 Sequencer control registers ...106

11.3 The control register functions ...107

11.4 The control flow instructions...108
11.4.1 The jump instructions...108
11.4.2 The call instructions...109
11.4.3 The return instructions...110
11.4.5 The repeat instruction...110

11.5 Sequencer usage..111
11.5.1 The branch delay slots in the instruction address generation...111
11.5.2 The usage of the internal program counter stack..111
11.5.3 Using the Imagine's ALU status for conditional control flow..111
11.5.4 The usage of the immediate data in the instruction field..112

11.6 The program sequencer mnemonics..113

11.7 Vector processing control flow...114
11.7.1 Variable length vector processing..114
11.7.2 The repeat instruction...114
11.7.3 Vector processing functional units...114
11.7.4 Vector type data storage access..114

11.8 The multimedia interrupt handler in the Imagine 2..115
11.8.1 Programmers view:...115
11.8.2 Multiple interrupts without repeated state saving and restoring:...116

11.9 The status / control register..117

11.10 Direct read and write accesses to the instruction cache...119

12. THE MASK GENERATOR..120
12.1 introduction...122

12.1.1 The image masks..122
12.1.2 The vector access unit ...122
12.1.3 The usage of the image mask ..122
12.1.4 The image mask and its construction...122

12.2 The image mask control registers..124
12.2.1 The mask generation control registers:..124
12.2.2 The Window mask control registers...124
12.2.3 The Spanline mask control registers..124
12.2.4 The Range mask control registers...127
12.2.5 The Complex mask control registers...127
12.2.6 The Result mask registers...127

Imagine Processor

Imagine Processor

12.3 The function specific mask generators..128
12.3.1 The Window mask generator ..128
12.3.2 The Spanline mask generator...129
12.3.3 The Range mask generator...130
12.3.4 The Complex mask generator...131

 VLC DECODER / DEQUANTIZER...151
15. MOTION ESTIMATOR..156
24. VIDEO TIMING GENERATORS..161

24.1 The I/O signals of the Video Timing Generator...162
24.1.1 schematic overview..162
24.1.2 signal definitions..162

24.2 Module overview of the Video Timing Generator (VTG)..163
24.2.1 The IPB_interface..163
24.2.2 The counters...163
24.2.3 The Decoder...163
24.2.4 The Instruction RAM...163
24.2.5 The Read multiplexer...164

24.3 Functional description of the Video Timing Generator...165
24.3.1 Video Timing Generator instruction description..165

24.4 Sample program for the Video Timing Generator...166

24.5 Function Table of the Video Timing Generator...167

24.6 Interfacing with the Video Timing Generator through the IP..168
24.6.1 The Control register...168
24.6.1.1 The Unit control register...169
24.6.1.2 The Program counter...169
24.6.1.3 The Decoder signals..169
24.6.2 The Counter register...169
24.6.3 The Instruction RAM...170

24.7 Programmers Notes..170

25. VIDEO OUTPUT UNIT..171
25.1 The Input / Output Signals of RAMDAC (digital circuit)...172

25.1.1 Input/ Output signals definitions..172

25.2 RAMDAC module overview...175

 ...175

25.3 Read FIFO (fifoctrl.v)..176
25.3.1 The timing of read from FIFO and ReadNext signal...176
25.3.2 Input Data Format..177
25.3.3 Block diagrams...177

25.4 Pixel select and 16 bit to 32 bit color expansion (divpix.v)..178
25.4.1 Block diagrams...178
25.4.2 16-bit to 32-bit color expansion...178

25.5 Read Look-up Table RAM (c_tbl.v)..179

25.6 Cursor Generation (cur_gen.v)..180
25.6.1 Block diagrams (cur_gen.v)...180
25.6.2 Cursor modes definitions..180
25.6.3 Cursor RAM...181
25.6.4 Cursor positioning..183

25.7 Color Data out (colorout.v)..184

25.8 Internal Peripheral Bus I/F..185
25.8.1 RAMDAC base address...186

Imagine Processor

Imagine Processor

25.8.2 RAMDAC registers memory map..186

25.9 Control Registers..187
25.9.1 Color Control Registers..187
25.9.2 Cursor Control Register...188
25.9.3 FIFO Control Register...188
25.9.4 Test Control Register...189
25.9.5 Test Registers...189
25.9.6 Cursor Position x, y Registers..189
25.9.7 Count x, Count y Registers...190
25.9.8 Cursor Color 0, 1 Registers..190
25.9.9 Cursor Plane 0, 1 entries..190
25.9.10 Color Look-up Table RAM entries..190

26. VIDEO INPUT UNIT..191
26.1 The Input/Output Signals of the Video Input Unit..192

26.1.1 Signal definitions..192

26.2 Module overview of the Video Input Unit (VIN)..193
26.2.1 The IPB_interface..193
26.2.2 Stage0 (Input stage)..193
26.2.3 Stage1 (4:2:2 to A:4:4:4 conversion)...193
26.3.4 Stage2 (Down sampling)..193
26.3.5 Stage3 (Colour conversion)..193
26.3.6 FIFO (128 deep by 32-bit wide)...194

26.4 Functional description of the Video Input Unit..195
26.4.1 Stage0 (Input stage)..196

26.5 The control registers...197

26.6 Interfacing with the Video Input Unit through the IPB..199

29. THE I2S AUDIO INTERFACE...200
29.1 The Input/Output Signals of I2S Interface Unit..201

29.1.1 Input/ Output signals definitions..202

29.2 I2S Bus Interface Unit overview..204

 ...204

29.3 Serial Timing Generator (I2S_TGEN.v)...205
29.3.1 Block Diagram (for I2S I/O Port 0)...205
29.3.2 Serial Timing (Slave, I2S format)..206
29.3.3 Serial Timing (Slave, Japanese format)...206
29.3.4 Serial Timing (Master, I2S format)..207
29.3.5 Serial Timing (Master, Japanese format)...207
29.3.6 Serial Data Format...208

29.4 FIFO Input/Output Registers (I2S_FR.v)...209
29.4.1 Block Diagram (FIFO Input Registers)..209
29.4.2 Block Diagram (FIFO Output Registers)...209

29.5 128 x 32 bit FIFO (F_I2S.v)..210
29.5.1 Block Diagram 1/2 (FIFO block)...210
29.5.2 Block Diagram 1/2 (Controller & Arbiter block) ..211
29.5.3 FIFO Arbiter (I2SFABT.v)..212
29.5.4 FIFO Controller (I2SFCTRL.v)...213

29.6 Interrupt Generator (I2S_IGEN.v)...213

29.7 Internal Peripheral Bus I/F (I2SIPBIO.v)..214

29.8 I2S Registers..215
29.8.1 I2S Controller base address..215
29.8.2 I2S Controller registers memory map..215
29.8.3 I2S Main Control Registers..216

Imagine Processor

Imagine Processor

29.8.4 Interrupt Control Register..217
29.8.5 Input/Output FIFO Status Register...218
29.8.6 FIFO Input/Output Port Status Register...218
29.8.7 FIFO Control/Status Registers...219
29.8.8 Frame Size registers...219

29.9 I2S Data Access Ports...220
29.9.1 I2S FIFO input port registers...220
29.9.2 I2S FIFO output port registers...220

30. THE AC97 AUDIO CODEC...221
30.1 The Input/Output Signals of AC’97 Controller..222

30.1.1 Input/ Output signals definitions..222

30.2 AC’97 controller module overview..224

 ...224

30.3 AC’97 Serial Timing Generator (T_GEN.v)...225
30.3.1 The timing of Serial Timing Generator..225
30.3.2 Block Diagram...225

30.4 AC’97 Serial Data Enable Generator (SE_GEN.v)..226
30.4.1 Block diagram..226
30.4.2 Set/Reset Conditions of Serial enables...227

30.5 AC’97 Serial Output Generator (SO_GEN.v)..227
30.5.1 Block Diagram...228

30.6 FIFO Input/Output Registers (F_REGS.v)...229
30.6.1 Block Diagram (AC’97 Commend R/W Registers)...229
30.6.2 Block Diagram (FIFO Input Registers)..230
30.6.3 Block Diagram (FIFO Output Registers)...231

30.7 Read Input Tags (R_TAG.v)..232

30.8 128 x 32 bit FIFO (F_AC97.v)..232
30.8.1 Block Diagram 1/2 (Controller & Arbiter block) ..233
30.8.2 Block Diagram 2/2 (FIFO block) ..234
30.8.3 FIFO Arbiter (F_ABT.v)..235
30.8.4 FIFO Controller (F_CTRL.v)...235

30.9 Interrupt Generator (INT_GEN.v)..236

30.10 Internal Peripheral Bus I/F (ACIPBIO.v)..236

30.11 AC’97 Registers...238
30.11.1 AC’97 Controller base address...238
30.11.2 AC’97 Controller registers memory map...238
30.11.3 AC’97 Main Control Registers...239
30.11.4 Interrupt Control Register..240
30.11.5 Input/Output FIFO Status Register...241
30.11.6 FIFO Input/Output Port Status Register...241
30.11.7 FIFO Control/Status Registers...242

30.12 AC’97 Data Access Ports...242
30.12.1 AC’97 Control register access port..242
30.12.2 AC’97 Control register read return port...242
30.12.3 AC’97 Playback output port...242
30.12.4 AC’97 Record input port..243
30.12.5 AC’97 Modem Line output port...243
30.12.6 AC’97 Modem Line input port...243
30.12.7 AC’97 Microphone input port..243

Imagine Processor

Imagine Processor

Imagine Processor

Imagine Processor

Chapter 3

THE PROGRAMMING
MODEL

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE IMAGINE 2 CORE CONTROL REGISTERS
CONTROL
REGISTER UNIT NR

cr0
cr1
cr2
cr3
cr4
cr5
cr6
cr7

REG
REG
REG
REG
REG
REG
REG
REG

1
1
1
4
1
1
1
1

 Register file control register
 Extended instruction control
 Vector index control register
 Vector indices entry / write delay line entry
 Vector indices port A
 Vector indices port B
 Vector indices port C
 Vector indices write enable & status

cr0
cr1
cr2
cr3
cr3.0
cr3.1
cr3.2
cr3.3

REG_Control
REG_Monitor
REG_Vector
REG_Fifo
REG_A_Indices
REG_B_Indices
REG_C_Indices
REG_C_Flags

cr8 BSH 1

 Q BUS register Q-bus BSH_Qbus

cr12
cr13
cr15

ALU
ALU
ALU/RNG

1
1
1

 F BUS register
 Three operand logic function
 Status register

F-bus
cr6
cr5

ALU_Fbus
ALU_Logic
ALU_RC_Status

cr16
cr17
cr18
cr19
cr20
cr21
cr22
cr23
cr24
cr25
cr26
cr27
cr28
cr29
cr30

MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC
MAC

1
1
1
1
16
1
1
1
1
1
1
1
1
1
1

 M BUS register
 Multiplier control register 1
 Multiplier control register 2
 Vector & Coefficient pointers
 Coefficient registers entry
 MAC pipeline output
 Lower limit compare register [31:00]
 Lower limit compare register [63:32]
 Higher limit compare register [31:00]
 Higher limit compare register [63:32]
 Low limit register (32 bit)
 High limit register (32 bit)
 Accumulator register [31:00]
 Accumulator register [63:32]
 State save & restore entry

M-bus
cr12
cr16
cr13
new
cr15
new
new
new
new
cr17
cr18
cr14.0
cr14.1
cr19

MAC_Mbus
MAC_Control1
MAC_Control2
MAC_RamPtrs
MAC_Coef
MAC_Pipe
MAC_LoLimit0
MAC_LoLimit1
MAC_HiLimit0
MAC_HiLimit1
MAC_LoLimit32
MAC_HiLimit32
MAC_Accu0
MAC_Accu1
MAC_Save

cr32
cr33

UFU
UFU

1
1

 U BUS register
 IEEE 754 float conversion register

U-bus
cr8

UFU_Ubus
UFU_IEEE

cr36
cr37
cr38
cr39

DIO
DIO
DIO
DIO

1
1
1
1

 D BUS register
 Data I/O control register
 Data I/O address register
 Data I/O linear offset register

D-bus
cr20
cr21
new

DIO_Dbus
DIO_Control
DIO_Address
DIO_offset

cr40
cr41
cr42
cr43

I3D
I3D
I3D
I3D

1
256
1
1

 3D graphics Look up table indices
 3D graphics Look up table entry
 3D graphics Color Key Low values
 3D graphics Color Key High values

new
new
new
new

I3D_ClutIndices
I3D_ClutData
I3D_ColorKeyLo
I3D_ColorKeyHi

cr44
cr45
cr46
cr47
cr48
cr49
cr50
cr51

VIO
VIO
VIO
VIO
VIO
VIO
VIO
VIO

1
1
1
1
640
1
1
1

 V BUS register
 Vector I/O control register 1
 Vector I/O control register 2
 Vector I/O alpha test & generation
 Vector I/O translation table entry
 Vector I/O Transparent Output Color
 Vector I/O Color Key Low values
 Vector I/O Color Key High values

V-bus
cr24
new
new
new
new
new
new

VIO_Vbus
VIO_Control1
VIO_Control2
VIO_Alpha
VIO_TableData
VIO_Transparent
VIO_ColorKeyLo
VIO_ColorKeyHi

cr52
cr53
cr54
cr55
cr56
cr57
cr58
cr60
cr61

SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ
SEQ

1
1
1
1
1
1
1
1
1

 Sequencer status control register
 Program counter
 Address register
 Interrupt table register
 Repeat count register
 Maximum repeat count
 Sequencer test register
 Instruction cache store register 0
 Instruction cache store register 1

cr32
cr33
cr34
cr35
cr36
cr37
cr39
cr30
cr31

SEQ_Status
SEQ_PrCounter
SEQ_Address
SEQ_Interrupt
SEQ_Repeat
SEQ_MaxRepeat
SEQ_Test
ICA_Low
ICA_High

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file
THE IMAGINE 2 CORE CONTROL REGISTERS (continued)

CONTROL
REGISTER

UNIT NR

cr64
cr65
cr66
cr67
cr68
cr69
cr70
cr71
cr72
cr73
cr74
cr75
cr76
cr77
cr78
cr79

I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D
I3D

1
1
1
1
8
8
8
8
8
8
8
8
12
10
1
16

 Linear interpolator control register
 Texture mapping control register
 Depth buffer control register
 Low level control register
 Lighting Alpha component parameter entry
 Lighting Red component parameter entry
 Lighting Green component parameter entry
 Lighting Blue component parameter entry
 Texture Q co-ordinate parameter entry
 Texture R co-ordinate parameter entry
 Texture S co-ordinate parameter entry
 Texture T co-ordinate parameter entry
 Depth 1/Z co-ordinate parameter entry
 Lighting Fog Attenuation factor entry
 Border color register
 Texture MIP map address offset table entry

new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new

I3D_Control
I3D_Texture ?
I3D_ ?
I3D_LowLevel ?
I3D_Alpha ?
I3D_Red ?
I3D_Green ?
I3D_Blue?
I3D_TextureQ ?
I3D_TextureR ?
I3D_TextureS ?
I3D_TextureT ?
I3D_Depth ?
I3D_Fog ?
I3D_Border ?
I3D_MipMap ?

cr80
cr81
cr82
cr83

MES
MES
MES
MES

1
1
1
1

 Motion Estimator control register
 Sum of Differences
 Minimum value found
 Position of the minimum value

new
new
new
new

MES_Control
MES_SumOfDiff
MES_Minimum
MES_Position

cr88
cr89
cr90
cr91
cr93
cr94
cr95
cr96
cr97
cr98
cr99
cr100
cr101
cr102
cr103
cr104
cr105
cr106
cr107

MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK
MSK

1
1
1
1
1
1
1
1
4
4
4
1
1
1
1
8
8
8
8

 Image mask control register 1
 Image mask control register 2
 Window X minimum / maximum
 Window Y minimum / maximum
 Polygon Y minimum / maximum
 Polygon start coordinate entry
 Polygon end coordinate entry
 Polygon start/end coor.register
 Spanline start coordinate register [3:0]
 Spanline end coordinate register [3:0]
 Spanline start/end coord. Register [3:0]
 Spanline start edge delta value
 Spanline end edge delta value
 Span Line Length
 Span Line Address
 Complex alpha mask register [1:0][3:0]
 Range clip mask register [1:0][3:0]
 Transparent mask register [1:0][3:0]
 Opaque mask register [1:0][3:0]

cr40
cr41
cr42
cr43
new
cr44
cr45
cr46
new
new
cr47
new
new
new
new
cr48
cr49
cr50
cr51

MSK_Control1
MSK_Control2
MSK_Window_X
MSK_Window_Y
MSK_Polygon_Y ?
MSK_PolyStart
MSK_PolyEnd
MSK_PolyCoord
MSK_SpanStart
MSK_SpanEnd
MSK_SpanLines
MSK_DeltaStart ?
MSK_DeltaEnd ?
MSK_SpanLength ?
MSK_SpanAddr ?
MSK_CplxAlpha
MSK_RangeClip
MSK_Transp
MSK_Opaque

cr112
cr113
cr114
cr115
cr116
cr117
cr118
cr119
cr120
cr121
cr122
cr123

VAU
VAU
VAU
VAU
VAU
VAU
VAU
VAU
VAU
VAU
VAU
VAU

1
1
1
1
1
1
1
1
1
1
1
1

 Vector access control register
 Bit plane mask register
 Foreground color register
 Background color register
 Image 1 XY pointer (mask ref.)
 Image 2 XY pointer
 Image 3 XY pointer
 Display XY size register
 Image 1 offset address
 Image 2 offset address
 Image 3 offset address
 Display offset address

cr52
cr53
cr54
cr55
cr57
cr58
cr59
new
new
new
new
new

IMM_Control
IMM_PlaneMask
IMM_FG_color
IMM_BG_color
IMM_Image1
IMM_Image2
IMM_Image3
IMM_DispSize
IMM_Offset1
IMM_Offset 2
IMM_Offset 3
IMM_DispOffset

cr126
cr127

EMI
EMI

?
?

 External Memory Interface Address
 External Memory Interface Data

new
new

EMI_Address ?
EMI_Data ?

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE IMAGINE 2 CORE REGISTERS

The IMAGINE has about 900 core registers. They play a central role in the programmers model.

The control registers
Almost all functional units in the IMAGINE contain so called control registers. The data processing units can refer to these
registers during so called extended instructions. Some of these control register entries give access to multiple similar registers
(normally 4). These registers are accessible in an auto increment way with preset-able 2 bit pointers (a 64 bit version of the
IMAGINE will have 8 instead of 4 registers on these entries). The programmer sees the control registers as 128 extra
registers in the three port register file. The B read port has a choice of 120 normal and 128 control registers for reading while
the write port can write to 120 normal and 128 control registers. Two control registers can be accessed each cycle (one read
access and one write access).

The bus register/drivers
All data processing and I/O units contain a 'bus-register' which contents can be used by other units.

A bus: three port register file read port
B bus: three port register file read port
Q bus: the barrel shifter result.
F bus: the ALU result.
M bus: the multiplier/accumulator result.
U bus: the unary function unit result.
D bus: the data memory I/O register.
V bus: the image memory I/O register.

These bus registers are visible in the native instruction language:
AB = rd(r43,cr36) -> F = add(A,B) -> wr(cr36, F);

The three port register file registers
The three port register file contains 120 general purpose registers and 256 vector registers. Two ports can read data and one
port can write data each cycle. Some of these registers have a predefined function for the C compiler. A direct access to
register 63 with any of the 3 ports is a no op for this port. The vector registers are accessible by the vector index generator.
One read port and one write port are used to access the control registers.

The multiplier/accumulator register file
The MAC contains 64 internal 128 bit registers which can be used as 128 registers of 64 bit (the typical vector length is 64).
These registers can be used for vector accumulation operations as well as parameters for differential engine type operations in
combination with the accumulator. These registers can further be split up in the typical HISC way. A 64 bit register can also
be a double 32 bit and a quadruple 16 bit register.
A 128 bit register can be a double 64 bit and a quadruple 32 bit register. An example of vector accumulation is image
filtering: A 3x3 convolution adds three vector while a 4x4 convolution adds four vectors. Examples off differential engine
functions are: Gouraud shading interpolation and 2D or 3D coordinate calculation (linear, Bezier spline etc..).

The multiplier pipeline registers
These registers are used in those 8 bit multiplications which make the most efficient use of the HISC multiplier. The 16
multiplications (4x4) per cycle performed by the matrix times vector multiplication and the quadruple inproduct
multiplication require up to 32 bytes as input operands per cycle. The pipeline register provides these operands to the
multiplier. The important graphics and image processing algorithms like interpolated rotation and scaling, discrete cosine
transformation, color space conversion, convolution and correlation are directly supported.

The sequencer on chip micro stack
This little on chip stack can be used to speed up
♦ Library function
♦ Assembly code
♦ Non recursive C-functions.
♦ Interrupts.
examples: The on chip micro stack can be used to speed up a number of elementary library functions such as division,
emulated floating point functions etc. These functions can use the micro stack and scratch pad registers to implement a
call/return mechanism with only 2 or 3 cycles overhead, much less as the normal C compiler. The inner loops of assembly
code might be implemented as a call rather than a loop in functions with lots of options. The call address is determined in the
initialisation phase of the function and used in the inner loop. The C compiler can use the stack for return address saving in
non-recursive functions. At least all functions who do not call other functions can use this mechanism. The situations is more
complex for functions which do contain calls. Horizontal sync interrupts: a simple horizontal sync interrupt routine or
DRAM refresh interrupt is as short as 2 instructions, one for the required function and one return instruction. No state saving
is needed because of the micro stack. The total time needed for the interrupt including the branch delays of the jump to the
interrupt vector table and the return is only 5 cycles: 100 ns at 50 MHz.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE IMAGINE INSTRUCTION SETS

THE HIERARCHY OF INSTRUCTION LEVELS
The IMAGINE has an hierarchical instruction set to provide compatibility with existing software, compilers and operating
systems at one end, and highly efficient parallel vector processing at the other end. The various instruction levels can be
intermixed freely in the assembler code. All instruction levels can be written as "In Line" code in C and C++ programs.

We differentiate between the following levels:

(♦) Compiler based C code and C++ code
(compiler generated)

♦ RISC/CISC level assembly code
(macro function set)

♦ Free pipeline assembly code
(native machine language: graphs of pipeline sequences)

♦ Vector processing level
(set of macro functions for vector operations and user defined vector operations)

♦ Specific use of control registers and special purpose graphics hardware.

The RISC/CISC instruction set (which is hierarchically the highest of the four levels of assembly code) contains typical
register based instructions like:

mnemonic: function:
mul_(p1, c10, v0); p1 = c10 * v0
add_(v1, v2, v3); v1 = v2 + v3
abs_(vx, vy); vx = abs(vy)
st_byte_(data, val); *(ptr) = val

This level is the 'interface layer' to compilers, existing graphics and image processing software written in high level language,
operating systems etc. The RISC/CISC level is a macro function level within the IMAGINE assembler. The functions above
are expanded to small instruction graphs defining the sequence of individual pipeline stages; typically: read registers, execute
function, write back register. This notation level is the native instruction language of the IMAGINE.

AB = rd(c10, v0) -> M = mult(A, B, iss) -----> wr(p1,M);
AB = rd(v2,v3) -> F = add(A,B) -> wr(v1,F);
A = rd(vy) -> U = abs(A) -> wr(vx, U);
AB = rd(ptr, val) -> DA = wrAd(A), D = byte(B);

The RISC/CISC level includes all functionality needed to interface to the code generation part of modern optimising
compilers. In this sense it provides already more functionality than most RISC processors do, which generally lack explicit
functions for byte and 16 bit operations and conversions between the various
formats (compilers need to include up to 3 or 4 barrel shift operations for a single 8 bit instruction). Almost all IMAGINE
instructions at this level can be orthogonally used on all word lengths.

We present version 1.0 of the RISC/CISC level instructions in this document. The instruction set can be expanded since it is
a macro function set. Some instructions are added which are more CISC-like, such as the multiple stack push and pop
operations. The bit operations are included in the Intel processors since the 386 are implemented as a CISC example. The
instructions take 2 to 3 pipeline slots in some contrast with the 486 which needs 3 to 103 cycles. The programmer will use
the RISC/CISC type operations in the areas outside the inner loops of the graphics and image processing where the lowest
programming levels are used. RISC/CISC type assemble code will normally be used in the preparation stage. This stage can
be predominant in some graphics functions such as Gouraud shaded triangles. Some of this code can then be replaced during
an optimisation stage with native IMAGINE instructions which can perform up to 3 or 4 instructions per cycle.

So the lowest level functions are found in the innermost loops of the code where Gouraud interpolated pixels are drawn.
Textures mapped from a source to a destination area, images filtered etc. The RISC/CISC level is useful in the preparation
stage of these function where parameters are handled, prepared and transformed to the format needed in the inner loops

The capability to go smoothly and instantaneously from hardware like pixel oriented processing to higher level parameter
processing up to C or C++ code and back is one of the great advances of the IMAGINE processor. The lack of this facility
cripples other attempts found in the market place which at one end of the spectrum use multiple on chip 8, 12 or 16 bit ALU's
for pixel processing but break down in terms of speed when higher level operations are required. As well as RISC-like
processors which have included some very specific hardware for certain graphics operations. These special purpose circuits
have to communicate through or along side autonomous bus handling units which have to schedule cache line reads and
writes, bus snooping operations for cache coherency etc. These 'non deterministic' operations do hinder both the hardware
and programmer to reach the very high sustained I/O speeds needed for high performance graphics.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE RISC/CISC LEVEL INSTRUCTIONS (1)

LOAD and STORE accesses to DATA MEMORY

mnem. operands cycl. function

ld_byte_ (dst, base, offset) 1 yes Load sign extended byte from *(base+off) into dst
ld_short_ (dst, base, offset) 1 yes Load sign extended short from *(base+off) into dst
ld_word_ (dst, base, offset) 1 yes Load word from *(base+off) into dst

ldu_byte_ (dst, base, offset) 1 yes Load zero extended byte from *(base+off) into dst
ldu_short_ (dst, base, offset) 1 yes Load zero extended short from *(base+off) into dst
ldu_word_ (dst, base, offset) 1 yes Load word from *(base+off) into dst

st_byte_ (src, base, offset) 2 yes Store byte from src to *(base+off)
st_short_ (src, base, offset) 2 yes Store short from src to *(base+off)
st_word_ (src, base, offset) 2 yes Store word from src to *(base+off)

std_byte_ (src, addr) 1 yes Store byte from src to *(address)
std_short_ (src, addr) 1 yes Store short from src to *(address)
std_word_ (src, addr) 1 yes Store word from src to *(address)

push_ (stack, src) 2 no Push (control-) register to stack
push2_ (stack, src1, src2) 3 no Push 2 (control-) registers to stack
push3_ (stack, src1 .. src3) 4 no Push 3 (control-) registers to stack
push4_ (stack, src1 .. src4) 5 no Push 4 (control-) registers to stack
push5_ (stack, src1 .. src5) 6 no Push 5 (control-) registers to stack
push6_ (stack, src1 .. src6) 7 no Push 6 (control-) registers to stack
push7_ (stack, src1 .. src7) 8 no Push 7 (control-) registers to stack
push8_ (stack, src1 .. src8) 9 no Push 8 (control-) registers to stack

pop_ (stack, dst) 2 no Pop (control-) registers from stack
pop2_ (stack, dst1, dst2) 3 no Pop 2 (control-) registers from stack
pop3_ (stack, dst1 .. dst3) 4 no Pop 3 (control-) registers from stack
pop4_ (stack, dst1 .. dst4) 5 no Pop 4 (control-) registers from stack
pop5_ (stack, dst1 .. dst5) 6 no Pop 5 (control-) registers from stack
pop6_ (stack, dst1 .. dst6) 7 no Pop 6 (control-) registers from stack
pop7_ (stack, dst1 .. dst7) 8 no Pop 7 (control-) registers from stack
pop8_ (stack, dst1 .. dst8) 9 no Pop 8 (control-) registers from stack

dst: DESTINATION register or control register
src: SOURCE register or control register
base: ADDRESS-BASE register or control register
offset: ADDRESS-OFFSET register or immediate
address: ADDRESS register or control register
stack: STACK-POINTER register (or control register)

Sizeable instructions can be used to access an allocated 2 dimensional or 3 dimensional area in data memory:

2D example: ld_word_16 (dst, base, offset)
3D example: std_byte_8 (src, address)

base: 2D/3D BASE register or control register
offset: 2D/3D OFFSET register
address: 2D/3D ADDRESS register or control register

X-component Y-component Z-component
2D address: bits 16..31 bits 0..15 ---
3D address: bits 16..23 bits 8..15 bits 0..7

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE RISC/CISC LEVEL INSTRUCTIONS (2)

REGISTER MOVE INSTRUCTIONS

mnem. operands cycl. size. function

move_ (dst, src) 1 yes Move (control-) register to (control-) register
movi_ (dst, imm) 1 yes Move immediate value to (control-) register
swap_ (reg, opB) 2 yes Swap register with (control-) register

ARITHMETICAL ALU INSTRUCTIONS

mnem. operands cycl. size. function

add_ (dst, opA, opB) 1 yes dst = opA + opB
sub_ (dst, opA, opB) 1 yes dst = opA - opB
rsub_ (dst, opA, opB) 1 yes dst = opB - opA
incr_ (dst, opB) 1 yes dst = opB + 1
decr_ (dst, opB) 1 yes dst = opB - 1
addincr_ (dst, opA, opB) 1 yes dst = opA + opB + 1
subdecr_ (dst, opA, opB) 1 yes dst = opA - opB - 1
rsubdecr_ (dst, opA, opB) 1 yes dst = opB - opA - 1

LOGICAL ALU INSTRUCTIONS

mnem. operands cycl. size. function

clear_ (dst) 1 yes dst = '0000'
set_ (dst) 1 yes dst = 'FFFF'
invert_ (dst, opB) 1 yes dst = !opB
and_ (dst, opA, opB) 1 yes dst = opA & opB
nand_ (dst, opA, opB) 1 yes dst = !(opA & opB)
or_ (dst, opA, opB) 1 yes dst = opA | opB
nor_ (dst, opA, opB) 1 yes dst = !(opA | opB)
xor_ (dst, opA, opB) 1 yes dst = opA ^ opB
equiv_ (dst, opA, opB) 1 yes dst = !(opA ^ opB)
andrev_ (dst, opA, opB) 1 yes dst = !opA & opB
andinv_ (dst, opA, opB) 1 yes dst = opA & !opB
orrev_ (dst, opA, opB) 1 yes dst = !opA | opB)
orinv_ (dst, opA, opB) 1 yes dst = opA | !opB

dst: DESTINATION register or control register
opA: OPERAND A register or immediate
opB: OPERAND B register or control register
reg: REGISTER register
imm: IMMEDIATE immediate value

Sizeable instructions operate on double 16 bit and quadruple 8 bit data:

double 16 bit example: add_16 (dst, opA, opB)
quadruple 8 bit example: shl_8 (dst, imm, opB)

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE RISC/CISC LEVEL INSTRUCTIONS (3)

BARREL SHIFT/ROTATE INSTRUCTIONS

mnem. operands cycl. size. function

shflog_ (dst, opA, opB) 1 yes dst = shift opB over opA places logical, (bi-directional)
shfarh_ (dst, opA, opB) 1 yes dst = shift opB over opB places arithmetic, (bidirect.)
rotate_ (dst, opA, opB) 1 yes dst = rotate opB over opA places (bi-directional)

shr_ (dst, imm, opB) 1 yes dst = shift logical right opB over imm places.
shl_ (dst, imm, opB) 1 yes dst = shift logical left opB over imm places.
sar_ (dst, imm, opB) 1 yes dst = shift arithmetical right opB over imm places.
sal_ (dst, imm, opB) 1 yes dst = shift arithmetical left opB over imm places.
ror_ (dst, imm, opB) 1 yes dst = rotate right opB over imm places.
rol_ (dst, imm, opB) 1 yes dst = rotate left opB over imm places.

UNARY FUNCTION UNIT INSTRUCTIONS

mnem. operands cycl. size. function

abs_ (dst, opA) 1 yes dst = absolute value of opA
sign_ (dst, opA) 1 yes dst = sign of opA (1,0,-1)
notzero_ (dst, opA) 1 yes dst = if A=0: '0000' else 'FFFF'
swap_ (dst, opA) 1 yes dst = swap bits of opA
unary_ (dst, opA) 1 yes dst = exp2(opA) - 1 (opA = 0 -> 0)
binary_ (dst, opA) 1 yes dst = log2(opA) + 1 (opA = 0 -> 0)

ZERO / SIGN EXTENSION INSTRUCTIONS

mnem. operands cycl. size. function

zextbyte_ (dst, opB) 1 no zero extend byte from opB to 32 bit
sextbyte_ (dst, opB) 1 no sign extend byte from opB to 32 bit
zextshort_ (dst, opB) 1 no zero extend short from opB to 32 bit
sextshort_ (dst, opB) 1 no sign extend short from opB to 32 bit

MULTIPLE UNIT FUNCTIONS: BIT TEST FUNCTIONS (ix86 TYPE)

mnem. operands cycl. size. function

bt_ (opA, opB) 2 yes dst = test bit opA of opB (set minus flag if '1')
btc_ (dst, opA, opB) 3 yes dst = test bit opA of opB, complement bit -> dst
btr_ (dst, opA, opB) 3 yes dst = test bit opA of opB, reset bit -> dst
bts_ (dst, opA, opB) 3 yes dst = test bit opA of opB, set bit -> dst
bsf_ (dst, src) 2 yes dst = 'bit scan forwards' (lowest order '1' in src)
bsr_ (dst, src) 3 yes dst = 'bit scan reverse' (highest order '1' in src)

dst: DESTINATION register or control register
opA: OPERAND A register or immediate
opB: OPERAND B register or control register
reg: REGISTER register
imm: IMMEDIATE immediate value

Sizeable instructions operate on double 16 bit and quadruple 8 bit data:
double 16 bit example: abs_16 (2x16, dst, opA)
quadruple 8 bit example: mulx_8 (4x8, dst, opA, opB, mtype)

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE RISC/CISC LEVEL INSTRUCTIONS (4)

MULTIPLIER INSTRUCTIONS

mnem. operands cycl. size. function

mul_ (dst, opA, opB) 1 yes dst = opA * opB (signed)
umul_ (dst, opA, opB) 1 yes dst = opA * opB (unsigned)
mulx_ (dst, opA, opB,mtyp) 1 yes dst = opA * opB (any of 16 types of multiplication)

DIVIDE INSTRUCTIONS

mnem. operands cycl. size. function

div_ (dst, opA, opB) - yes dst = opA / opB (signed)
udiv_ (dst, opA, opB) - yes dst = opA / opB (unsigned)
mod_ (dst, opA, opB) - yes dst = opA / opB (signed)
umod_ (dst, opA, opB) - yes dst = opA / opB (unsigned)
divmod_ (dst, opA, opB) - yes dst = opA / opB (signed)
udivmod_ (dst, opA, opB) - yes dst = opA / opB (unsigned)

MISCELLANEOUS INSTRUCTIONS

mnem. operands cycl. size. function

swapbyte_ (dst,src,s0,s1,s2,s3) 2 no swap bytes: dst(0)=src(s0), dst(1)=src(s1),...dst(3)=src(s3)
logic_ (dst,reg,opA, opB) yes
logic3_ (dst,reg,opA,opB,op3) yes

IEEE 754 32 BIT FLOATING POINT FUNCTIONS (non-pipelined)

mnem. operands cycl. function types

int_sf (dst, opB) 1 dst = int (opB) float -> integer
float_sf (dst, opB) 1 dst = float (opB) integer -> float
neg_sf (dst, opB) 2 dst = -opB float = neg (float)
abs_sf (dst, opB) 2 dst = abs(B) float = abs (float)

add_sf (dst, reg, opB) 9 dst = reg + opB float = float + float
addint_sf (dst, reg, opB) 10 dst = reg + opB float = float + integer
sub_sf (dst, reg, opB) 9 dst = reg - opB float = float - float
subint_sf (dst, reg, opB) 10 dst = reg - opB float = float - integer
rsubint_sf (dst, reg, opB) 10 dst = reg - opB float = integer - float
add3_sf (dst, reg, op2, op3) 11 dst = reg + op2 + op3 float = float + float + float

mul_sf (dst, reg, opB) 12 dst = reg * opB float = float x float
mulint_sf (dst, reg, opB) 13 dst = reg * opB float = float x integer
mul3_sf (dst, reg, op2, op3) 17 dst = reg * opB float = float x float x float

div_sf (dst, reg, opB) 26 dst = reg / opB float = float / float
divint_sf (dst, reg, opB) 27 dst = reg / opB float = float / integer
rdivint_sf (dst, reg, opB) 26 dst = reg / opB float = integer / float

IEEE 754 32 BIT FLOATING POINT FUNCTIONS (pipelined)

matxvec4x4_sf(dstptr, srcptr) 34 homogeneous coordinate transformation
trans4x4_sf (dstptr, srcptr) 60 homogeneous transformation + perspective division

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE RISC/CISC LEVEL INSTRUCTIONS (5)

CONTROL FLOW INSTRUCTIONS

General format of the control flow instructions

function condition type ([label] , [opA, OpB])

function: condition:

branch jump pc relative '' no condition
jump jump absolute eq if opA equal opB
subr call pc relative ne if opA not equal opB
call call absolute gt if opA greater than opB
return return ge if opA greater or equal opB

lt if opA less than opB
type: le if opA less or equal opB

ugt if unsigned opA greater than opB
'' 32 bit test uge if unsigned opA greater or equal opB
32 32 bit test ult if unsigned opA less than opB
16 16 bit test ule if unsigned opA less equal opB
8 8 bit test set if bit opA of opB is '1'
sf 32 float test res if bit opA of opB is '0'

examples:

branch_lt_(label, opA, opB)
branch_set_(label, 3, opB)
subr_gt_16(label, opA, opB)
return_eq_(-1, opB)

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE FREE PIPELINE LEVEL INSTRUCTIONS (1)

THREE PORT REGISTER FILE INSTRUCTIONS

Basic & extended accesses:

AB = rdsz(opA, opB), wr(dst, bus) opA = register or immediate value
AB = rxsz(opA, opB), wx(dst, bus) opB, dst = register or control register

Indexed basic & indexed extended accesses:

AB = rdsz(opA, opB), wr(dst, bus) opA = indexed register or immediate value
AB = rxsz(opA, opB), wx(dst, bus) opB, dst = indexed register or control register

data size: sz = ['' , '1x32' , '2x16' , '4x8'] bus: A (register) B (register)
immediate value: +1023...-1024 bus: D (data-bus) V (image-bus)
register: r0...r63 (r63=noop) bus: M (multiplier) F (ALU)
control register: cr0..cr63 bus: Q (barrel shifter) U (UFU)

Immediate load accesses:

wrmsk(dst,imm16) dst = register or control register

immediate 16: 0...65536
byte write mask: wr16HL, wr16H, wr16L, wr8_3, wr8_2, wr8_1, wr8_0, wr8_321, wr8_210, wr8_30 etc.

BARREL SHIFT / ROTATE UNIT INSTRUCTIONS
all functions executed at a single cycle throughput
modes: all functions operate on 4x8 bit, 2x16 bit and 32 bit

mnemonic operation

Q = shflog(data, A) Q = shift logical data over A places, Right if A is positive, Left if A is negative
Q = shfarh(data, A) Q = shift arithmetic data over A places, Right if A is positive, Left if A is
negative
Q = rotate(data, A) Q = shift logical data over A places, Right if A is positive, Left if A is negative

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE FREE PIPELINE LEVEL INSTRUCTIONS (2)

ARITHMETIC AND LOGIC UNIT INSTRUCTIONS
all functions executed at a single cycle throughput
modes: all functions operate on 4x8 bit, 2x16 bit and 32 bit

mnemonic operation mnemonic operation

F = clear F = all bits '0' F = decr (R) F = R - 1
F = and (R,S) F = R and S F = incr (R) F = R + 1
F = andrev (R,S) F = (not R) and S F = decr (S) F = S - 1
F = copy (S) F = S F = incr (S) F = S + 1

F = andinv (R,S) F = R and (not S) F = subdecr (R,S) F = R - S - 1
F = noop (R) F = R F = sub (R,S) F = R - S
F = xor (R,S) F = R xor S F = subbor (R,S) F = R - S + carry
F = or (R,S) F = R or S F = minus (S) F = - S

F = nor (R,S) F = not (R or S) F = subdecr (R,S) F = S - R - 1
F = equiv (R,S) F = R xnor S F = sub (R,S) F = S - R
F = invert (R) F = not R F = subbor (R,S) F = S - R + carry
F = orrev (R,S) F = (not R) or S F = minus (R) F = - R

F = copyinv (S) F = not S F = add (R,S) F = R + S
F = orinv (R,S) F = R or (not S) F = addincr (R,S) F = R + S + 1
F = nand (R,S) F = not (R and S) F = addcar (R,S) F = R + S + carry
F = set F = all bits '1' F = logic (R,S) F = three op logic function

Operand R can be selected from busses: A(register), D(data-memory), M(multiplier) and Q(barrel-shifter)
Operand S can be selected from busses: B(register), V(image-memory), F(ALU) and U(unary function unit)

UNARY FUNCTION UNIT INSTRUCTIONS
all functions executed at a single cycle throughput

mnemonic operation modes

U = pass (A) pass A to U 4x8 bit, 2x16 bit, 32 bit
U = unary (A) binary to unary conversion 4x8 bit, 2x16 bit, 32 bit
U = binary (A) unary to binary conversion 4x8 bit, 2x16 bit, 32 bit

U = integer (Ad) float to integer conversion 32 bit
U = fixed (Ad) float to integer conv. variable offset 32 bit
U = float (Ad) integer to float conversion 32 bit
U = floatFd (Ad) integer to float conv. variable offset 32 bit

U = abs (X) absolute value 4x8 bit, 2x16 bit, 32 bit
U = sign (X) sign function 4x8 bit, 2x16 bit, 32 bit
U = notzero (X) non zero function 4x8 bit, 2x16 bit, 32 bit
U = swap (X) swap bits function 4x8 bit, 2x16 bit, 32 bit

Operand X can be selected from buses: A(register) and F(ALU)

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE FREE PIPELINE LEVEL INSTRUCTIONS (3)

MULTIPLIER / ACCUMULATOR INSTRUCTIONS
all functions executed at a single cycle throughput

mnemonic

M = mult (Ma, Mb, option) basic multiply operation (48 combinations)

option data type signs modes

iuu integer, unsigned x unsigned 4x8 bit, 2x16 bit, 32 bit
ius integer, unsigned x signed 4x8 bit, 2x16 bit, 32 bit
isu integer, signed x unsigned 4x8 bit, 2x16 bit, 32 bit
iss integer, signed x signed 4x8 bit, 2x16 bit, 32 bit
nuu normalised fixed point unsigned x unsigned 4x8 bit, 2x16 bit, 32 bit
nus normalised fixed point unsigned x signed 4x8 bit, 2x16 bit, 32 bit
nsu normalised fixed point signed x unsigned 4x8 bit, 2x16 bit, 32 bit
nss normalised fixed point signed x signed 4x8 bit, 2x16 bit, 32 bit
fuu fixed point unsigned x unsigned 4x8 bit, 2x16 bit, 32 bit
fus fixed point unsigned x signed 4x8 bit, 2x16 bit, 32 bit
fsu fixed point signed x unsigned 4x8 bit, 2x16 bit, 32 bit
fss fixed point signed x signed 4x8 bit, 2x16 bit, 32 bit
guu rounded norm. fixed point unsigned x unsigned 4x8 bit, 2x16 bit, 32 bit
gus rounded norm. fixed point unsigned x signed 4x8 bit, 2x16 bit, 32 bit
gsu rounded norm. fixed point signed x unsigned 4x8 bit, 2x16 bit, 32 bit
gss rounded norm. fixed point signed x signed 4x8 bit, 2x16 bit, 32 bit

8 bit array operations 16 multiplies & 12 adds per cycle:

M = inproduct (Mb) quadruple vector inproduct, 4x8 bit, all data types, signed/unsigned
M = matrixvec (Mb) 4 x 4 matrix times vector multiply 4x8 bit, all data types, signed/unsigned
M = loadpipe (Ma, Mb) load data & coefficient pipe line 4x8 bit, all data types, signed/unsigned

accumulator ram access:

M = read_ram () read 96 bit (multi) word from the accumulator ram
M = write_ram () write 96 bit (multi) word to the accumulator ram

incremental functions for differential engine applications:

M = linearstep () incremental add 4x12 bit, 4x24 bit, 2x48 bit, 1x72 bit

general multiply accumulate functions:

M = macs (Ma, Mb) multiply accumulate scalar all 48 basic multiply options
M = macb (Ma, Mb) multiply accumulate vector all 48 basic multiply options

multiple 16 bit functions: 4 multiplies and 2 additions per cycle:

M = vectprod (Ma, Mb) 16 bit vector dot and cross products all data types, signed
M = complex (Ma, Mb) 16 bit complex products all data types, signed

Operand Ma can be selected from : A(register), D(data-memory), M(multiplier) and Q(barrel-shifter)
Operand Mb can be selected from : B(register), V(image-memory), F(ALU) and U(unary function unit)

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Chapter

4. THE REGISTER FILE

The register file plays a central role in the processing philosophy of the Imagine.
It contains 120 general purpose 32 bit registers and a Vector register file of 256
words of 32 bit with a wide range of special purpose options. This unit also serves
as a port to a large number of control registers spread throughout the core
processor.

120 General Purpose Registers:
For C type code and RISC assembly code. A 'Register plus Register to Register
mode' and an 'Immediate plus Register to Register mode' are available. The latter
supports operations with constants and the C stack relative addressing to local
variables.

256 Vector Registers:
The 256 word Vector register file which is accessible with the Vector Index
generators, enables the implementation of a large number of algorithms which are
by nature less suitable for classic SIMD processors. It allows various forms of
parallel conditional processing by means of conditional data flow mechanisms
instead of conditional control flow. It fully supports the three basic data types of the
Imagine: single 32 bit, double 16 and quadruple 8 bit words. It can generate
addresses for all these sizes conditionally by using status information from the
Status Register or Range Check Unit. This means for 8 bit words that it can
generate 12 different register file addresses in each cycle: eight to read data and
four to write data. The Vector Index generator supports besides conditional address
generation also conditional byte write enabling, byte preset and byte reset.

128 Control Register entries:
The Imagine core processor, The 3D graphics unit and The Mask Generator
contain many control registers which can be accessed in much the same way as the
120 general purpose register. The reads and writes to these control registers use
two separated busses. A control register can be read and one can be written each
cycle.

Overview of the Register file
Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4 THE REGISTER FILE

4.1 introduction
The Register File is a 120 + 256 word RAM with two read ports (A and B) and one write port (C). Two Read
actions and one Write action can be performed each cycle. 120 entries are directly accessible (entry 0 through
119). The instruction code has three 7 bit address fields for these entries. References to entries 120 to 126 have a
special meaning. Entry number 127 is interpreted as a no-op. The 256 vector registers are accessible via indices
generated by the Vector index generator. The data read from the register file is placed in the A and B registers
which are readable by the other data processing and I/O units. All eight internal buses can be selected as the
source of the data to be written into the Register File. A read from a register which is written to in the same cycle
loads the new value directly in the A or B register, bypassing the RAM.

4.1.1 the control registers
The address fields for the register file may be used alternatively to access the internal control registers which
accompany many of the individual functional units. One control register can be read and one can be written each
cycle. The B port is used to read and the C port is used to write to a control register. A total of 128 different
control register addresses is available. Two Instruction code bits (B and C) differentiate between normal and
control register accesses. The A port can load an 11 bit immediate value instead of a register value.

A port: read from register or 11 bit immediate (range: -1024...+1023)
B port: read from register or control register
C port: write to register or control register

4.1.2 the vector index generators
The Vector Index Generator provides addresses (indices) to access the 256 word vector register file. It can
generate individual indices for 8 bit or 16 bit components of the 32 bit words. Up to twelve different indices can
be generated each cycle: four for the four bytes of port A, four for the four bytes of port B and four for the four
bytes which are written via port C. The generator can use 8 bit data offsets for run time generated register
address. It can generate Write Enables which control writing of individual bytes. The indices and write enables
can be generated conditionally based on status information from the ALU and the Range control unit. This type
of parallel conditional processing is used to perform various graphics and image processing algorithms at a very
high sustained speed.

4.1.3 the access modes
The Register file has four main access modes:

♦ register plus register to register
A general or vector register is loaded in the A port register. A general, vector or control register is loaded in the
B port register and any of the 8 internal buses is written into a general, vector or control register.
♦ immediate plus register to register:
An 11 bit sign extended value from the instruction word is loaded in the A register. A general or vector register is
loaded in the B register and any of the 8 internal buses is written into a general or vector register.
♦ 16 bit constant load:
16 bit constants can be written into any bytes of a general, vector or control register. The 16 bit is placed on
both the highest and lowest 16 bit of the 32 bit control register bus while four byte write enables control the
writes to the individual bytes.
♦ The 32 bit constant load / merge:
This mode loads a 32 bit constant directly into a general, vector or control register. The merge function allows
bit field insertion by rotating a value on the A bus (immediate or register value) to the right bit position and then
merge the selected bits (indicated via the 32 bit constant value) together with the value on the B bus (register or
control register). Four byte write enables in the instruction control writes to individual bytes.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.2 The control registers
One of the basic principles of the programming model of the Imagine 2 is to allow extra functionality with the
use of control registers. The basic instructions do not use these registers and are completely defined by the
instruction word without any side effects. Other instructions with extra capabilities do refer to control registers to
see what the exact function should be. The registers above are used for this extra functionality.

The vector index generator has the capability to calculate up to 12 different 8 bit indices which are used to access
individual bytes of the 256 word vector register file. These indices are visible in control registers cr4 to cr6. The
Vector Index generator control register (cr2) contains the definition of the index generation. Besides indices it
also can generate four byte write enables, visible in cr7: flags W[3:0], which can be used to disable the writing of
individual bytes into the vector register file. In many cases we want to use the data itself for the index generation
or the byte write enables. An input fifo on the write port can temporary delay data from 1 to 8 cycles before being
written to vector register file during the time it takes to calculate indices and/or byte write enables. The
extended access also provides on the fly operations on data which is being written into a general, vector or
control register and a function which allows the use of run time programmable data sizes for the A port and the B
port. The data size monitor can save and restore the data sizes of the 8 buses during interrupts.

Imagine Processor

cr7: REG_C_Flags: Byte Write Enables, Presets, Resets and delayed status flags

cr6: REG_C_Indices: Vector indices for Write port C

cr5: REG_B_Indices: Vector indices for Read port B

cr4: REG_A_Indices: Vector indices for Read port A

cr3: REG_Fifo: Write delay fifo entry , REG_Indices: Vector Indices entry

cr2: REG_Vector: Vector Index control register

cr1: REG_Monitor: Data Size Monitor Register

cr0: REG_Control: The Register File Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Access to data from the Write Delay Fifo or Vector Indices A, B, C and flags
[31:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

A3 INDEX
[7:0]

A2 INDEX
[7:0]

A1 INDEX
[7:0]

A0 INDEX
[7:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

B3 INDEX
[7:0]

B2 INDEX
[7:0]

B1 INDEX
[7:0]

B0 INDEX
[7:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

C3 INDEX
[7:0]

C2 INDEX
[7:0]

C1 INDEX
[7:0]

C0 INDEX
[7:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

BxSIZE
[1:0]

AxSIZE
[1:0]‘00000000000’

ASIZE
[1:0]

BSIZE
[1:0]

QSIZE
[1:0]

FSIZE
[1:0]

MSIZE
[1:0]

USIZE
[1:0]

DSIZE
[1:0]

VSIZE
[1:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

OFFSETC
[2:0]

 SELSTA.
[2:0]

BASEC
[1:0]

SELBUS.
[1:0]

OFFSETB
[2:0]

OFFSETA
[2:0]

BASEB
[1:0]

BASEA
[1:0] ‘00’‘00’‘00’

‘0’
FIFOPTR.

[2:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

VIPTR.
[2:0]

Write.
FUNCTSE ‘0’W3 W2 W1 W0

(Write enables)
‘0000’

ISIZEC
[2:0]‘0’ ‘00’

ISIZEB
 [2:0]

ISIZEA
[2:0] ‘0’‘0’

DW IW EW

W0W1W2W3S3
PRE 3
[1:0]

RES 3
[1:0] S2

PRE 2
[1:0]

RES 2
[1:0] S1

PRE 1
[1:0]

RES 1
[1:0] S0

PRE 0
[1:0]

RES 0
[1:0]R3P3 R2P2 R1P1 R0P0

‘0’

Imagine 2 Multi Media Processor 4. The register file

4.2 Register plus register to register mode:

♦ The A port is read from a general register or a vector register
♦ The B port is read from a general register, a vector register or a control register
♦ The value of one of the 8 internal buses is written to a general register, a vector register or a control register.

4.2.1 accesses to general purpose and control registers
The A port and B port registers are available for other functional units in the next cycle. The two ports have 2 bit
size information besides the 32 data bits. Two bits in the instruction field define the size of the A and B read
data. The size information of the data selected by the write port is not stored into the register file. The register
file does not keep track of sizes but adds them during read operations.

Some examples of read operations:

A = rd(r17); B = rd(cr121);
AB = rd(r37, cr53); AB = rd4x8(r47, r48);
B = rd2x16(r104); B = rd1x32(r57);

The read function contains an optional size indicator '4x8', '2x16' or '1x32'. 32 bit accesses are default when no
size indication is given. The normal registers are indicated by r0 .. r119 while the control registers are indicated
by cr0 .. cr127. Some examples of write operation:

wr(r89, M); wr(r39, F); wr(r15, D); wr(cr124, Q);

The write examples select data from buses M, F, D and Q: the Multiplier result,
the ALU result, the Data Input from data memory and the Barrel Shifter. All
eight on chip buses can be selected as a data source for the C write port of the
register file. A write to a control register may occur while another is read on the
B read port because there is a separated control register read and a control
register write bus.

4.2.2 vector register accesses
The 120 General purpose registers are accessed with
values from 0 to 119. From the remaining 8 options we
use 127 as a no-operation instruction. The remaining
addresses are used to indicate that a vector index gen-
erator is used to generate the actual register address.
There are 256 vector registers which can be accessed in
this way. Indices have to be generated first before they
can be used in the next cycle. Examples of generate-index
instructions:

genad(A); genad(A, B); genad(wr);
genad(); genad(A, B, wr); genad();

The index addresses are calculated with the vector index generators. This unit can calculate up to twelve different
addresses each cycle plus four 'byte-write-enables' for the write port.
The way in which the index is calculated is defined by the Vector Index generator control register and described
in detail in the chapter devoted to this unit. The generate index instruction can be combined with an indexed-
access, an extended-indexed access or with a load-write-fifo function (write port only) The LSB of the special
address should be ‘0’ to invoke this function. Four indices are generated per port (one for each byte). Multiple
generate-index instructions for more than one port can be combined into a single instruction. If the port name is
omitted (empty brackets) then all three ports are affected.

Imagine Processor

Register file read port size

 0: size is 4x8 (quad_byte)
 1: size is 2x16 (double_short)
 2: size is 1x31 (single_word)
 3: {reserved}

 Write port bus selection

 0: select A bus data
 1: select B bus data
 2: select Q bus data
 3: select F bus data
 4: select M bus data
 5: select U bus data
 6: select D bus data
 7: select V bus data

 Special register addresses

 120 extended indexed, generate new index
 121 extended indexed,
 122 load write fifo, generate new index
 123 load write fifo
 124 indexed access, generate new index
 125 indexed access
 126 no operation, generate new index
 127 no operation

Imagine 2 Multi Media Processor 4. The register file

Special mnemonics are use to indicate the use of the special addresses. Instead of absolute addresses like r12 or
r48 we us 'ri', ‘xi’ or ’fifo’ Implicit generation of new indices for a specific port is possible by adding ++ to
the mnemonics. The effect is the same as a separate genad() function. Examples of indexed accesses:

A = rd (ri); AB = rd4x8(ri, ri); AB = rd (xi, cr12); wr (ri++, V);
B = rd1x32(ri); wr (xi++, B); AB = rd4x8 (ri, xi++); AB=rd4x8(ri, r17);
B = rd2x16(xi++); wr (fifo, B); wr (xi);

‘ri’ = register indexed-access ‘ri++’ = register indexed-access and generate new indices
‘xi’ = extended-indexed-access ‘xi++’ = extended-indexed-access and generate new indices
’fifo’ = load-write-fifo

4.2.3 The extended-indexed-accesses

The normal read and write functions can be executed with a number of extra options. It is not the instruction
word but the Register file control register which determines the exact function.

Three extra functions are provided:
♦ individual Byte write enabling during a write to a vector register.
♦ 'On the fly operations' on data before it is written into a vector register.
♦ Conditional Byte Presets and Byte Resets on data before it is written into a vector register.
♦ Run time programmable data sizes for the A port and the B port.

The functions are not visible in the instruction mnemonics since they are not defined by the instruction itself but
by a control register. The mnemonic indicates that the function is an extended function (xi instead of ri) The
optional functions are described in detail in the chapter of the 'Extended functions'.

4.3 Immediate plus register to register mode

♦ The A port is loaded with a 11 bit sign extended value from the instruction.
♦ The B port is either read from a general or vector register
♦ The value of one of the 8 internal busses is written to a general or vector register.

This mode allows the use of an 11 bit immediate value. 11 bits in the instruction word are placed in the 11 least
significant bit locations of read port A. The upper 21 bits of read port A are sign extended (identical to the 11 th

bit) The read port B is loaded from a general register or vector register and the write operation stores a selected
value in either a general register or vector register. Examples:

A = rd(0x325), wr(r12, F); AB = rd(-23, r56), wr(r27, M); AB = rd(912, r4), wr(r16, U);

The data size used for these access modes is always 32 bit. This size will be attached to the A port and B port
data. The control registers can not be accessed. Both size bits in the instruction code and control register access
flags in the instruction code are freed for the 11 bit immediate value. The most important use of this access mode
is in RISC like C code where it provides single cycle immediate operations as: X = 4*Y or B = A<<19 or Q =
P&0x3F and in single cycle Load operations with Stack relative and Base relative addressing where a small
constant value is added to the stack- or base-pointer.

4.4 The 16 bit constant load.

A 16 bit value in the instruction word is used to load 16 bit values into general, vector or control registers. The
16 bit value is placed on the highest and lowest 16 bit of the 32 bit control register write and four byte write
enables in the instruction word control the writing to individual bytes. The read port A and read port B registers
are not modified. They will keep their contents. The C address from the instruction word is used as the write
address.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Examples of 16 bit constant loads:

wr (r0, 14); wr16H(r12, 0x12345678 >> 16); wr16L (r12, 0x12345678 & 0xFFFF);
wr8_3 (cr24, 0x84<<8); wr8_1 (cr0, 0x0E<<8); wr8_2 (cr1, 0x67);
wr8_0 (cr6, 0x3A); wr16H(ri, 0x1234); wr16HL(ri, 0);

wr16HL: write to 16 MSB and 16 LSB bits. wr8_3: write to bits 24..31. (upper 8 bit of data)
wr16H: write to 16 MSB bits. wr8_2: write to bits 16..23. (lower 8 bit of data)
wr16L: write to 16 LSB bits. wr8_1: write to bits 8..15. (upper 8 bit of data)

wr8_0: write to bits 0..7. (lower 8 bit of data)

the 8 bit versions can be combined into any arbitrary combination of bytes like: wr8_321, wr8_210, wr8_30
et cetera (A '1' in the write enable field allows writing. IC3=we3, IC2=we2, IC1=we1, IC0=we0)

4.5 The 32 bit constant load / merge.

This function uses the complete 64 bit instruction word for itself so the other data processing units can not be
active and they will hold their current values. The only active part of the register file is the write port and
optionally the write index generator. The read ports and their index generators will hold their current value.

The 32 bit load function can store a 32 bit field from the instruction word directly into a general, control or
vector register. The 32 bit merge function can perform a bit field insertion by rotating the A port register which
contains the field to be inserted to the right bit positions and the use the 32 bit field from the instruction word to
merge the selected bits with the value from the B port register which should contain the data into which the bit
field is to be inserted.

Examples of 32 bit constant loads:

wr32(r109, 0x76543210); wr32(cr2 0x25252546);

Example how to insert a 5 bit value from register r49 to position 24 of control register cr17:

AB = rd(r49,cr17); merge(cr17, 24, 0x1F << 24);

Example how to merge the highest 16 bit of register r12 with highest 16 bit of register r59. Register r12 is
shifted 16 positions down before merging. The result is stored in control register cr90.

AB = rd(r12, r59); merge(cr90, -16, 0xFFFF);

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.6 Vector index generators.

4.6.1 results of the index generators
The 256 word Vector Register File can be accessed with the use of the Vector index generators. A Vector index
generator is a versatile unit which has numerous ways to construct the effective addresses for the Vector register.
Each byte of read port A, read port B and write port C has its own Vector index generator: a total of twelve
different 8 bit indices can be generated: XYINDEX. Where X is register port A, B or C and Y is byte number 0, 1,
2 or 3. The results are visible in three control registers (cr4: REG_A_Indices, cr5: REG_B_ Indices, cr6:
REG_C_Indices). A fourth control register (cr7: REG_C_Flags) contains 4 generated byte write enables for the
write port, four byte Presets and four byte Resets.

4.6.2 control input for the Index generators
The 12 vector indices generators for the read ports A and B and write port C are controlled by three parameters
per port plus two parameters for all three ports:
BASEA[1:0], BASEB[1:0], BASEC[1:0] : Select the A/B/C vector bases (defined in cr2)
OFFSETA[2:0], OFFSETB[2:0], OFFSETC[2:0] : Select the A/B/C vector offsets (defined in cr2)
ISIZEA[2:0], ISIZEB[2:0], ISIZEC[2:0] : Size of the A/B/C indices (number of bits-1) (defined in cr0)
SELBUS[1:0] : Select 1 of 4 busses for the offset value (defined in cr2)
SELSTA[2:0] : Select 1 of 8 status flags for cond. operations (defined in cr2)

The byte write enable generation uses the 4 selected status flags. The operation is controlled with two flags:
EW : Enable the generation (Byte Write enables = status)
IW : invert the status values when used as Byte Write enables
DW : use the delayed status flag for Write enables, Presets and Resets

4.6.3 data input for the Index generators
data and status which can be used for the index generation: dataY[7:0] :four bytes data selected from the A, B,
M or V bus and statusY: four 1 bit status flags from the ALU_RC_Status register (cr15)

4.6.4 Index generator calculations
The calculation of the indices is defined by the BASEX [1:0] and OFFSETX [2:0] fields. Together they construct the
XYINDEX [7:0] value from the current XYINDEX value plus the selected input data Y [7:0] and statusY flag. The
write port C can also use the current index of read port A for Read-modify-Write type operations. The ISIZEX
[2:0] value defines the number of LSB bits from XYINDEX [7:0] which can be modified. The remaining higher
bits are write protected. The value 0 enables modifying bit 0 while 7 enables the modification of [7:0]

Imagine Processor

The functionality provided by BASEX: (X = register port A, B or C, Y = byte number 0, 1, 2 or 3)

 0: BASE_0 base XY = 0
 2: BASE_CURRENT_ADDR base XY = XYINDEX (The current index is used as base)
 3: BASE_READ_A_ADDR base XY = AYINDEX (The read port A index used as base)

The functionality provided by OFFSETX: X = register port A, B or C, Y = byte number 0, 1, 2 or 3)

 0: NO_OFFSET XYINDEX = base XY + 0
 1: ADD_1 XYINDEX = base XY + 1
 2: ADD_OFFSET XYINDEX = base XY + data Y
 3: ADD_OFFSET_ADD_1 XYINDEX = base XY + data Y + 1
 4: ADD_1_IF_TRUE XYINDEX = base XY + (status Y ? 1 : 0)
 5: ADD_1_IF_FALSE XYINDEX = base XY + (status Y ? 0 : 1)
 6: ADD_OFFSET_IF_TRUE XYINDEX = base XY + (status Y ? data Y : 0)
 7: ADD_OFFSET_IF_FALSE XYINDEX = base XY + (status Y ? 0 : data Y)
12: ADD_1_IF_OLD_TRUE XYINDEX = base XY + (delayed status Y ? 1 : 0)
13: ADD_1_IF_OLD_FALSE XYINDEX = base XY + (delayed status Y ? 0 : 1)
14: ADD_OFFSET_IF_OLD_TRUE XYINDEX = base XY + (delayed status Y ? data Y : 0)
15: ADD_OFFSET_IF_OLD_FALSE XYINDEX = base XY + (delayed status Y ? 0 : data Y)

Imagine 2 Multi Media Processor 4. The register file

4.6.5 select the data bus used for the offset data

8 bit offsets can be taken from the A bus, B bus, M bus or
the V bus with the SELBUS[1:0] field from the vector index
generation control register. The actual offset data depends
on the size of the chosen bus. When the bus size indicates
single 32 bit word data size then the lowest 8 bits of the
selected bus are used for all four indices. So a port will have
identical offsets for each of its four individual bytes.

If the data size is 4x8 (quadruple 8 bit data), then
the 8 bits are used from each individual byte of the
32 bit wide selected bus data. In this case all four
offsets can be different for each of a ports for
bytes. In case of a double 16 bit word data size,
bits [7:0] are used for the lowest two of the four
byte address generators, and bits [23:16] are used
for the highest two. So a 16 bit word will have
identical offsets for both it’s bytes.

4.6.6 select the status for conditional index generation and byte write enables

The status information which is
generated by the ALU or the
Range unit and saved in the
ALU_RC_Status register, (cr15)
can be used for conditional index
generation for the read ports A
and B and write port C. Condi-
tional index generation is dis-
cussed in the previous para-
graphs. It is also used for condi-
tionally writing to a vector reg-
ister.

Conditional writing can be combined with the four byte write enables which can be used possible during
extended register access instructions. If both are used together then a byte can only be written if both the
extended-byte-write-enable is true ('1') (control register 0, bits [11:8]) and the conditional-byte-write-enable is
true ('1'). The four conditional status bits are depending on the data size used during the operation which has
generated them in the ALU or the Range unit. If the data type was quadruple 8 bit byte, then all four conditional
enables are different because they were generated in four byte operations.
If the data type was 'double 16 bit short' then the upper and lower pair are identical because they stem from
double 16 bit word operations. In the single 32 bit word operation all four conditional enables are identical.

4.6.7 select between the use of the current or delayed status
The read port A index generator result can be used by the write port C index generator for a number of Read-
modify-Write operations. The read port A index generator will also save the selected status flags from the status
register (cr15: ALU_RC_Status) into four flags of control register cr7 (REG_C_Flags). This means that the status
flags can be re-used in the next cycle by another index generator for a conditional function. The use of the
delayed status instead of the current status in the status register can be controlled individually for each index
generator and for the generation of byte write enables, presets and resets

OFFSETA[3]: Select the delayed status for the read port A index generation.
OFFSETB[3]: Select the delayed status for the read port B index generation.
OFFSETC[3]: Select the delayed status for the write port C index generation.
DW: Select the delayed status for the write port C byte write enables, presets and resets generation.

Imagine Processor

 SELSTA [2:0] function

 0: STATUS_ZERO status = ALU_RC_Status [24, 16, 8, 0]
 1: STATUS_MINUS status = ALU_RC_Status [25, 17, 9, 1]
 2: STATUS_CARRY status = ALU_RC_Status [26, 18, 10, 2]
 3: STATUS_SGNCMP status = ALU_RC_Status [27, 19, 11, 3]
 4: STATUS_INSIDE status = ALU_RC_Status [28, 20, 12, 4]
 5: STATUS_HIGHER status = ALU_RC_Status [29, 21, 13, 5]
 6: STATUS_LOWER status = ALU_RC_Status [30, 22, 14, 6]
 7: STATUS_WRONG status = ALU_RC_Status [31, 23, 15, 7]

Select offset data depending on the bus size

size=4x8 size=2x16 size=1x32
 data 0 = bit [8:0] bit [7:0] bit [7:0]
 data 1 = bit [15:8] bit [7:0] bit [7:0]
 data 2 = bit [23:16] bit [23:16] bit [7:0]
 data 3 = bit [31:24] bit [23:16] bit [7:0]

SELBUS[1:0] Select the bus for the offset

 0: B_BUS_OFFSET: select the B bus
 1: M_BUS_OFFSET: select the M bus
 2: A_BUS_OFFSET: select the A bus
 3: V_BUS_OFFSET: select the V bus

Imagine 2 Multi Media Processor 4. The register file

4.6.8 generation of the byte write enables

The four selected status flags can be used as four byte write enables. A logic ‘1’ enables writing. The status bits
can be optionally inverted before being used as write enables. Three flags in the vector index generation control
register define the operation: EW, IW and DW.

E W: enable status for write enable
'0' Do not use the status flag. The byte write enables are set to ‘1’ (enabled)
'1' The selected status flags are used as a conditional byte write enable for the C port.

I W: invert status for write enable
'0' Do not invert the status: write enable if the status is true ('1').
'1' Invert the status: write enable if status is false ('0').
D W: invert status for write enable
'0' Use the current status from the ALU_RC_Status register, selected with the SELSTA[2:0] field from

the REG_Vector control register.
'1' Use the four (delayed) Status flags from the REG_C_Flags register which are loaded by a genad(A)

instruction from the ALU_RC_Status register, selected with the SELSTA[2:0] field from the
REG_Vector control register.

4.6.9 generation of the byte presets and byte resets

Four Byte preset flags and Four Byte reset flags are generated by the four write port index generator. These flags
can be used by extended indexed write accesses. E.g.: wr(xi, F) Normal indexed accesses do not use these flags.
The preset flag will set the byte to ‘11111111’ while the reset flag will set the byte to ‘00000000’ The
generation is controlled for each flag individually by a 2 bit field in control register cr7: REG_C_Flags. The
PREY[1:0] fields generate the preset flags while the RESY[1:0] fields generate the reset flags. (Y indicates the
byte: 0...3)

Imagine Processor

Preset Flag generation options: Reset Flag generation options:

0 PRESET_NEVER 0 RESET_NEVER
1 PRESET_IF_TRUE 1 RESET_IF_TRUE
2 PRESET_IF_FALSE 2 RESET_IF_FALSE
3 PRESET_ALWAYS 3 RESET_ALWAYS

Imagine 2 Multi Media Processor 4. The register file

4.7 The extended functions.
The extended functions are defined by the Imagine instruction plus the contents of the control registers. Four
extra functions can be added and mixed in any combination: Byte write enables, On the fly operations on write
data operations, Byte presets / resets and Run time programmable bus sizes for the A bus and B bus.

4.7.1 byte write enables
The byte write enable option allows the writing of individual bytes to a vector register:
cr0 bit[8]: W0: if 1 { enable write to bits [7: 0] } else { disable write to bits [7: 0] }
cr0 bit[9]: W1: if 1 { enable write to bits [15: 8] } else { disable write to bits [15: 8] }
cr0 bit[10]: W2: if 1 { enable write to bits [23:16] } else { disable write to bits [23:16] }
cr0 bit[11]: W3: if 1 { enable write to bits [31:24] } else { disable write to bits [31:24] }

4.7.2 On the fly write Functions
Three simple 'On the fly operations' can be performed on the data before it
is written into the register file. A two bit field in control register cr0
selects the function to use for the operation.

.Function 0: NO-OPERATION
This function does not alter the data which is to be written into the
selected register. Use can use the four byte write enables in case you want
to write part of the entire word only.

Function 1: WRITE DATA INCREMENT
The use of this function is in counting functions. After an arbitrary classification a table entry should be
incremented. If a classification is made each cycle for a number of cycles in a row, then the same entry might be
used in two consecutive cycles: in which case the result of the first cycle is needed as the operand of the second.
The on the fly increment provides this function. Increments are performed on bytes, 16 bit words or the complete
32 word depending on the data size of the selected bus

Function 2: WRITE DELAY FIFO
This function is used to delay the data in functions where the data itself determines in some way the vector index
generation or write enables. The information from the vector index generators and the Data itself should arrive at
the same time. This function can be used to introduce extra pipeline delay. The internal 32 bit wide and 7 stages
deep shift register used for the delay is loaded by a load fifo instruction: e.g.: wr(fifo, Q) this function also
increments the Fifo pointer (found in cr0: REG_Control) A value from the Fifo is read and written into a vector
register (and the Fifo pointer is decremented) with the use of an extended write instruction. e.g.: wr(xi). The 3
bit Fifo pointer has values from 0 through 7. A value of zero indicates that the Fifo is empty, reading the fifo will
repeat the last read value. A value of N = 1..7 means that the Fifo is filled with N values. (the value 7 is not
incremented, and the value 0 is not decremented)

Imagine Processor

 On the fly function: cr0 [4:3]

 0: DATA_PASS
 1: DATA_INCREMENT.
 2: DATA_DELAY

Bus
Selection
data[31:0]

+
size[1:0]

instruction
code[2:0]

of the
write
select
unit

 Bus size[1:0] B bus

 Q bus

 F bus

 M bus

 U bus

 D bus

 V bus

 0 1 2 3 4 5 6 7
Fifo entry: selected by control register cr0 [18:16]

Increment:
32 bit

2x16 bit
4x8 bit Write

function

selected
by:

control
register

cr0
[4:3]

Byte
resets

handled
by:

control
register

cr7
[2,10,18,26]

Byte
presets

handled
by:

control
register

cr7
[3,11,19,27]

Extended Functions

 Bus data[31:0]

 data[31:0]

 Bus data[31:0]

Overview of the extended write data functions

 A bus

Imagine 2 Multi Media Processor 4. The register file

4.7.3 application of the byte presets and byte resets

The byte preset and reset flags generated by the write port index generators and available in the REG_C_Flags
control register (cr7) are applied during extended indexed writes. These writes use the ‘xi’ mnemonic like in
wr(xi, F)

4.7.4 run time programmable data sizes

This is an extended read function for the read ports A and B: The data sizes are taken by default from the
instruction code. The data sizes can also be taken from the two fields AxSIZE and BxSIZE in control register
REG_Monitor (cr0), The SE flag (Size enable) in REG_Control [7] should be '1'

4.7.5 preserved for compatibility only

The following operations are provided for Imagine 1 compatibility only and will be discontinued in future
versions of the IMAGINE.

-Extended accesses to the general purpose registers and control registers:

The extended functions (only those of the Imagine 1) can also be applied to the general registers and the control
registers. A single bit in the instruction code changes the operation of all three ports to extended mode. The
normal register and control register values can be used. This option is supplied for reasons of compatibility only
and should not be used for any new code and replaced in old code with for instance the 32 bit load / merge
function. The mnemonic used to indicate that the Three Port register file operates in extended mode are rx and
wx instead of rd and wr:

Examples: AB = rx(r12, r15), wx(r50, F); AB = rx(r12, cr12), wx(r110, B);

-Indirect accesses to the Index pointer control registers:

The 4 control registers cr4: REG_A_Indices, cr5: REG_B_Indices, cr6: REG_C_Indices, cr7: REG_C_Flags are
also indirectly accessible via control register cr3. The Fifo pointer (cr0: REG_Control[18:16]) should be 0
otherwise one of the Fifo registers is accessed. The VIPTR[1:0] selects between the for control registers. This
field is post-incremented after a control register read or write access (but only if the Fifo pointer is 0)

-Moving sizes to the A or B bus:

The sizes can be added to the A bus and B bus data during extended read operations by setting SE to '1', SO to '1'
and using the two select fields as 3 bit pointers into the array of bus sizes (A=0, B=1, Q=2, F=3, M=4, U=5,
D=6, V=7).

- 1 Cycle Write delay register

The extended write function with the old 1 cycle On-the-fly-delay function still works but only with the old
wx(ri) function, the new wr(xi) activates the full Write Delay FIFO function: The difference is that wx(ri) shifts
the 7 stage Fifo registers and does not decrement the Fifo pointer while wr(xi) does not move the Fifo registers
and does decrement the Fifo, The function wx(ri) should not be used for any new functions and replaced in old
code.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.8 The 7 independent sub units of the register file

The register file consist of seven independent units. Each of the units has it’s own copy of the instruction code
register (the instruction bits which it needs) so the repeat functions can be executed independently for each of the
seven units. The seven units are:

3 access ports: read port A, read port B, write port C
3 vector index generators for the three ports
1 write input bus selector and write FIFO control unit

The following example shows how all units repeat their own function N times. Where N is 16 in this example.

repeat, graph (example_graph)
;;
example_graph:
genad(A) => A= rd(ri) => genad(B) => B= rd(ri) => wr(fifo, B) => genad(Wr) => wr(xi);

4.8.1 read port A span of control
Read Port A controls the modification of the A bus[31:0] register plus the corresponding A size[1:0]

4.8.2 read port B span of control
Read Port B controls the modification of the B bus[31:0] register plus the corresponding B size[1:0]

Some Control register reads can modify other control register’s state E.g.: auto increment reads may cause a
pointer to be incremented. The Register File control registers have two such pointers: REG_Control [FIFOPTR],
cr0[18:16] and REG_Control [VIPTR] , cr0[1:0] Both pointers can be incremented by reads from control
registers REG_Fifo, cr3.

4.8.3 write port C span of control
Write Port C controls the modification of the General purpose registers, the Vector registers and the control
registers.

Some Control register writes can modify other control register’s state E.g.: auto increment writes may cause a
pointer to be incremented. The Register File control registers have two such pointers: REG_Control [FIFOPTR],
cr0[18:16] and REG_Control [VIPTR] , cr0[1:0] Both pointers can be incremented by writes to control
registers REG_Fifo, cr3. REG_Control [FIFOPTR] can also be decremented by an extended indexed write to a
vector register with data read from the Delay FIFO: wr(xi) Finally a write of a ‘1’ to the monitor enable flag:
REG_Monitor [ME], cr1[7] will load the 8 bus sizes in highest 16 bit of the same control register.

4.8.4 read port A index generator span of control
This unit generates the contents of REG_A_Indices, cr4 plus the four delayed status flags in control register
REG_C_Flags[S3, S2, S1, S0], cr7[25,17,9,1]

Imagine Processor

genad(A)

genad(B)
A=rd(ri)

B=rd(ri)
wr(fifo,B)

genad(Wr)
 wr(xi)

1 2 16 17 18 19 20 21 223 4 5 6 7 8 9 10 11 12 13 14 15

Imagine 2 Multi Media Processor 4. The register file

4.8.5 read port B index generator span of control
This unit generates the contents of REG_B_Indices, cr5.

4.8.6 write port C index generator span of control
This unit generates the contents of REG_C_Indices, cr6 plus 12 flags in REG_C_Flags:

Four Byte write enables: REG_C_Flags[W3, W2, W1, W0] cr7[24,16,8,0]
Four Byte resets : REG_C_Flags[R3, R2, R1, R0] cr7[26,18,10,2]
Four Byte write enables: REG_C_Flags[P3, P2, P1, P0] cr7[27,19,11,3]
.

4.8.7 write Select Unit span of control
This unit selects the input bus during write operations. The only registers which it modifies are the registers of
the write delay FIFO and the corresponding FIFO pointer REG_Control [FIFOPTR], cr0[18:16] which it may
increment if it writes into the FIFO.

4.9 Instruction fields for each of the 7 sub-units of the register file

Imagine Processor

 write port C

 Write Select unit

 Port C index generator

 Port B index generator

 Port A index generator

 read port B

 read port A
‘XX’
Mode

A read address 7 bit

‘XX’
Mode

C write address 7 bit

‘XX’
Mode

B read address 7 bit Size B
type

‘XX’
Mode

‘XX’
Mode

B read address 7 bit

A read address 7 bit

‘XX’
Mode

C write address 7 bit Write
select[2:0]

C
type

Size

11 bit signed immediate value‘XX’M
ode

‘XX’
Mode

C write address 7 bit C
type

‘XX’
Mode

C write address 7 bit 16 bit constant load value C
type

Write
enables[3:0]

C
type

B
type

Imagine 2 Multi Media Processor 4. The register file

4.9.1 default values of instruction code fields

Not all of the fields are always available. A number of the fields have default values in case they are needed but
aren’t supplied in the instruction field:

Size IC[6:5] the default value is: ‘10’ 32 bit data
B IC[3] the default value is : ‘0’ register (not control register)
C IC[4] the default value is : ‘0’ register (not control register)
Wr enables IC[3:0] the default value is : ‘1111’ write all bytes

4.10 Events which modify the Register File’s control registers

All the control registers fields can be modified by writing to them with a control register write operation. Here we
provide a detailed overview of the other events which modifies the control register fields.

4.10.1 events which modify REG_Control

ISIZEA[2:0] modified by a control register write only.
ISIZEB[2:0] modified by a control register write only.
ISIZEC[2:0] modified by a control register write only.

FIFOPTR[2:0] This pointer is auto incremented by a:
- Control register read to cr3: REG_Fifo and FIFOPTR[2:0] is not 0 or 7.
- Control register write to any byte of cr3: REG_Fifo and FIFOPTR[2:0] is not 0 or 7.
- Load-write-fifo instruction and FIFOPTR[2:0] is not 7.
This pointer is decremented by an:
- Extended Indexed Write and FIFOPTR[2:0] is not 0.
(The pointer stays the same if both incremented and decremented)

WE3,WE2,WE1,WE0 modified by a control register write only.
SE modified by a control register write only.
FUNCT modified by a control register write only.

VIPTR[1:0] This pointer is auto incremented by a:
- Control register read to cr3: REG_Fifo and FIFOPTR[2:0] is 0.
- Control register write to any byte of cr3: REG_Fifo and FIFOPTR[2:0] is 0.

4.10.2 events which modify REG_Monitor

ASIZE[1:0] loaded from the A bus by a control register write of ‘1’ to ME, cr1[7].
BSIZE[1:0] loaded from the B bus by a control register write of ‘1’ to ME, cr1[7].
QSIZE[1:0] loaded from the Q bus by a control register write of ‘1’ to ME, cr1[7].
FSIZE[1:0] loaded from the F bus by a control register write of ‘1’ to ME, cr1[7].
MSIZE[1:0] loaded from the M bus by a control register write of ‘1’ to ME, cr1[7].
USIZE[1:0] loaded from the U bus by a control register write of ‘1’ to ME, cr1[7].
DSIZE[1:0] loaded from the D bus by a control register write of ‘1’ to ME, cr1[7].
VSIZE[1:0] loaded from the V bus by a control register write of ‘1’ to ME, cr1[7].

ME can’t be modified, always returns a ‘0’.
SO not modified in case of a control register write of ‘1’ to ME, cr1[7].
ABUSSEL[2:0] not modified in case of a control register write of ‘1’ to ME, cr1[7].
BBUSSEL[2:0] not modified in case of a control register write of ‘1’ to ME, cr1[7].

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.10.3 events which modify REG_Vector

BASEA[1:0] modified by a control register write only.
OFFSETA[2:0] modified by a control register write only.
BASEB[1:0] modified by a control register write only.
OFFSETB[2:0] modified by a control register write only.
BASEC[1:0] modified by a control register write only.
OFFSETC[2:0] modified by a control register write only.
SELBUS[1:0] modified by a control register write only.
SELSTA[2:0] modified by a control register write only.
DW modified by a control register write only.
IW modified by a control register write only.
EW modified by a control register write only.

4.10.4 events which modify REG_A_Indices

A3INDEX [7:0] modified by a read port A index generation (only ISIZEA[2:0] bits are modified)
A2INDEX [7:0] modified by a read port A index generation (only ISIZEA[2:0] bits are modified)
A1INDEX [7:0] modified by a read port A index generation (only ISIZEA[2:0] bits are modified)
A0INDEX [7:0] modified by a read port A index generation (only ISIZEA[2:0] bits are modified)

4.10.5 events which modify REG_B_Indices

B3INDEX [7:0] modified by a read port B index generation (only ISIZEB[2:0] bits are modified)
B2INDEX [7:0] modified by a read port B index generation (only ISIZEB[2:0] bits are modified)
B1INDEX [7:0] modified by a read port B index generation (only ISIZEB[2:0] bits are modified)
B0INDEX [7:0] modified by a read port B index generation (only ISIZEB[2:0] bits are modified)

4.10.6 events which modify REG_C_Indices

C3INDEX [7:0] modified by a write port C index generation (only ISIZEC[2:0] bits are modified)
C2INDEX [7:0] modified by a write port C index generation (only ISIZEC[2:0] bits are modified)
C1INDEX [7:0] modified by a write port C index generation (only ISIZEC[2:0] bits are modified)
C0INDEX [7:0] modified by a write port C index generation (only ISIZEC[2:0] bits are modified)

4.10.7 events which modify REG_C_Flags

PRE3[1:0] modified by a control register write only.
PRE2[1:0] modified by a control register write only.
PRE1[1:0] modified by a control register write only.
PRE0[1:0] modified by a control register write only.

RES3[1:0] modified by a control register write only.
RES2[1:0] modified by a control register write only.
RES1[1:0] modified by a control register write only.
RES0[1:0] modified by a control register write only.

P3, P2, P1, P0 modified by a write port C index generation.
R3, R2, R1, R0 modified by a write port C index generation.
S3, S2, S1, S0 modified by a read port A index generation.
W3, W2, W1, W0 modified by a write port C index generation.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.11 Examples of vector operations with the register file

4.11.1 Example 1: Vectored 3 operand ROP with an 8x8 pattern
A typical MS window function is the pattern rectangle operation: On of the more complex versions performs an
arbitrary logic function with a source rectangle, destination rectangle and an 8x8 pattern. This example archives
this function with two vectors. The 8x8 pattern is stored in the vector register file. The size of the A indices is set
to 3 bit, The generate index function increments the indices so the indices will wrap around after each eight
accesses to generate the 8x8 pattern. The three operand logic function of the ALU is used which executes the
logic function defined in the ALU_Logic control register

destination rectangle = function (rop3, source rectangle, destination rectangle, 8x8 pattern)

vector 1: Load values of the source image.
repeat, graph (pattern_rop3_load_source);
;;
pattern_rop3_load_source:
V= input => DA= extended(), D= word(V); // Load in non-cacheable on chip data memory

vector 2: Load values of the destination image, read 8x8 pattern, read source image perform any of 256 three
operand logic functions and write the result back to the destination image.
repeat, graph (pattern_rop3_logic_operation);
;;
pattern_rop3_logic_operation:
DA=extended() => A=rd4x8(ri++) =>D=word(uI),V=input,U=pass(A) => F=logic(D,V,U) => V=output;

4.11.2 Example 2: Vectored parallel min/ max function
The current minimum (maximum) values are stored in the register file and read via the A port while new values
are read in with the vector I/O unit for comparison. The new values are written into the delay FIFO to be
conditionally written later after the calculation of the byte write enables. The subtract operation of the ALU
provides the right status flags to determinate if the new values are smaller (larger) then the current ones, both for
unsigned or signed compares. The genad(Wr) function generates the byte write enables and wr(xi) writes the
delayed values from the FIFO into the vector register file. The genad function for read port A and the write port
increments the read and write indices.

repeat, graph (minmax);
;;
minmax:
V= input, A= rd4x8(ri++) => wr (fifo, V), F= sub(A,V) => genad(Wr) => wr(xi);

4.11.3 Example 3: Vectored parallel table look up function
This function uses a 256 entry translation table for a look up function which is useful for various purposes like
pseudo color to real color conversion (1 value in, 4 values out), non-linear functions (4 values in, 4 values out)
like gamma correction, histogram equalisation for contrast improvement for medical applications, solarisation
effects for photoshop type applications. The input values are used as indices by the read port A index generator.
The result is written back to memory.

repeat, graph (table_look_up);
;;
table_look_up:
V= input => genad(A) => A= rd4x8(ri) => V= output;

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.11.4 Example 4: Vectored parallel histogram function
This function can generate a 256 entry histogram from byte information. It counts the number of occurrences of
a byte values. It can process two bytes values per cycle. The two byte values generate indices to two 16 bit
locations which are read incremented and then stored back to the same location. The V= input function should
use it’s byte select function to move the two relevant bytes to bits[7:0] and [23:16] of the V bus and the V bus
size should be set to 2x16. The On-the-Fly-increment function increments the count values. The Write port
indices are copied from the read port A indices.

Example program: histogram without scaling.
repeat, graph (histogram);
;;
histogram:
V= input, genad(A) => A= rd2x16(ri), genad(Wr) => wr(xi, A);

The input values can be scaled into a certain range for the histogram, either to make the number of entries smaller
or to reduce the number of input values into a 256 entry range. E.g. medical applications may scale 12 bit values
into 8 bit values for histogram equalisation purposes. We can use the Multiplier to scale and use the M bus for
the index offsets.

Example program: histogram with scaling.
repeat, graph (histogram);
;;
histogram:
V= input => M= mult(Q,V) =====> genad(A) => A= rd2x16(ri), genad(Wr) => wr(xi, A);

4.11.5 Example 5: Vectored parallel add / subtract with saturate functions
Two vectors stored in the register file are added in this example. Pixel values are 8 bit (sometimes 16 bit)
unsigned values with black level 0 and maximum level 0xFF (or 0xFFFF) Adding two images may not cause
overflow: The results should be clamped to 0xFF (0xFFFF) Subtracting two images may not result in values less
then 0: The results should be clamped to 0. Clamping to 0xFF (0xFFFF) is possible with the conditional Preset
function and clamping to 0 is possible with the conditional reset function.

Add with saturate program:
The two vectors are read from the vector register file and added together in the ALU. The ALU produces a result
plus carry flags in case of unsigned overflow. The result is written to the Write Delay fifo because we need a 1
cycle delay. The carry flags selected from the status register (cr15: ALU_RC_Status) are used to set the Preset
flags in register cr7 (REG_C_Flags) In the last cycle we write the result from the Fifo, preset in case of carry,
into the vector register

repeat, graph (add_saturate);
;;
add_saturate:
AB= rd4x8(ri++, ri++) => F= add(A,B) => wr (fifo, F), genad(Wr) => wr(xi);

Subtract with saturate program:
The two vectors are read from the vector register file and subtracted in the ALU. The ALU produces a result plus
borrow (~carry) flags in case of unsigned under flow. The result is written to the Write Delay fifo because we
need a 1 cycle delay. The inverse carry flags selected from the status register (cr15: ALU_RC_Status) are used to
set the Reset flags in register cr7 (REG_C_Flags) In the last cycle we write the result from the Fifo, reset in case
of borrow, into the vector register

repeat, graph (subtract_saturate);
;;
subtract_saturate:
AB= rd4x8(ri++, ri++) => F= sub(A,B) => wr (fifo, F), genad(Wr) => wr(xi);

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.11.6 Example 6: Vectored parallel run length encoder
This implementation operates on 4x8 bit data. It will produce two vectors: One vector with run length data and
one vector with run length counts.

Example input vector with data which should be run length encoded:

2 2 2 2 116 2 2 123 123 123 2 167 2 2 2 2
2 2 116 116 116 2 123 2 2 2 2 167 167 167 2 2
2 116 2 2 116 2 123 2 2 2 2 167 2 2 167 2
2 116 2 2 116 2 2 123 123 2 2 167 2 2 167 2

Result Run length data vector:

2 116 2 123 2 167 2 - - - - - - - - -
2 116 2 123 2 167 2 - - - - - - - - -
2 116 2 116 2 123 2 167 2 167 2 - - - - -
2 116 2 116 2 123 2 167 2 167 2 - - - - -

Result Run length count vector: (count = runlength-1 which gives a range of 1 to 256)

3 0 1 2 0 0 3 - - - - - - - - -
1 2 0 0 3 2 1 - - - - - - - - -
0 0 1 0 0 0 3 0 1 0 0 - - - - -
0 0 1 0 1 1 1 0 1 0 0 - - - - -

vector 1: Load values for run-length encoding.
repeat, graph (run_length_load);
;;
run_length_load:
V= input => DA= extended(), D= word(V); // Load in non-cacheable on chip data memory

vector 2: Store the run length data in the vector register, store only once if a value occurs more then one time:
The values which will be run length encoded are read back with the Data I/O unit on the D bus. The Vector I/O
unit loads again the vector with values but 1 position shifted so the values on the D bus can be compared with
their direct successor on the V bus. If a value is equal to it’s successor then the count must be incremented (done
in the 3rd vector) If it is not equal to it successor then we increment the write index and write the new value in
the vector register. The zero flags of the ALU are used after a subtraction to test on equal or not equal.
repeat, graph (run_length_values);
;;
run_length_values:
DA= extended() ==> D= word(uI), V= input => wr (fifo, D), F= sub(D,V) => genad(Wr) => wr(xi);

vector 3: Count the occurrences of a value (It’s run length) increment write index if value is different. The start
of this vector is equal to the previous. Values are compared with their direct successor. If they are equal then the
count value which is stored in the vector register is incremented. If they are different then the index in the register
file is incremented to point to the next count value which should be initialised to zero when written for the first
time. This is done with the conditional clear function which also needs the zero flags of the ALU. It should clear
on ‘not equal’ to initialise a new count value. The F= sub(D,V) function generates the status flags. The genad(A)
increments the read address if not equal and loads the selected status flags in control register cr7. The genad(wr)
in the next cycle re-uses the A-index for the write index and it uses the delayed status flags from cr7 for the
conditional clear function. The count values will not overflow if counting is not continued more then 256 times.
Count values should not be bigger then 256 anyway. They should fit in a single byte because what we want to do
with this algorithm is compressing data. A new vector after 256 values should start again with new data and count
indices.
repeat, graph (run_length_counts);
;;
run_length_counts:
DA=extended() ==>D=word(uI),V=input =>F=sub(D,V) =>genad(A) =>A=rd(ri),genad(Wr) => wr(xi,A);

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.12 Interrupt processing:

- Saving and Restoring the data bus sizes of the A bus, B bus, Q bus, F bus, M bus, U bus, D bus and V bus:

The data sizes of the internal buses can be read and written back in control register REG_Monitor (cr1).

- Saving and Restoring the registers of the Write Delay Fifo:

The 7 individual registers of the Write Delay Fifo can be accessed via control register cr3: REG_Fifo. The
selection between the various registers is made with the Fifo-pointer field in control register cr0: REG_Control
bits [18:16] This field should have a value of 1..7 The field is post incremented by a control register read or
write access. (The value of 0 is not incremented).

Imagine Processor

Imagine 2 Multi Media Processor 5. The Barrel Shifter / Rotate unit

Chapter

5. BARREL SHIFT/ROTATE UNIT

The Barrel shift / Rotate Unit
works on the basic data types of the Imagine: single 32 bit, double 16 bit and
quadruple 8 bit. For all these formats it supports N-place shifting, logic as well as
arithmetic, and N-place rotation.

Imagine Processor

Imagine 2 Multi Media Processor 5. The Barrel Shifter / Rotate unit
fig. barrel shifter

Imagine Processor

Imagine 2 Multi Media Processor 5. The Barrel Shifter / Rotate unit

5.1 operations

The Shift/Rotate unit can work on a single 32 bit word, double 16 bit words or quadruple 8 bit words. The word
size is inherited from the source of the operand and stored together with the result in the Q register from where
the result is sent to other functional units over the Q bus.

5.1.1 Operand select
The operand to be shifted can be selected from two buses: the B bus from the register file and the F bus from the
ALU. The first one is used in typical register to register functions while the second uses the ALU result (the ALU
also has the ability to redirect any of the other buses). The operand size is inherited from the B bus or the F bus.

5.1.2 Barrel shift functions
The three basic functions: rotate, shift logical and shift arithmetic are provided. The selected operand to be
shifted (B bus or F bus) can have any word size (32, 2x16, 4x8).
The operator A is defined as a single two's complement word taken from the A bus. This word can be 32, 16 or 8
bit. In the last two cases the lowest word is used (A0..A15 and A0..A7).

5.1.3 Shift direction
If A is positive then the shift (rotate) direction is left. If A is negative then the shift (rotate) direction is right.
If A is larger than the maximum number of locations which can be shifted then the result will still be correct: all
'0's or all '1's.

The bits shifted in by the shift logical are always '0'. The shift arithmetic should be seen as a multiplication by a
power of 2 on a two's complement number. If we look at the case of a negative value for the operand (sign bit is
'1') and a negative operand for the operator (shift right: divide by a power of 2) then we see that the number
should stay negative and so '1's have to be shifted in at the left side.

5.1.4 The result register of the Barrel Shifter

The results of the Barrel Shift function unit are available in the Q bus register which can be used by other
functional units, The register file or the I/O units This register is also accessible as a control register
(BSH_Qbus, cr8)

Imagine Processor

Barrel shifter / rotator functions

32:30 Mnemonics function size

0 Q=noop no operation B size
1 Q=rotate(B,A) rotate input B over A positions B size
2 Q=shflog(B,A) shift input B logical over A positions B size
3 Q=shfarh(B,A) shift input B arithmetical over A positions B size

4 Q=extended B size / F size
5 Q=rotate(F,A) rotate input F over A positions F size
6 Q=shflog(F,A) shift input F logical over A positions F size
7 Q=shfarh(F,A) shift input F arithmetical over A positions F size

Cr8 BSH_Qbus: Barrel Shifter Bus Registers

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit Qbus result data (4x8, 2x16 or 1x32)
[31:0]

Imagine 2 Multi Media Processor 5. The Barrel Shifter / Rotate unit

5.1.4 The extended function of the Barrel Shifter

The functions of the barrel shifter can also be performed with a fixed shift factor which can be defined in control
register BSH_Control (cr9). The 8 bit fixed shift factor is a signed byte (-128, +127). The higher bits are
significant for the shift function: A word can be completely shifted out of the register leaving only zeroes or ones
(Shift Arithmatic right of a negative number). The Bus can be selected with the BUS_SEL field (0=B bus, 1=F
bus) and the Function can be selected with the Function Field (0=noop, 1=rotate, 2=shflog, 3=shfarh)

Imagine Processor

Cr8 BSH_Qbus: Barrel Shifter Bus Registers

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit Qbus result data (4x8, 2x16 or 1x32)
[31:0]

cr9 BSH_Control: Barrel Shifter Control register for the extended function

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

SHIFT FACTOR
 [7:0]

'000'FUNCT
[1:0]

bus
sel

'0000 0000 0000 0000 00'

Imagine 2 Multi Media Processor 6. The Arithmetic and Logic unit

Chapter

6. ARITHMETIC & LOGIC UNIT

The Arithmetic and Logic Unit
works on the basic data types of the Imagine: single 32 bit, double 16 bit and
quadruple 8 bit. It has the entire set of the 16 possible logic functions and a second
set of 15 additive type instructions like addition, subtraction, negation, increment,
decrement et cetera. Addition and subtraction functions with saturation are
available. A special function not found in other processors but of high value in
Window graphics applications is the parametrised three operand logic function: a
software parameter can select between any of the 256 possible logic operations on
three operands.

Imagine Processor

Imagine 2 Multi Media Processor 6. The Arithmetic and Logic unit
fig. alu

Imagine Processor

Imagine 2 Multi Media Processor 6. The Arithmetic and Logic unit

The ALU can be used as a single 32 bit ALU, a double 16 bit ALU or a
quadruple 8 bit ALU. The 9 bit instruction field consists of two sub fields:
the operand source select field and the ALU instruction.

6.1 Operand Source select:
The two operands for the ALU, called the R and the S input, can both be
selected from any of four inputs. In most cases the operand size is
inherited from the S source, except for a number of operations that use the
R source only; in these cases the R size is used.

6.2 ALU function:
The ALU provides three types of operations:
♦ The set of 16 elementary two operand logic functions. We use the X
window convention for the mnemonics of the logic functions.
♦ A set of 15 add/ subtract/ increment/ decrement functions. Addition
and subtraction with saturation are available. The addsat() function clips
to 0xFF, 0xFFFF or 0xFFFFFFFF for 8, 16 or 32 bit operations in case of
overflow while the function subsat() clips to 0 in case of underflow.
♦ A parametrised three port logic function which uses an eight bit control
register to define any of the 256 elementary three operand logic functions.

6.3 ALU instruction set

Imagine Processor

Logic functions

Ic[37:33] Mnem Operation size

 00 F=clear F = all 0s Ssz
 01 F=and(R,S) F = R and S Ssz
 02 F=andrev(R,S) F = (not R) and S Ssz
 03 F=copy(S) F = S Ssz

 04 F=andinv(R,S) F = R and (not) S Ssz
 05 F=noop(R) F = R Rsz
 06 F=xor(R,S) F = R xor S Ssz
 07 F=or(R,S) F = R or S Ssz

 08 F=nor(R,S) F = (not R) and (not S)Ssz
 09 F=equiv(R,S) F = R xnor S Ssz
 0A F=invert(R) F = not R {-R-1} Rsz
 0B F=orrev(R,S) F = (not R) or S Ssz

 0C F=copyinv(S) F = not S {-S-1} Ssz
 0D F=orinv(R,S) F = R or (not S) Ssz
 0E F=nand(R,S) F = (not R) or (not S) Ssz
 0F F=set F = all 1s Ssz

Operand Select

Ic[41:38] R input S input

 0 R = A bus S = B bus
 1 R = A bus S = V bus
 2 R = A bus S = F bus
 3 R = A bus S = U bus

 4 R = D bus S = B bus
 5 R = D bus S = V bus
 6 R = D bus S = F bus
 7 R = D bus S = U bus

 8 R = M bus S = B bus
 9 R = M bus S = V bus
 A R = M bus S = F bus
 B R = M bus S = U bus

 C R = Q bus S = B bus
 D R = Q bus S = V bus
 E R = Q bus S = F bus
 F R = Q bus S = U bus

Arithmetic functions

Ic[37:33] Mnem Operation size

10 F=decr(R) F = R-1 Rsz
11 F=incr(R) F = R+1 Rsz
12 F=decr(S) F = S-1 Ssz
13 F=incr(S) F = S+1 Ssz

14 F=subdecr(R,S) F = R-S-1 Ssz
15 F=sub(R,S) F = R-S Ssz
16 F=subsat(R,S) F = R-S or 0* Ssz
17 F=minus(S) F = -S Ssz

18 F=subdecr(S,R) F = S-R-1 Ssz
19 F=sub(S,R) F = S-R Ssz
1A F=subsat(S,R) F = S-R or 0* Ssz
1B F=minus(R) F = -R Rsz

1C F=add(R,S) F = R+S Ssz
1D F=addincr(R,S) F = R+S+1 Ssz
1E F=addsat(R,S) F = R+S or max* Ssz
 (*) saturation

Parametrised logic function

Ic[37:33] Mnemonics Operation size

1F F=Logic(R,S,U) F = logic_function(R,S,U) Ssz

Imagine 2 Multi Media Processor 6. The Arithmetic and Logic unit

6.4 Three port parametrised logic functions
ALU operation 1F invokes bit0..7 from the ALU control register
(cr12) which can provide a parametrised logic function for the
ALU: the eight bits in the register can define any arbitrary three
operand logic function. Typical applications are the ROP functions
of windows 95 where every graphics operation should be possible
with an arbitrary logical function and a bitplane mask: F = ((R op
S) & U) | (S & !U). Another example are Functions like shift/mask/
merge and shift/mask/compare for the handling of compacted
binary images. The Shift/Rotate unit provides the shift function and
the ALU unit provides the three operand logic function:
F = (R & U) | (R & !U) -> Q = rotate (F,A);

6.5 ALU control register: logic_function
The L(x) bit determines the result value depending on the input
values of the Un, Sn and Rn operands. This operation is indepen-
dently executed for all n (0..31) bits of the result value F.

6.6 The ALU status register

The Status register (control register cr15) contains sixteen bits
from the ALU (b0..3 b8..11, b16..19, b24..27). These bits are the
status flags generated by the ALU in the previous cycle. Each of
the four 8 bit words has its own four status outputs:

Z Zero not (b0+b1+b2+..bn)
M Minus value of bmsb

C Carry from bmsb to bmsb+1

S SgnCmp Overflow xnor Minus

The definition of the status bits is depending on the F word size:

The instruction F = copy(F) does not change the contents of the F
register and is also a nop for the status register flags: the Carry,
SgnCmp and other flags will not change.

6.7 Conditional Control Flow Processing:
The Program sequencer can use the ALU results for conditional
operations. It can use Z0, M0, C0 and SO for conditional Jumps,
Calls and Returns. The programmer and C compiler can make
comparisons between 32 bit, 16 bit and 8 bit words (the latter two
cases use the lowest sub word 0..15 and 0..7).

Imagine Processor

control register cr13:

 Inputs:  result:

 Un=0, Sn=0, Rn=0  Fn=L7
 Un=0, Sn=0, Rn=1  Fn=L6
 Un=0, Sn=1, Rn=0  Fn=L5
 Un=0, Sn=1, Rn=1  Fn=L4
 Un=1, Sn=0, Rn=0  Fn=L3
 Un=1, Sn=0, Rn=1  Fn=L2
 Un=1, Sn=1, Rn=0  Fn=L1
 Un=1, Sn=1, Rn=1  Fn=L0

Zero 8 bit 16 bit 32 bit
Z3 z3 z3.z2 z3.z2.z1.z0
Z2 z2 z3.z2 z3.z2.z1.z0
Z1 z1 z1.z0 z3.z2.z1.z0
Z0 z0 z1.z0 z3.z2.z1.z0
(z0..z3 are the byte oriented zero flags).

Minus 8 bit 16 bit 32 bit
M3 m3 m3 m3
M2 m2 m3 m3
M1 m1 m1 m3
M0 m0 m1 m3
(m0..m3 are the byte oriented minus flags).

Carry 8 bit 16 bit 32 bit
C3 c3 c3 c3
C2 c2 c3 c3
C1 c1 c1 c3
C0 c0 c1 c3
(c0..c3 are the byte oriented carry flags).

Sgncmp 8 bit 16 bit 32 bit
S3 s3 s3 s3
S2 s2 s3 s3
S1 s1 s1 s3
S0 s0 s1 s3
(s0..s3 are byte oriented sgncmp flags).

ALU_RC_Status: cr15: Status flags from the ALU and Multipler / Accumulator

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Z0Z1Z2Z3M3 M2 M1 M0C3S3 C2S2 C1S1 C0S0I0I1I2I3H3 H2 H1 H0L3W3 L2W2 L1W1 L0W0

ALU_Logic: cr13

8910

MASK_SEL

4567 0123

L0L1L4 L2L3L5L6L7

Imagine 2 Multi Media Processor 6. The Arithmetic and Logic unit

zero:
Zero flag: This flag is used for 'is equal' and 'is not equal'
conditional expressions.

carry:
Carry flag: This flag is used for all unsigned conditional
expressions like 'greater than' or 'smaller than or equal to' etc..

sgncmp:
 Signed Compare: This flag is used for all two's complement
conditional expressions like 'greater than'
or 'smaller than or equal to' etc.

6.8 using status for conditional register access

The status information can be used internally in the Register
file address generator for conditional addressing and
conditional writing into the register file. The status bits are also
available in control register ALU_RC_Status (= cr15). This
register is readable and writable. A write operation overrules
the new status flags from the ALU.

6.9 using status for the range mask:

The Mask Generator can use the ALU results to assemble
the Range Mask which can be used for conditional vector
write operations to external Image memory. The field
MASK_SEL selects the four status bits which are send to the
Mask Generator where they can be assembled into the 64x4
bit Range Mask.

6.10 direct control register access to the F bus register:

The result register of the ALU: The F bus register is directly accessible as control register ALU_Fbus (= cr12)

Imagine Processor

Test on equal / not equal

 flag ALU
X == Y if zero X-Y
X != Y if not (zero)X-Y

Unsigned integer equations

 flag ALU
X >= Y if (carry) X-Y
X <= Y if not (carry) X-Y-1
X > Y if (carry) X-Y-1
X < Y if not (carry) X-Y

Signed integer equations

 flag ALU
X >= Y if (sgncmp) X-Y
X <= Y if not (sgncmp) X-Y-1
X > Y if (sgncmp) X-Y-1
X < Y if not (sgncmp) X-Y

MASK_SEL: status flags range mask

 000: ALU_ZERO
 001: ALU_MINUS
 010: ALU_CARRY
 011: ALU_SGNCMP
 100: ALU_NOT_ZERO
 101: ALU _NOT_MINUS
 110: ALU _NOT_CARRY
 111: ALU _NOT_SGNCMP

ALU_Logic: cr13

12131415 891011

MASK_SEL'00000'

4567 0123

L0L1L4 L2L3L5L6L7

cr12: ALU_Fbus: Accumulator F Bus Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit F bus result data (4x8, 2x16 or 1x32)
[31:0]

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

Chapter

7. MULTIPLIER / ACCUMULATOR.

The Multiplier/Accumulator is a truly multifunctional unit and it supports various
data types in an even more diverse way than the other functional units. The basic
multiplication is supported in a regular and orthogonal way for different word sizes
and data types. Like the other functional units it supports single 32 bit, double 16
bit and quadruple 8 bit operations. These operations are performed on integers,
fixed point numbers, normalised numbers and so-called graphics numbers. Both
operands can be independently signed or two's complement. It can apply either
rounding or truncation.

The Extended function set holds more special sum of product functions like 8 bit 4x4
matrix times vector multiplication and quadruple (4x1) inproducts (both 16
multiplications, 12 additions), blend functions (8 multiplications and 6 additions),
and 16 bit complex, vector dot and vector cross products.

The Accumulator stage twice the original word length: single 64 bit, double 32 bit
and quadruple 16 bit. It can accumulate a single stream of multiplication results
into a single result or it can do vector accumulation to accumulate N streams of M
results into M final results. The Accumulator has the ability to work stand alone for
incremental operations for “Digital Difference Engine” functions.

The Range Control Unit checks if data is within the limits of a range with an upper
and a lower boundary. It can handle unsigned integers as well as two's complement
numbers. It can replace out of range data with the limit values and/ or can generate
a 2 dimensional pixel masker from the range check results. This masker is used in
the IMAGINE 2 for masked write operations to the Image memory. The Boolean
results of the Range clip unit are available in the Status register which can be used
in the Three port register file for conditional addressing and write enabling.

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

Imagine Processor

Detailed overview of the IMAGINE 2 Multiplier /Accumulator

32 bit high limit, cr2732 bit low limit, cr26

Instruction/
Control reg.

cr17,cr18,cr19

Instruction
decode

64 bit write data register

64 bit Accumulator register 64 bit high limit register64 bit low limit register

64 bit
lower limit comparator

64 bit
 higher limit comparator

64 bit  32 bit selector

32 bit M Bus register, cr16 Status register, cr15M size

32  64 expander
64 bit multi input Adder

Ma Input Selection Mb

1st Stage

2nd Stage

3rd Stage

4th Stage

5th Stage

4th Stage

64 bit data

32 bit data 32 bit data

16 bit data 16 bit data16 bit data16 bit data

Internal 64 bit formats:

A D M Q B V F U

MAC VECTOR
REGISTER

128 word
x

64 bit

cr22
cr23

cr28
cr29

cr24
cr25

32  64 expander

cr20, cr21

MULTI FUNCTIONAL
MULTI OPERAND

IMAGINE 2
MULTIPLIER

multiplier result register (64 bit) 64 bit read data register

Instruction
pipeline
stage 2

Instruction
pipeline
stage 3

Instruction
pipeline
stage 4

cr30

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.1 Multiplier / Accumulator

7.1.1 The multiplier accumulator
The Multiplier/Accumulator is a five stage pipelined unit
with a wide variety of functions. The basic set of multipli-
cations is directly executed by the instruction code. Much
more advanced operations are performed by a combination
of extended instructions and control register parameters.
Instruction and control information are packed together and
sent into the multiplier pipeline. Once an instruction is
given, it will be executed until completed. This means that
control registers can be changed without the risk of dis-
turbing on-going operations (intermediate modification of
internal multiplier registers which contain data such as the
Accumulator register and the Compare registers of the
Range Unit do change the outcome of ongoing operations).

7.1.2 The pipeline
The multiplier/accumulator has five internal pipeline-stages.
This means that it takes five steps to complete a multiply /
accumulation operation. Latency is the same for all multiply
operations, with or without accumulation and optional range
clipping. Since the MAC is pipelined, one result can be
produced each cycle. 'One result' means a single 32 bit
result, two 16 bit results or four 8 bit results. The type of
multiplication can change each cycle. The instructions code
starts the operation in the multiplier/accumulator pipeline.
The result is available five cycles later.

7.1.3 multiplier operand select
The two inputs of the multiplier are referred
to as the Ma and Mb operands. The output
of the multiplier is stored in the M bus
register from where it is made available to
the other functional units in the Imagine.
The operands can be single 32, double 16
and quad 8 bit words

The internal results used by the accumula-
tors are 64, double 32 and quad 16 bit. The
operands have besides a wordsize a number
of other attributes. An operand can either be
unsigned or two's complement. It can have
one of four formats: Integer, fixed point,
normalised or graphics format. The out-
come of the operation depends on these
attributes as well.

Imagine Processor

The Multiplier operand select field:

50:47 Ma input sources Mb input sources Data size

 0 A bus (registers) B bus (registers) Msz = Bsz
 1 A bus (registers) V bus (vector I/O) Msz = Vsz
 2 A bus (registers) F bus (ALU) Msz = Fsz
 3 A bus (registers) U bus (UFU) Msz = Usz

 4 D bus (data I/O) B bus (registers) Msz = Bsz
 5 D bus (data I/O) V bus (vector I/O) Msz = Vsz
 6 D bus (data I/O) F bus (ALU) Msz = Fsz
 7 D bus (data I/O) U bus (UFU) Msz = Usz

 8 M bus (multiplier) B bus (registers) Msz = Bsz
 9 M bus (multiplier) V bus (vector I/O) Msz = Vsz
 A M bus (multiplier) F bus (ALU) Msz = Fsz
 B M bus (multiplier) U bus (UFU) Msz = Usz

 C Q bus (shifter) B bus (registers) Msz = Bsz
 D Q bus (shifter) V bus (vector I/O) Msz = Vsz
 E Q bus (shifter) F bus (ALU) Msz = Fsz
 F Q bus (shifter) U bus (UFU) Msz = Usz

Stage 1:
Input Selection

Stage 2:
Multiplier first stage

Stage 3:
Multiplier second stage

Stage 4:
64 bit accumulator

Stage 5:
64 bit range clip

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.2 The basic set of multiplier operations

Two function sets are supplied for the MAC (Multiplier/Accumulator) on the Imagine: the Basic set and the
Extended set. The Basic function set includes all normal multiplication functions. 48 Different multiplications
are possible in an orthogonal way.

7.2.1 The Basic Multiply options
The functions in the basic set are entirely defined by
the instruction and the data size and do not depend of
the contents of any of the control registers. The
operand size chooses between 32x32=64, double
16x16=32 and quadruple 8x8=16 multiplications. The
Data size used for the operation is taken from the Mb
input operand. The multiplications can have an integer
or one of various fixed point fractional formats. Both
input operands can be independently signed or
unsigned (the result will be signed if one ore more
inputs are signed). Four bits in the instruction code
select the various multiplication options if the basic
function set is selected. Data Type and Sign
information define the type of multiply operation. This
information is stored in control register cr19 of the
multiplier from where it can be used for the
multiply/accumulate function:
M = macs()

7.2.2 Multiplications defined in the basic set

Imagine Processor

[46:42] Mnemonics multiplier type Ma sign Mb sign

 00 M = mult (Ma,Mb,iuu) Integer format unsigned unsigned
 01 M = mult (Ma,Mb,ius) Integer format unsigned signed
 02 M = mult (Ma,Mb,isu) Integer format signed unsigned
 03 M = mult (Ma,Mb,iss) Integer format signed signed

 04 M = mult (Ma,Mb,nuu) Normalised format unsigned unsigned
 05 M = mult (Ma,Mb,nus) Normalised format unsigned signed
 06 M = mult (Ma,Mb,nsu) Normalised format signed unsigned
 07 M = mult (Ma,Mb,nss) Normalised format signed signed

 08 M = mult (Ma,Mb,fuu) Fixed Point format unsigned unsigned
 09 M = mult (Ma,Mb,fus) Fixed Point format unsigned signed
 0A M = mult (Ma,Mb,fsu) Fixed Point format signed unsigned
 0B M = mult (Ma,Mb,fss) Fixed Point format signed signed

 0C M = mult (Ma,Mb,guu) Graphics format unsigned unsigned
 0D M = mult (Ma,Mb,gus) Graphics format unsigned signed
 0E M = mult (Ma,Mb,gsu) Graphics format signed unsigned
 0F M = mult (Ma,Mb,gss) Graphics format signed signed

There is a choice between three sizes:

 single 32 bits multiplication
 double 16 bits multiplication
 quadruple 8 bits multiplication

There are four sign options:

 unsigned multiplication,
 signed multiplications
 unsigned x signed
 signed x unsigned

All operations are possible on four data types:

 Integer format (point at end)
 Normalised format (point at begin)
 Fixed point format (point halfway)
 Graphics format (point at begin)

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

BASIC MULTIPLICATIONS

Imagine Processor

signed, unsigned, mixed mode
Quad 8 x 8 = 16 bit

signed, unsigned, mixed mode
Double 16 x 16 = 32 bit

signed, unsigned, mixed mode
32 x 32 = 64 bit

64 bit internal data

32 bit fixed point result

32 integer result

32 bit normalised fixed result

32 bit data 32 bit data

16 bit data16 bit data 16 bit data16 bit data

32 bit internal data 32 bit internal data

16 bit integer16 bit integer

16 bit fixed16 bit fixed

16 bit norm.16 bit norm.

8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 8 bit

16 bit data 16 bit data 16 bit data 16 bit data

8 bit int 8 bit int 8 bit int 8 bit int

8 bit fix 8 bit fix 8 bit fix 8 bit fix

8 bit nor 8 bit nor 8 bit nor 8 bit nor

8 bit 8 bit 8 bit 8 bit

16 bit data16 bit data

32 result data

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.2.3 The multiplier operand types
Besides a size (32, 2x16 or 4x8) the operands have an operand type as well. The use of these types should
simplify the use of basically integer calculations in pre-calculations for graphic algorithms. Fixed point
calculations offer fractional calculations as opposed to pure integer calculations. The location of the binary point
is essential in the multiplication operation, contrary to addition and subtraction operations.

If we define a fixed point value by m.n, where m is the number of bits before the binary point and n the number
of bits behind, then addition type operations will produce m+1.n results and multiplication operations will
produce 2m.2n results: the word length of the result is doubled both before and after the binary point. This means
that the result should be shifted n places to the right (except for integer numbers where n=0). The types specified
for the Imagine are integer, normalised , and fixed point. Integer is defined as p.0, normalised as 0.p and fixed
point as p/2.p/2 where p is the word length. If a multiplication is specified with a certain type then this may be
interpreted as an integer multiplication with an implicit shift to the right: p places in case of a normalised fixed
point multiplier and p/2 places in case of a fixed point multiplier. Notice that the multiplier type specifies only
one of the two operands, either Ma or Mb. The other one can be in any format m.n while the result value, after
being sized to the original word length, gets the same m.n format. Which one of the two operands (Ma or Mb) is
seen as having the type specified is merely a question of interpretation.

7.2.4 Internal and output formats

7.2.5 The Graphics data format
The graphics type has the point at the MSB position like the normalised data format, however with an essential
difference: in many cases an n-bit-word should represent a value from 0% up to and including 100%. Some
examples are the colour values RGB where Red=0 means 0% red and Red=255 means 100% red. Another
example is the alpha-plane where α=0 means 100% transparency and α=255 means 0% transparency. A
multiplication by 255 must be equal to a multiplication by 1.000 exactly. The graphics data format offers this
option for 8, 16 and 32 bit multiplications, both unsigned and signed:

Unsigned multiplications: Signed multiplications:

8 bit: M = (Ma x Mb) x (256/ 255) 8 bit: M = (Ma x Mb) x (128/ 127)
16 bit: M = (Ma x Mb) x (216/ 216-1) 16 bit: M = (Ma x Mb) x (215/ 215-1)
32 bit: M = (Ma x Mb) x (232/ 232-1) 32 bit: M = (Ma x Mb) x (231/ 231-1)

Imagine Processor

 Internal 64 bit Multiply Result 32 bit Selected M bus output
32 bit
integer
fixed point
normalised

[63:00]
[63:00]
[63:00]

[31:00]
[47:16]
[63:31]

2x16 bit
integer
fixed point
normalised

[63:32] [31:00]
[63:32] [31:00]
[63:32] [31:00]

[47:32] [15:00]
[55:40] [23:08]
[63:48] [31:16]

4x8 bit
integer
fixed point
normalised

[63:48] [47:32] [31:16] [15:00]
[63:48] [47:32] [31:16] [15:00]
[63:48] [47:32] [31:16] [15:00]

[55:48] [39:32] [23:16] [07:00]
[59:52] [43:36] [27:20] [11:04]
[63:56] [47:40] [31:24] [15:08]

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.3 The extended multiplier functions

The Extended function set includes the more specialised functions like the 16 bit complex multiplication, the 4x4
matrix times vector multiplication et cetera. Many of them can also use the Accumulator stage and the Range
Clip stage of the MAC. The two multiply/accumulate instructions, M = macs() and M = macb(), use
multiplications from the basic set but allow the use of the Accumulator stage and the Range Clip stage. The
second table indicates which resources a given instruction can use. It defines which fields of the MAC_Control1
register (cr17) are used during the execution of the instruction. Some fields refer to two other registers contain-
ing control information. The MAC_RamPtrs register (cr19) is used when the read or write fields indicate an
Access to the Accumulator Ram file and the coefficient registers. This control register contains
read and write pointers. The MAC_Control2 register (cr18) is used if the Range Unit field (range) is TRUE
(logical '1'). The Range Unit control register uses two 64 bit registers with a Low and High limit (cr22, cr23 and
cr24, cr25). The data size, type and sign fields define the data format used for a certain multiplication
function, e.g.: the matrix x vector product can be performed in 16 different ways. The accu field selects between
the three operands for the Accumulator: the Multiplier result, the Accumulator Ram file and the Accumulator
itself. The pipe field controls the two 4x4 register sets for the matrix operations. These are located in the first
stage where the multiplier input operands are selected.

Imagine Processor

Mnemonics operation (Single cycle throughput)

10 M = inproduct (Mb) quadruple vector inproduct (4 x 8 bit vectors)
11 M = matrixvec (Mb) 4x4 matrix vector multiplication (8 bit)
12 M = blend (Ma,Mb) Open GL compatible blend function
14 M = loadpipe (Ma,Mb) shift 4x4 matrix data and coefficient pipelines
15 M = read_ram () read 64 bit word from the accu Ram into accumulator
16 M = write_ram () write 64 bit word from the accumulator to accu Ram
17 M = linearstep(*) incremental add 4x16 bit, 2x32 bit, 1x64 bit

18 M = macs (Ma,Mb) multiply accumulate (scalar)
19 M = macb (Ma,Mb) multiply accumulate (block)
1C M = vectprod (Ma,Mb) 16 bit vector dot product and cross product
1D M = complex (Ma,Mb) 16 bit complex multiply M = a*b - b*c + i(a*d + b*c)
1E M = nop no operation
1F M = halt halt MAC: freeze the entire MAC pipeline.

(*) = optional Mb operand for Range Unit: () or (Mb)

Write read size type sign accu out range pipe
Mnemonics 30-29 27-26 21-22 19-18 17-16 15-12 10-8 7 4-0

10 M = inproduct (Mb) used used 4x8 used used used used used used
11 M = matrixvect (Mb) used used 4x8 used used used used used ----
12 M = blend (Ma,Mb) used used 4x8 graph unsign used used used ----
14 M = loadpipe (Ma,Mb) ---- ---- 4x8 ---- ---- ---- used used used
15 M = read_ram () ---- used used ---- ---- ram used used ----
16 M = write_ram () used ---- used ---- ---- ---- used used ----
17 M = linearstep (*) used used used ---- ---- a+r used used ----

18 M = macs (Ma,Mb) ---- ---- bus prev prev a+m ---- ---- ----
19 M = macb (Ma,Mb) used used used used used used used used ----
1C M = vectprod (Ma,Mb) used used 2x16 used sign used used used ----
1D M = complex (Ma,Mb) used used 2x16 used sign used used used ----
1E M = nop ---- ---- ---- ---- ---- ---- ---- ---- ----
1F M = halt ---- ---- ---- ---- ---- ---- ---- ---- ----

(*) = optional Mb operand for Range Unit: () or (Mb)

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.4 Description of the multiplier operations

7.4.1 Operands for the multiplier
The two input values for the multiplier are referred to as Ma and Mb, the result is referred to as M. We use sub
indices to distinguish between the 3 different word sizes. Single 32 bit words have no sub indices, double 16 bit
words have the sub indices H and L, and the quadruple 8 bit words have sub indices 3,2,1 and 0. The 4x4 matrix
functions use two 4x4 sets of internal registers to provide operands: the P (Pipeline) registers and the c
(coefficient) registers. These registers are enumerated with super indices: c0..3 and P0..3. Each of these contain four
bytes which are enumerated with sub indices. Some examples:

single 32 bit:Ma = Ma(31..0) P2 = P2
(31..0)

double 16 bit: MaH = Ma(31..16), MaL = Ma(15..0)

quad 8 bit: Mb3 = Mb(31..24), Mb0 = Mb(7..0) c3
2 = c3

(23..16)

The intermediate internal multiplication results are defined by Mi. The Sub indices are applied in a similar way,
with the exception that the intermediate results have a word length 1.5 times the input size: 12, 24 and 48 bits.
Some examples:

MiH = Mi(47..24), Mi2 = Mi(35..24), Mi0 = Mi(11..0)

The value of the individual bits depends on the operand size as well as the operand type (Integer, Fixed point).

7.4.2 Basic operations
The multiplication functions from the basic set are defined as follows:

single 32 bit:M = Ma.Mb
double 16 bit: MH = MaH.MbH, ML = MaL.MbL

quad 8 bit: M3 = Ma3.Mb3, M2 = Ma2.Mb2, M1 = Ma1.Mb1, M0 = Ma0.Mb0

Additional parameters are given within the instruction (fixed, integer..., unsigned, two's complement, mixed).

7.4.3 8 bit Matrix functions: Quad Inproduct
M = inproduct(Mb): Correlation and convolution, interpolated scaling and affine transformation.

The four 8 bit data words come from the Mb input steps as a four byte column from left to right through the
multiplier array via the data pipeline registers. The values in the coefficient registers are constant (they are the
four times four coefficients for the four inproducts).

M3 = c3
3.P3

3 + c3
2.P2

3 + c3
1.P1

3 + c3
0.P0

3
M2 = c2

3.P3
2 + c2

2.P2
2 + c2

1.P1
2 + c2

0.P0
2

M1 = c1
3.P3

1 + c1
2.P2

1 + c1
1.P1

1 + c1
0.P0

1
M0 = c0

3.P3
0 + c0

2.P2
0 + c0

1.P1
0 + c0

0.P0
0

The Quad Inproduct Pipeline Flow through:

P3
3=P2

3, P2
3=P1

3, P1
3=P0

3, (P0
3==Mb3),

P3
2=P2

2, P2
2=P1

2, P1
2=P0

2, (P0
2==Mb2),

P3
1=P2

1, P2
1=P1

1, P1
1=P0

1, (P0
1==Mb1),

P3
0=P2

0, P2
0=P1

0, P1
0=P0

0, (P0
0==Mb0),

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.4.4 8 bit Matrix functions: 8 bit Matrix Vector multiplication

M = matrixvec (Mb): Colour Space Conversion, DCT, iDCT, Interpolated Scaling and Affine Transform

M3 = c3
3.Mb3 + c3

2.Mb2 + c3
1.Mb1 + c3

0.Mb0

M2 = c2
3.Mb3 + c2

2.Mb2 + c2
1.Mb1 + c2

0.Mb0

M1 = c1
3.Mb3 + c1

2.Mb2 + c1
1.Mb1 + c1

0.Mb0

M0 = c0
3.Mb3 + c0

2.Mb2 + c0
1.Mb1 + c0

0.Mb0

7.4.5 8 bit Matrix functions: 8 bit Blend function

M = blend(Ma, Mb): Transparency, Non rectangular copies

M3 = c3
0.Ma3 + c3

1.Mb3
M2 = c2

0.Ma2 + c2
1.Mb2

M1 = c1
0.Ma1 + c1

1.Mb1

M0 = c0
0.Ma0 + c0

1.Mb0

7.4.6 Data Pipeline initialisation:

The loading of the MAC data pipeline to initialise matrix functions.

M = loadpipe(Ma, Mb)
Before the execution of matrix type functions, the internal data pipeline registers and or coefficient registers need
to be filled. The loadpipe instruction services this purpose. No actions take place except for the loading of the
coefficient registers and the pipeline registers. The action depends on the contents of the Pipe field of the MAC
control register no 1. The output of the last stage of the pipeline is visible via control register cr21.

7.4.7 Accumulator file access
The accumulator ram file stores words which are twice as wide data sized used: 8 bit multiply results are
accumulated in 16 bits, and 16 bit inputs in 32 bits and 32 bit multiply results become 64 bits. The read_ram and
write_ram functions offer a facility to store and load these wider words from the accumulator ram file. The 64
bits accumulator register provides a wide data port to the accumulator ram file. The total accumulator file size is
128 words of 64 bits.

Imagine Processor

Coefficients used during the blend operation

0 BLEND_CONSTANT coefficient3 coefficient2 coefficient1 coefficient0

1 BLEND_ZERO 0.00 0.00 0.00 0.00
2 BLEND_ONE 1.00 1.00 1.00 1.00
3 SRC_COLOR Ma3/255, Ma2/255, Ma1/255, Ma0/255
4 INV_SRC_COLOR 1- Ma3/255, 1-Ma2/255, 1-Ma1/255, 1-Ma0/255
5 SRC_ALPHA Ma3/255, Ma3/255, Ma3/255, Ma3/255
6 INV_SRC_ALPHA 1- Ma3/255, 1-Ma3/255, 1-Ma3/255, 1-Ma3/255
7 DST_ALPHA Mb3/255, Mb3/255, Mb3/255, Mb3/255
8 INV_DST_ALPHA 1- Mb3/255, 1-Mb3/255, 1-Mb3/255, 1-Mb3/255
9 DST_COLOR Mb3/255, Mb2/255, Mb1/255, Mb0/255
10 INV_DST_COLOR 1- Mb3/255, 1-Mb2/255, 1-Mb1/255, 1-Mb0/255
11 SRC_ALPHA_SATURATE 1.00 alpha_sat alpha_sat alpha_sat
12 BOTH_SRC_ALPHA source: SRC_ALPHA destination: INV_SRC_ALPHA
13 BOTH_INV_SRC_ALPHA source: INV_SRC_ALPHA destination: SRC_ALPHA

alpha_sat = min (Ma3/255, Mb3/255)

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.4.8 Reading data from the accumulator file
M = read_ram Data can be loaded directly from the accumulator file into the 64 bit accumulator register.
The accumulator register is available as control register MAC_Accu0 and MAC_Accu1. This function provides a
facility to read the wider data words within the accumulator. The read_ram instruction takes five cycles like all
MAC instructions. The actual transfer to the control register takes place at cycle 4 of the MAC instruction (which
started at cycle 1). A block of data can be read from the accumulator at one cycle per read action if the delay is
taken into account.

7.4.9 Writing data to the accumulator file
M = write_ram Data can be stored directly to the accumulator file from the 64 bit accumulator register. The
accumulator registers are available as control register MAC_Accu0 and MAC_Accu1. This function provides a
facility to store the wider data words into the accumulator file. The write_ram instruction takes five cycles like
all MAC instructions. The actual transfer to the accumulator Ram takes place at cycle 5 of the MAC instruction
(which started at cycle 1). A block of data can be stored to the accumulator at one cycle per store action if the
delay is taken into account.

7.4.10 Incremental Functions
M = linearstep The width of the accumulators is used for incremental calculations: a constant value is
continuously added to a linear changing value. Second and higher order incremental calculations can be done in a
multi step procedure (N+1 steps are needed for an Nth order interpolation, except for a linear interpolation which
is a single step function). The quadruple 8 bit linearstep such as the colours in Gouraud shading can use the 16
bit double length accumulation to work with 8 bit accuracy behind the binary point. The Accumulator is used to
add the accumulator register contents with an incremental value from the accumulator file.

7.4.11 The MAC functions: multiply accumulate (scalar)
M = macs(Ma, Mb) The multiply accumulate executes the latest executed multiply instruction from the
basic set again and accumulates the result to the accumulator register. It does not use any information of the
MAC control register.

7.4.12 The MAC functions: multiply accumulate (block)
M = macb(Ma, Mb) This instruction is a super set of the scalar multiply accumulate (macs(Ma, Mb)). It
can read values from the accumulator file and write the results back again with optional incremented addresses.
It uses the write, read and accu field from the MAC register.

7.4.13 16 bit vector product
M = vectprod(Ma, Mb) Mathematical definition:
The result MH represents: the internal or dot product of the two vectors Ma and Mb where the H word corre-
sponds with the X size and the L word corresponds with the Y size.
The result ML represents: the external or cross product of the same two vectors.

MH = MaH.MbH + MaL.MbL

ML = MaH.MbL - MaL.MbH

7.4.14 16 bit complex product
M = complex(Ma, Mb) Mathematical definition:
The H words represent the real parts and the L words represent the imaginary parts in the operands as well as in
the results. The ability to perform complex multiplications in a single cycle gives the Imagine excellent
performance figures in many DSP tasks, most notably in Fast Fourier and other related Transformations

MH = MaH.MbH - MaL.MbL

ML = MaH.MbL + MaL.MbH

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.5 Multiplier / accumulator operand formats.

7.5.1 Multiplier input and output format definitions.
unsigned integer .
8 bit min 0 max 255
16 bit min 0 max 65.535
32 bit min 0 max 4.294.967.295
two's complement integer .
8 bit min -128 max +127
16 bit min -32.768 max +32.767
32 bit min -2.147.483.648 max +2.147.483.647
unsigned normalised fixed point .
8 bit min 0.000 max 255 / 256
16 bit min 0.000 max 65.535 / 65.536
32 bit min 0.000 max 4.294.967.295 / 4.294.967.296
two's complement normalised .
8 bit min -1.000 max +127 / 128
16 bit min -1.000 max +32.767 / 32.768
32 bit min -1.000 max +2.147.483.647 / 2.147.483.648
unsigned fixed point .
8 bit min 0.0 max 255 / 16
16 bit min 0.0 max 65.535 / 256
32 bit min 0.0 max 4.294.967.295 / 65.536
two's complement fixed point .
8 bit min -128 / 16 max +127 / 16
16 bit min -32.768 / 256 max +32.767 / 256
32 bit min -2.147.483.648 / ... max +2.147.483.647 / 65.536
unsigned graphics data type .
8 bit min 0.000 max 255 / 255
16 bit min 0.000 max 65.535 / 65.535
32 bit min 0.000 max 4.294.967.295 / 4.294.967.295
two's complement graphics data type .
8 bit min -1.000 max +127 / 127
16 bit min -1.000 max +32.767 / 32.767
32 bit min -1.000 max +2.147.483.647 / 2.147.483.647

7.5.2 Internal format definitions
unsigned integer .
8  16 bit min 0 max 65.536
16  32 bit min 0 max 4.294.967.295
32  64 bit min 0 max 281.474.976.710.655
two's complement integer .
8  16 bit min -32.768 max +32.767
16  32 bit min -2.147.483.648 max +2.147.483.647
32  64 bit min -2^63 max +2^63 - 1
unsigned normalised fixed point .
8  16 bit min 0.000 max 65.535 / 65.536
16  32 bit min 0.000 max 4.294.967.295 /4.294.967.296
32  64 bit min 0.000 max (2^64 - 1) / (2^64)
two's complement normalised fixed point .
8  16 bit min -1.000 max +32.767 / 32.768
16  32 bit min -1.000 max +2.147.483.647 / 2.147.483.648
32  64 bit min -1.000 max +(2^63 - 1) / (2^63)
unsigned fixed point .
8  16 bit min 0.000 max 65.535 / 256
16  32 bit min 0.000 max 4.294.967.295 / 65.536
32  64 bit min 0.000 max (2^64 - 1) / (2^32)
two's complement fixed point .
8  16 bit min -2048 / 32 max +32.767 / 256
16  32 bit min -8.388.608 / 2.048 max +2.147.483.647 / 65.536
32  64 bit min -140.737.488.355.327 /. max +(2^63 - 1) / (2^32)
unsigned graphics data type .
8  16 bit min 0.000 max 65.535 / 65.535
16  32 bit min 0.000 max 4.294.967.295 /4.294.967.295
32  64 bit min 0.000 max (2^64 - 1) / (2^64 - 1)
two's complement graphics data type .
8  16 bit min -1.000 max +32.767 / 32.767
16  32 bit min -1.000 max +2.147.483.647 / 2.147.483.647
32  64 bit min -1.000 max +(2^63 - 1) / (2^63 - 1)

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.6 The range clip unit

7.6.1 Operation
The Range control unit operates on the internal 64 bit results of the Multiplier/Accumulator. It compares the
result with two values given by two 64 bit registers: MAC_LoLimit0..1 (= cr22,cr23) and MAC_HiLimit0..1 (=
cr24,cr25) to check if the MAC output is within a predefined range. The values of MAC_LoLimit and
MAC_HiLimit normally are 64 bit constants set via control register write operations. Alternatively they can be
loaded with the values from MAC_LoLim32 (= cr26) and MAC_LoLim32 (= cr27). These 32 bit control registers
contain both limits in 32 bit values compatible with the input and output format of the Multiplier / Accumulator
and are expanded from 32 to 64 bit before stored in MAC_LoLimit and MAC_HiLimit. The third alternative is to
load any or both 64 bit compare registers with the expanded Mb operand in order to obtain a variable limit.

7.6.2 Range clip activation
The Range Unit can be used by the extended multiplier operations and is activated by writing a logical ‘1’ in the
RU bit of control register MAC_Control1 (= cr17). This bit activates the functions which are controlled by the
Range control fields in control register MAC_Control2 (= cr18)

7.6.3 Data size and data Type
The results of the MAC can have any of three data sizes, single 64 bit, double 32 bit and quad 16 bit. The results
can be unsigned, signed and "balanced" signed. The Range Control Unit operates on all combinations of these
types. The data type is always inherited from the MAC result. The compare registers have the same format as the
MAC output: single 64 bit, double 32 bit or quad 16 bit. The compare operation provides four compare flags
The result is Inside if the MAC output is higher or equal to the lower limit and lower or equal to the higher limit
The result is High if it is higher than both range limits and it is Low if it is lower than both range limits. The
result is Wrong if it is both higher than the higher limit and lower than the low range limit.

7.6.4 Range clip output
If the Range Controller is activated with the RU bit in MAC_Control1 then it provides a range check on the
value(s) from the Multiplier/Accumulator. If the Clip flag in MAC_Control2 is a logical ‘1’, then the MAC result
is clipped to one of its limits. If the MAC output is too High it is replaced with the value in the high-limit
register, if too Low it is replaced with the value from the low-limit register. If the result is Wrong then it always
is replaced with the ‘Higher limit’. If the Clip flag is ‘0’ then the MAC output is passed unchanged.

7.6.5 The status word: ALU_RC_Status (=cr15)
The result of the comparisons is made available in the
Status register of the Imagine: control register cr15. The
Range Controller provides four of the eight flags assigned
to each byte in the Status register:
If the condition is false then the flags are reset to logical
‘0’. Each of the four bytes in the Status words has eight
flags: four from the ALU and four from the Range
Controller.

Status bits can be selected by operations in the Register File and independently in the Range Mask generator.
These units select the four bits belonging to the same test (inside, higher, lower, wrong). The size of the result is
taken into account during this selection. If the mode is quadruple 8 bit, then all the flags provided are
independent and can all be different. In Single 32 bit mode all four fields will be identical (all four Inside flags,
all four High flags etc.). In double 16 bit mode the highest two and the lowest two flags are identical.

Imagine Processor

 Compare flags:

 flags 4,12,20,28: MAC output Inside Range
 flags 5,13,21,29: MAC output too High
 flags 6,14,22,30: MAC output too Low
 flags 7,15,23,31: MAC output Wrong

ALU_RC_Status: cr15: Status flags from the ALU and Multipler / Accumulator

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Z0Z1Z2Z3M3 M2 M1 M0C3S3 C2S2 C1S1 C0S0I0I1I2I3H3 H2 H1 H0L3W3 L2W2 L1W1 L0W0

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.6.6 The range mask generator
The Range Mask generator is another unit in the Imagine processor where selected range clip status flags can
used to assemble a mask for masked vector writes to the Image memory. Four data lines and a strobe can
transport the generated result to the Range mask generator each cycle. For each 16 bit word of the 64 bit result
data, one of the four status flags is selected: Inside, Higher, Lower or Wrong.

The flag selection is done with three bits from the MAC_Control2 (cr18). Two bits select one of the four flags
while the third bit can be used to invert the flag. The cycle which follows the comparison is used to transport the
four selected values (one for each byte) to the Range Mask Generator. The activation of the Range Unit is the
sign for the Mask generator to load the four flags into its Range Mask registers, Up to 64 results can be loaded in
these registers. The Range Mask registers can be used as a (2D) mask for writing pixels into external Image
Memory. A logical ‘1’ is defined as write enable, a logical ‘0’ as a write disable. The four bits are sent to the
Range Mask generator in the cycle after the one which writes the contents of the M-bus register and the status
register to the Range Unit.

7.6.7 Balanced signed compares
Balanced Signed compares can be used when there are only a small number of MSB bits available for over and
underflow detection. This is the case with normalised numbers. The number of bits available depends on the
Output shift factor: X1_OUT, X2_OUT, X4_OUT or X8_OUT. In these cases we have 0, 1, 2 or 3 bits available
above the bits which will be placed on the M bus output of the Multiplier. Pixel values are given by one or more
8 bit values for grey scale or colour images. The 8 bit value represents an unsigned normalised fixed point value
with a range from 0 to 1. Many calculations require multiplications with coefficients which can be both positive
and negative. The result value will be in two's complement normalised fixed point format. This implies the need
for a conversion from signed to unsigned representation which is handled during the output stage to the M bus
register. (X2_OUT) This conversion is nothing more than a shift left by one position to shift out the sign bit. A
negative result can be caused by negative overflow (underflow) but also by positive overflow.

A Balanced signed compare divides the area outside 0.0 and 1.0 in two equal parts for underflow and overflow.
A signed number with one extra upper bit can represent values between -1.0 and +1.0. This is the default case for
a signed normalised number. It can not detect overflow > 1.0. The balanced signed compare however can detect
underflow between -0.5 and 0.0 and overflow between +1.0 and +1.5 Small negative numbers are considered to
be the result of underflow while large negative numbers are considered to be caused by positive overflow. This
method will correctly handle under- and overflows of up to 50%. Larger overflows and underflows can be
handled by shifting out more bits to the left after the compares when converting the 4x16 bit intermediate values
back to 4x8 bit values. The option X2_OUT performs a one bit shift appropriate for the sign conversion
mentioned above while the options X4_OUT and X8_OUT shift out 2 and 3 bits. These options can be
programmed in MAC_Control1 (cr17). The balanced sign mode combined with X4_OUT will correctly handle
under- and overflows of up to 150%. While The balanced sign mode combined with X8_OUT will correctly
handle under- and overflows of up to 350%. The balanced signed compare approaches the normal signed
compares when there are more and more MSB bits available. It becomes equal to signed compare for fixed and
integer numbers.

Unsigned, Balanced signed and Signed mode ranges:

Imagine Processor

- 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7

X2_OUT: Unsigned
X2_OUT: Balanced Signed
X2_OUT: Signed

X4_OUT: Unsigned
X4_OUT: Balanced Signed
X4_OUT: Signed

Underflow clipping Unclipped: between 0.0 ..1.0 Overflow Clipping

X8_OUT: Unsigned

X8_OUT: Signed
X8_OUT: Balanced Signed

8

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.7 Overview of the multiplier control registers

Imagine Processor

cr24,cr25: MAC_HiLimit0, MAC_HiLimit1, 64 bit lower limit register

cr22,cr23: MAC_LoLimit0, MAC_LoLimit1 64 bit lower limit register

cr26,cr27: MAC_LoLim32, MAC_HiLim32, 32 bit limit registers

cr28,cr29: MAC_Accu0, MAC_Accu1, Accumulator register

cr20: MAC_Coef: Coefficient entry

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

8 x sign extension
(8 x bit[23] when read)

8 higher coefficient bits
[7:0]

8 bit coefficient value
[7:0]

8 lower coefficient bits
[7:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

cr21: MAC_Pipe: Output of the 8 bit data pipeline

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Pipeline register P3
3

[7:0]

Pipeline register P3
2

[7:0]

Pipeline register P3
1

[7:0]

Pipeline register P3
0

[7:0]

cr17: MAC_Control1: The Multiplier / Accumulator Control register
MA
sign

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

RNMSIZE
[1:0]

‘0’AR
[1:0]

AW
[1:0]

‘0’‘0’ MTYPE
[1:0]

MB
sign

‘0’ ACRMMU
[2:0]

RU PC PP
PTTSHIFT

[2:0]

‘0’‘0’

cr18: MAC_Control2: The Blending and Range Clip unit control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Blend Ma
Coef [3:0]

Blend Mb Coef
 [3:0]

SD
‘00000000’

CL
MH

Mask_selMLBS‘00000000’

cr16: MAC_Mbus: Multiplier Bus Registers

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit M bus result data (4x8, 2x16 or 1x32)
[31:0]

64 bit Low Limit Registers [63:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

64 bit High Limit Registers [63:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit Low and High Limit Register
[31:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Accumulator Register
[63:0]

cr19: MAC_RamPtrs:

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Vector register ram read
Address [6:0]

Vector register ram write
Address [6:0]

Coef Write
Address [3:0]

Coef Read
Address [3:0] ‘0’‘0’

‘0000’BTYPE
[1:0]

BA
sign

BB
sign

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.8 Multiplier accumulator control register 1

7.8.1 The vector ram read / write control
These fields control reading and writing to the Accumulator
vector RAM file. The read and write address are two
independent seven bit fields in control register cr19. These
address fields can be optionally post-incremented after a
read or write access for vector processing.

7.8.2 The operand Data Size field
The Data Size field is set by the Operand Mb input if any of
the basic multiplier operations is executed. A number of
extended functions refer to this field for the Data Size of the
operation.

7.8.3 The Data Type control field.
The Data Type field yields the same information as is
provided by the 16 basic multiplication instructions. The
four bits are set by the four bits from the multiplier function
field in the instruction code of the basic operations. They
select the multiplier operand type and select between
unsigned, two's complement and mixed mode operation.

7.8.4 The Accumulator input selection
In all modes the adders have the choice of two out of three
possible inputs: AC: The accumulator contents, RM: the
read data the Ram and MU: The multiplier result. The result
of the accumulation is stored into the accumulator register
and can be written from there in to the Vector Ram. The RN
bit will add ½ LSB to the multiplier result. (relative to the
M bus output, for multiplication only)

7.8.5 Output shift factor
The Output selection takes 32 bits from the total of 64 bit
Accumulator register for output on the M bus. The internal
word size is twice the normal word size (4x84x16,
2x162x32, 3264). The Data type determines the
selection. Integer selects the lowest part of the result, Fixed
point the middle part and Normalised the high bits. The
output shift factor allows extended functions with extra
selection options: x1, x2, x4 and x8 scaled output.
These options select the output bits from 0,1,2 or 3 bit
positions lower in the 64 bit result data. This results in an
extra scale factor of x1, x2, x4 or x8. The x2 scale factor
can be generally used to shift out the sign (MSB) bit of
signed normalised results and thereby converting them to
unsigned normalised values.

Imagine Processor

cr17: MAC_Control1: The Multiplier / Accumulator Control register
MA
sign

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

RNMSIZE
[1:0]

‘0’AR
[1:0]

AW
[1:0]

‘0’‘0’ MTYPE
[1:0]

MB
sign

‘0’ ACRMMU
[2:0]

RU PC PP
PTTSHIFT

[2:0]

‘0’‘0’

AW: Accumulator Ram Write control
 00: WR_RAM_NOP: Disable write
 10: WR_RAM: Write to Ram
 11: WR_RAM_INCR: Write, incr pointer

AR: Accumulator Ram Read control
 00: RD_RAM_NOP: Disable Read
 10: RD_RAM: Read from Ram
 11: RD_RAM_INCR: Read, incr pointer

MTYPE: multiplier operand type:
 00: INTEGER_FORMAT
 01: NORMALISED_FORMAT
 10: FIXED_PNT_FORMAT
 11: GRAPHICS_FORMAT

MA: Ma operand sign definition
 0: UNSIGNED
 1: SIGNED
MB: Mb operand sign definition
 0: UNSIGNED
 1: SIGNED

MSIZE: multiplier operand type:
 00: QUAD_BYTE
 01: DOUBLE_SHORT
 10: SINGLE_WORD

ACRMMU: Accumulator Inputs

 000: CLEAR_ACC
 001: MULTIPLY
 010: MAC_RAM
 011: ADD_RAM_MULT
 100: ACCUMULATOR
 101: ACCUMULATE_MULT
 110: ACCUMULATE_RAM

SHIFT: Shift in output selections

 100: X1_OUT
 101: X2_OUT
 110: X4_OUT
 111: X8_OUT

RN: Round multiplication result
 0: NO_ROUND
 1: ROUND

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

The x4 and x8 options are useful to provide 1 or 2 bit extra for overflow /underflow testing. A 4x16 bit internal
result may be defined as containing values between 0.000 to 8.000 or -4.000 to + 4.000 to allow larger over and
underflows which can be detected and clamped by the Range Clip unit in the final stage of the Multiplier /
Accumulator. A X8_OUT converts these values back to a 0.000 to 1.000 range.

7.8.6 The Range clip unit activation flag .
Enables or disables the Range Clip unit. The fields which
control the behaviour of the range clip unit can be found in
MAC_Control2 (cr18)I

7.8.7 The pipeline control field
The pipeline control field controls the data transport through
the 4x4 matrix registers The two sets of internal registers in the
MAC are laid out in a 4x4 configuration (see the drawing on
the next page). The data pipeline registers shift 4x8 bit data
from the right to the left. The coefficient registers may shift 4x8
bit data from the bottom to the top for the 8 bit transpose
(stippled arrows). Shifting is performed by the loadpipe
function which uses the 'pipe' field in the MAC control
register and by the inproduct function which shifts the data
pipeline. The last data pipeline register is visible via control
register cr21.

7.8.8 Transposer operation
8 bit matrix transposition can be performed with the loadpipe function and the PTT[2] bit set to a logic '1'.
Data is copied from the coefficient register set to the data pipeline register set once every four loadpipe
operations. The two bit counter within the MAC control register is used in this function. The transfer takes place
when the two bits PTT[1:0] are zero. These two bits are post incremented during a loadpipe if PTT[2] is logic '1'.

Imagine Processor

RU: Range Unit activation flag
 0: NO_CHECK
 1: RANGE_CHECK

Ma [31:24] Ma [23:16] Ma [15:8] Ma [7:0]

part.
mult

 C3
3
 [23:0]

P3
3
[7:0]

16
bit
add

part.
mult

 C3
2
 [23:0]

P3
2
[7:0]

16
bit
add

part.
mult

 C3
1
 [23:0]

P3
1
[7:0]

16
bit
add

part.
mult

 C3
0
 [23:0]

P3
0
[7:0]

part.
mult

 C2
3
 [23:0]

P2
3
[7:0]

16
bit
add

part.
mult

 C2
2
 [23:0]

P2
2
[7:0]

16
bit
add

part.
mult

 C2
1
 [23:0]

P2
1
[7:0]

16
bit
add

part.
mult

 C2
0
 [23:0]

P2
0
[7:0]

part.
mult

 C1
3
 [23:0]

P1
3
[7:0]

16
bit
add

part.
mult

 C1
2
 [23:0]

P1
2
[7:0]

16
bit
add

part.
mult

 C1
1
 [23:0]

P1
1
[7:0]

16
bit
add

part.
mult

 C1
0
 [23:0]

P1
0
[7:0]

part.
mult

 C0
3
 [23:0]

P0
3
[7:0]

16
bit
add

part.
mult

 C0
2
 [23:0]

P0
2
[7:0]

16
bit
add

part.
mult

 C0
1
 [23:0]

P0
1
[7:0]

16
bit
add

part.
mult

 C0
0
 [23:0]

P0
0
[7:0]

Mb [31:24]

Mb [23:16]

Mb [15:8]

Mb [7:0]

to Accu-
mulator.
 [63:48]

to Accu-
mulator.
 [47:32]

to Accu-
mulator.
 [31:16]

to Accu-
mulator.
 [15:0]

cr21 [31:24]

cr21 [23:16]

cr21 [15:8]

cr21 [7:0]

 PC: Coefficient registers
 0: HOLD_COEF
 1: LOAD_COEF

 PP 8 bit Data Pipeline registers
 0: HOLD_PIPE
 1: LOAD_PIPE

 PTT Transpose control
 000: RESET_TRANSPOSE
 100: SET_TRANSPOSE(0)
 101: SET_TRANSPOSE(1)
 110: SET_TRANSPOSE(2)
 111: SET_TRANSPOSE(3)

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.9 Multiplier accumulator control register 2

7.9.1 blend coefficient selection

Two 4 bit fields select the blending coefficients to be se-
lected for the Ma and Mb input data of the multiplier. Op-
tions 0 through 10 implement all Open GL options while
option 15 uses fixed coefficients

7.9.2 range unit: 32 or 64 bit compares

The SD flag selects between the 32 bit limit registers and
the 64 bit limit registers. The 32 bit options expands the 32
limit registers to 64 bit according to the used data Size, the
selected data Type, and the selected Shift value. The ex-
pansion is the inverse operation of the 64  32 selection at
the end of the multiplier before the result is placed in the 32
bit M bus register. The expanded results are placed in the
64 bit Limit registers.

7.9.3 range unit:

 Balanced signed compare:
Balanced signed compares divide the overflow and under-
flow range in two equal parts in cases where there are only
few MSB bits available for overflow and underflow
detection. Which is the case for normalised format
operations. The three cases below have 1, 2 and 3 bits for
overflow and underflow detection:
-signed normalised format + X2_OUT:  +/- 50% range
-signed normalised format + X4_OUT:  +/- 150% range
-signed normalised format + X8_OUT:  +/- 350% range
Balanced signed compares approaches normal signed com-
pares when there are more and more MSB bits available. Is
equal to signed compares for Fixed and Integer operations.

7.9.4 range unit:

 Dynamic Limits
The 64 bit Limit registers can be dynamically loaded with
the Mb input data which is expanded to 64 bits first. Both
Limit registers are individually controlled by ML and MH.

7.9.5 range unit:

 Range Mask selection
The results of the Compares are stored in the
ALU_RC_Status control register (cr15). The field MASK_SEL

Imagine Processor

cr18: MAC_Control2: The Blending and Range Clip unit control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Blend Ma
Coef [3:0]

Blend Mb Coef
 [3:0]

SD
‘00000000’

CL
MH

MASK_SELMLBS‘00000000’

ML MH: Mb operand to Limit registers

 00: HOLD_LIMITS
 01: LOAD_HILIMIT
 10: LOAD_LOLIMIT
 11: LOAD_LIMITS

MASK_SEL: Status Flags  Mask Generator

 000: RANGE_INSIDE
 001: RANGE_HIGHER
 010: RANGE_LOWER
 011: RANGE_WRONG
 100: RANGE_NOT_INSIDE
 101: RANGE_NOT_HIGHER
 110: RANGE_NOT_LOWER
 111: RANGE_NOT_WRONG

 BS: Ballanced Signed Compares

 0: UNBALANCED
 1: BALANCED

 SD: Single / Double width Compares

 0: COMPARE_32
 1: COMPARE_64

The blend coefficients

0000: BLEND_ZERO
0001: BLEND_ONE
0010: SRC_COLOR
0011: ONE_MINUS_SRC_COLOR
0100: DST_COLOR
0101: ONE_MINUS_DST_COLOR
0110: SRC_ALPHA
0111: ONE_MINUS_SRC_ALPHA
1000: DST_ALPHA
1001: ONE_MINUS_DST_ALPHA
1010: SRC_ALPHA_SATURATE
1111: BLEND_CONSTANT

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator
selects the four status bits which are send to the Mask
Generator where they can be assembled into the 64x4 bit
Range Mask.

7.9.6 range unit:

 Output clipping
The CL flag determines if the output is either passed
unmodified to the M bus output register or that is clipped to
the Higher or Lower Limits if it is to large or to small.

Imagine Processor

 CL: Clip MAC output data

 0: NO_CLIP
 1: CLIP

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.10 Multiplier accumulator pointer control register
This control register contains read and write pointers for the Vector register Ram and the coefficient registers.
Most extended functions may access the vector register ram. These registers are typically used for vector
accumulation, temporary vector storage and differential engine operations. The coefficients are used for three
different 8 bit functions: inproduct(), matrixvec() and blend(). These functions support convolution, color space
conversion, YUV to RGB conversion, discrete cosine transformations, bicubic scaling, blending, mixing et
cetera. The data words are 8 bit in these operations but the coefficient must be more accurate. The 16 coefficients
(4x4) of the multiplier provide 16 bit accuracy.

7.10.1 Vector register ram read and write pointers

The vector register is accessed in parallel to an extended multiplier operation. The read data will arrive at the
same time by the accumulator as the multiplication result. The result of the accumulation will be written to the
write address. Both pointers can work in post-increment mode to support vector operations.

Typical usage: vector accumulation:
Several vectors are accumulated into one vector. An operation is used for convolution (filtering), correlation,
alpha blending, et cetera. Example: A 3x3 convolution is accomplished by two vector reads and one vector read/
write. The vectors undergo the M = inproduct() function and are accumulated in the Vector register ram. The
resultant vector is written back to image memory. The result vector contains 64 x 4 = 256 pixels. The whole
operation takes 1.2 microseconds at 200 MHz. The range clipper is used to clip the pixels into the right range.

7.10.2 Coefficient read and write pointers

The coefficients used in for example the convolution operations mentioned above should be written via control
register MAC_Coef (cr20) to the right locations given by the coefficient read and write pointers. These pointers
always operate in post-increment mode. The read and write order is:
c0

0 c0
1 c0

2 c0
3 c1

0 c1
1 c1

2 c1
3 c2

0 c2
1 c2

2 c2
3 c3

0 c3
1 c3

2 c3
3c0

0.....

7.10.3 The data type and signs used for macs()

The simplest extended function is macs() which is used to sum a number of consecutive multiplier results. The
data type and signs given in the start multiplication are store in BTYPE, BA and BB and used for the following
macs() operations. These fields are updated by every basic multiply operation and are used exclusively by the
function macs(). Example:

AB = rd(r20,r30) -> mult (A,B, iss) ; // " iss " is stored in cr19
AB = rd(r21,r31) -> macs(A,B) ;
AB = rd(r22,r32) -> macs(A,B) ;
AB = rd(r23,r33) -> macs(A,B) ;
AB = rd(r24,r34) -> macs(A,B) -----> wr(r40)

Imagine Processor

cr19: MAC_RamPtrs:

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Vector register ram read
Address [6:0]

Vector register ram write
Address [6:0]

Coef Write
Address [3:0]

Coef Read
Address [3:0] ‘0’‘0’

‘0000’BTYPE
[1:0]

BA
sign

BB
sign

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.11 Multiplier accumulator coefficient register entry
The coefficients are used for various 8 bit functions: inproduct(), matrixvec() and blend(). The coefficients are
24 bit. The sign bit (bit 23) is extended to bits [31:24] when a coefficient is read back. The functions mentioned
above are used for convolution, color space conversion, YUV to RGB conversion, discrete cosine transforma-
tions, bicubic scaling, blending, mixing et cetera. The data words are 8 bit in these operations but the coefficient
must be more accurate. The 16 coefficients (4x4) of the multiplier provide more bits accuracy:

The drawing below shows which bits are significant in the partial 24x8 bit multiplication and how they result in a
16 bit value which goes to a 16 bit fraction of the accumulator. (The 16 bit shown here are summed together with
three similar 16 bit results and this result then goes to the 16 bit accumulator fraction)

The coefficients used in for example the convolution operations mentioned above should be written via control
register MAC_Coef (cr20) to the right locations given by the coefficient read and write pointers. These pointers
always operate in post-increment mode. The read and write order is:
c0

0 c0
1 c0

2 c0
3 c1

0 c1
1 c1

2 c1
3 c2

0 c2
1 c2

2 c2
3 c3

0 c3
1 c3

2 c3
3c0

0.....

7.12 Multiplier accumulator 8 bit data pipeline output
The last four bytes of the 8 bit 4x4 data pipeline are visible as an output in this control register. Usage is typically
a transpose or delay operation.

7.13 The state save and restore register
This single 32 bit register should be saved an later restored during interrupts it can be read and written like any
normal control register. (MAC_Save, cr30)

Imagine Processor

cr20: MAC_Coef: Coefficient entry

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

8 x sign extension
(8 x bit[23] when read)

8 higher coefficient bits
[7:0]

8 bit coefficient value
[7:0]

8 lower coefficient bits
[7:0]

cr21: MAC_Pipe: Output of the 8 bit data pipeline

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Pipeline register P3
3

[7:0]

Pipeline register P3
2

[7:0]

Pipeline register P3
1

[7:0]

Pipeline register P3
0

[7:0]

20212223 16171819 12131415 891011 4567 0123

20212223 16171819 12131415 891011 4567 0123

20212223 16171819 12131415 891011 4567 0123

20212223 16171819 12131415 891011 4567 0123

20212223 16171819 12131415 891011 4567 0123256x

+/- 64 /128 x

+/1 16 / 32 x

+/- 4 / 8 x

+/- 1 / 2 x

These bits are truncated These bits are truncatedthese bits are summed and go to a 16 bit fraction of the
accumulator

(This drawing will be removed later)

Imagine 2 Multi Media Processor 8. Unary Function Unit

Chapter

8. UNARY FUNCTION UNIT

The Unary Function Unit
The UFU performs various single operand functions. Besides these functions found
in the basic set, an extended set is supplied for IEEE 754 single precision floating
point conversions. Fixed point and integer conversions as well as range checking
can be done over the entire dynamic range as defined by the 32 bit floating point
standard.

FIRST DRAFT

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit
fig. unary function unit

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.1 UNARY FUNCTION UNIT

The basic Unary functions except the IEEE-754 functions work on a single 32 bit word, double 16 bit words or
quadruple 8 bit words. The wordsize is inherited from the source of the operand and passed to the destination
functional unit together with the result on the U-bus. Four basic operations can be applied on both the A bus and
the F bus. The operand size which is used in these functions is inherited from the selected source bus (A bus or F
bus).

The conversion functions handle IEEE 754 single precision floating point to integer/fixed point conversion and
vice versa. It supports the exponent handling and error detection of basic operations like addition, subtraction
and multiplications. All five IEEE 754 32 bit float point types are supported: normalised, denormalised, zero, +/-
infinity and "not_a_number".

8.1.1 The result register of the UFU

The results of the Unary function unit are available in the U bus register which can be used by other functional
units, The register file or the I/O units This register is also accessible as a control register (UFU_Ubus, cr32)

8.1.2 The instructions of the UFU

The four bit field in the instruction word decodes the following 16 different instructions:

Imagine Processor

IC
62:59 Mnemonics function cycles size

0 U = noop no operation 1 Asz
1 U = pass(A) pass value, init IEEE conversions 1 Asz
2 U = unary(A) binary to unary conversion 1 Asz
3 U = binary(A)unary to binary conversion 1 Asz

4 U = integer(Ad) IEEE float 32  integer conversion 2 32
5 U = fixed(Ad) IEEE float 32  fixed point conversion 2 32
6 U = float(Ad) integer  IEEE float 32 conversion 2 32
7 U = floatFP(Ad) fixed point  IEEE float 32 conversion 2 32

8 U = abs(A) absolute value of A 1 Asz
9 U = sign(A) sign of A (A<0: U=-1, A=0: U=0, A>0: U=1) 1 Asz
A U = notzero(A) set bits if A != 0 1 Asz
B U = swap(A) swap bits (A31->U0, A30->U1, A29->U2,...) 1 Asz

C U = abs(F) absolute value of F 1 Fsz
D U = sign(F) sign of F (F<0: U=-1, F=0: U=0, F>0: U=1) 1 Fsz
E U = notzero(F) set bits if F != 0 1 Fsz
F U = swap(F) swap bits (F31->U0, F30->U1, F29->U2,...) 1 Fsz

Cr32: UFU_Ubus: Unary Function Unit Bus Registers

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit U bus result data (4x8, 2x16 or 1x32)
[31:0]

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.2 The basic unary functions

The following functions all operate on the three basic formats of the Imagine processor: single 32 bit words,
double 16 bit words and quadruple 8 bit words. They are all executed within a single cycle.

8.2.1 Binary to Unary conversion: U = unary(A)

This function expects 1 ,2 or 4 two's complement number(s)
and converts them to a unary representation: negative
numbers always result into 0, and a number equal to and
larger than the number of bits in a word (8, 16, 32) always
results into "all 1s".

8.2.2 Unary to Binary conversion: U = binary(A) (priority encoder)

This function expects 1, 2 or 4 unsigned value(s) and
returns the position(s) with the first non-zero bit. It is the
inverse function of the Binary to Unary conversion. The
lowest result value is 0 and the highest result value is the
number of bits in a word,
(8, 16 or 32).

8.2.3

Absolute value: U = abs(A), U = abs(F)

The Absolute value function expects 1, 2 or 4 two's complement numbers. It returns the absolute value(s) of these
number(s). An exceptional case are the maximal negative values which do not have a corresponding positive
value. These will map to themselves.

8.2.4 Sign function: U = sign(A), U = sign(F)

This function expects 1, 2 or 4 two's complement number(s) and returns +1, 0 or -1 depending on the sign and the
zero test.

8.2.5 Not zero function: U = notzero(A), U = notzero(F)

Returns 00, 0000 or 00000000 in case of X=zero and FF,FFFF,FFFFFFFF in case of X=not zero, depending on
the wordsize.

8.2.6 Swap bits function: U = swap(A), U = swap(F)

Swap bit reverses the bit order of the bits in an 8, 16 or 32 bit word.
msb  lsb, msb-1  lsb+1, msb-2  lsb+2, , lsb  msb.
The highest bit will end up in the lowest place and the lowest will end up in the highest place. This operation is
useful for bitmap and bitmask operations and FFT address calculation.

Imagine Processor

U = unary(A)
 -1  00000000 3  00000111
 0  00000000 4  00001111
 1  00000001 5  00011111
 2  00000011 6  01111111

et cetera.

U = binary(A)
 00000000  0 00001xxx  4
 00000001  1 0001xxxx  5
 0000001x  2 001xxxxx  6
 000001xx  3 01xxxxxx  7

 et cetera.

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.3 IEEE 754 floating point operations

8.3.1 Handling of floating point numbers:
The Imagine handles the 32 bit IEEE-754 floating-point operations with the aid of a small specialised conversion
unit and it's standard integer ALU and Multiplier. This method proves to be only 1.5 to 2 times slower for general
C programs compared to costly pipelined floating point hardware. A typical mix of instructions shows a mean
execution time of 10 cycles/ floating point operation. The majority of C programs contain in general to much data
dependencies to be handled efficiently by pipelined floating point hardware. The omission of pipelined floating
point hardware in the Imagine however only applies to this version and is based purely on economy
considerations.
The small conversion unit handles the right conversion from and to floating point numbers. It checks for floating
point exceptions like overflow, underflow, not_a_number and it handles the exponent calculations for addition,
subtraction and multiplication. It is used also to implement some more elaborated floating point operations like
the 3D homogeneous coordinate transformation in a very efficient way. The basic floating point operations take
the form of small macro routines which can either be called by, or included within, the program. The operations
support all 5 formats defined by the IEEE-754 floating point standard.

8.3.2 IEEE 754 32 bit floating point definition

sign exponent mantisse value

format 1: not a number: don't care 255 not 0 not a number
format 2: +/- infinity: + or - 255 0 +/- infinity
format 3: normal number: + or - 0 < exp < 255 0..7FFFFF (-1)signx2exp-127x 1.mant
format 4: very small number: + or - 0 0..7FFFFF (-1)signx2exp-126x 0.mant
format 5: zero: + or - 0 0 +/- 0

8.3.3 IEEE 754 32 bit floating point macro functions

Imagine Processor

32 bit Floating Point Macro functions

Mnemonics operation  result cycles

int_sf() float  integer 1
float_sf() integer to float  float 1
abs_sf() absolute value  float 2
neg_sf() negate  float 2
add_sf() float + float  float 9
addint() float + int  float 10
add3_sf() float + float + float  float 11
sub_sf() float - float  float 9
subint_sf() float - int  float 10
rsubint_sf() int - float  float 10
mul_sf() float x float  float 12
mulint_sf() float x int  float 13
mul3_sf() float x float x float  float 17
div_sf() float / float  float 26
divint_sf() float / int  float 27
rdivint_sf() int / float  float 26
matrix_4x4_sf() full 4x4 matrix times vector multiplication  float 30
homogenous_tr_sf() homogenous transform + perspective division  float 60

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.4 IEEE 754 floating point operation support register cr33

8.4.1 Float To Fix offset. cr33 [7:0]
Used in the function U = fixed(A). This offset either is added to the floating point exponent before conversion
(EL='0') or replaces the exponent before conversion, (EL=='1').

8.4.2 Fix To Float offset. cr33 [15:8]
Used in the function U = floatFP(A). This offset either is added to the floating point exponent after conversion
(EX='0') or replaces the exponent after conversion, (EX='1'). Details can be found in the examples on the
following pages.

8.4.3 The H exponent. cr33 [23:16]
The H(idden) exponent is used to calculate the exponent during addition, subtraction and multiplication.
 Addition/ Subtraction: The H exponent is replaced whenever one of the functions, U = pass(A), U =
integer(A) or U = fixed(A) is performed and the value in the exponent field of the A data (A23..A30) is larger
than the current highest exponent.
 Multiplication: The H exponent is calculated with: H exponent = H exponent + A_bus[31:23] - 127
This action takes place during the functions U = pass(A), U = integer(A) and U = fixed(A).

8.4.4 EL: exponent offset usage in U = fixed() (see the Float to Fix offset)

8.4.5 EX: exponent offset usage in U = floatFd() (see the Fix to Float offset)

8.4.6

UH: Use H exponent
If this flag is true ('1'), the H Exponent field is used for the calculation of the exponent during floating point
addition, subtraction and multiplication.

8.4.7 MUL: Use H exponent for add or multiply
If this flag is true ('1'), the H Exponent field is used for the calculation of the exponent of a product of 2 or more
floating point values. otherwise it is used to calculate the sum (subtraction) of 2 or more floating point values.

8.4.8 NAN: Not a Number error flag
This error flag is set together with the ERR flag if a IEEE NAN value (Not A Number) is converted from float to
integer or fixed.

8.4.9 UNF: Underflow error flag
This error flag is set together with the ERR flag if a fixed number is converted into a floating point value which
is smaller then the smallest representable floating point value, with the exception of the integer value 0.
It is set without the ERR flag as a warning only in case of a float to integer or fixed value which is smaller the
smallest representable integer value.

8.4.10 OVF: Overflow error flag
The overflow flag is set together with the ERR flag if a overflow occurs during any of the conversions.

8.4.11 ERR: Floating point error flag
The error flag is set whenever an error occurs in any of the conversions. This value is one cycle later visible in
the sequencer status and control register where it can be tested for conditional jumps, calls, returns etc.

Imagine Processor

Cr33: UFU_IEEE floating point operation control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Float to Fix offset
[7:0]

Fix to Float offset
[7:0]

H exponent
[7:0]ELEXUH

M
U
L

N
A
N

U
N
F

O
V
F
U

E
R
R

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.5 IEEE-754 floating point conversions

8.5.1 The pass instruction

U = pass(A)
The value of the A bus is passed to the U bus register and is available on the U bus one cycle later. The operand
size from the A bus is passed unchanged to the U bus. The pass operation has one side effect: The A bus bits 23
to 30 represent the biased exponent in IEEE 754 single precision floating point numbers. These bits are
compared with the contents of the highest exponent field from control register cr33. When they are higher the
'highest exponent' is replaced by the exponent of A.

8.5.2 The IEEE 754 conversion instructions

U = integer(A)
U = fixed(A)
U = float(A)
U = floatFP(A)

These instructions take two cycles before they produce their result. They operate pipelined so a new conversion
function may be launched each cycle The first cycle leaves the U bus register unchanged. The second cycle
outputs the result via the U bus register. (It overwrites the result of any 1 cycle function executed in the same
cycle) The first cycle of the conversion function is non interruptable which means that an interrupt service routine
does not need to save the internal state of this unit

8.5.3 IEEE 32 bit floating point to integer

U = integer(A)
The function performs IEEE floating point to integer conversion. It will produce the right results for Normalised
Numbers, the Normalised Zero. The so called NANs (Not A Numbers) are not supported.

8.5.4

IEEE 32 bit floating point to fixed

U = fixed(A)
This instruction is a superset of the U = integer(Ad) instruction. An 8 bit two's complements offset in register
UFU_IEEE (cr33) is added to the exponent before the conversion takes place. This function can map an
arbitrary floating point value into a useful fixed point range. The offset may also replace the exponent itself
(when cr33 [24]: EL='1') (see the examples). If the UH flag is set, then the H exponent is as the exponent for
conversion

8.5.5 Integer to IEEE 32 bit floating point

U = float(A)
Integer to Floating point conversion. The result is a Normalised floating point number as defined on the
following page.

8.5.6 Fixed to IEEE 32 bit floating point

U = floatFP(A)
This instruction is a superset of the U = float(Ad) instruction. An 8 bit two's complement offset in control register
UFU_IEEE (cr33) is added to the biased exponent at the end of the conversion. The offset can also replace the
exponent (when cr33 [25]: 'EX' = '1')
(see the examples). If the UH flag is set, then the H exponent is added to the exponent of the resultant floating
point value.
Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.5.7 Some examples of floating point to integer conversions

♦ IEEE 32 bit floating point to integer.
♦ IEEE 32 bit floating point to fixed point with a programmable offset.
♦ IEEE 32 bit floating point to fixed point with a programmable offset without the exponent.

IEEE 32 bit floating point format
Numerical value of the floating point representation = (-1)sign.(0.1mantissa).2exp-126

Numerical value of the floating point representation = 0 if exponent = 0 and mantissa = 0
NANs (Not A Number) are not supported

Floating point to integer / fixed point conversions (3 options):

Extracted integer if (exponent - 128) = 29
Extracted fixed point number if (exponent - 128 + offset) = 29
Extracted fixed point number if (offset) = 29

Extracted integer if (exponent - 128) = 21
Extracted fixed point number if (exponent - 128 + offset) = 21
Extracted fixed point number if (offset) = 21

Extracted integer if (exponent - 128) = 13
Extracted fixed point number if (exponent - 128 + offset) = 13
Extracted fixed point number if (offset) = 13

Extracted integer if (exponent - 128) = 5
Extracted fixed point number if (exponent - 128 + offset) = 5
Extracted fixed point number if (offset) = 5

Extracted integer / fixed point if (exponent == 0 and mantissa == 0)

The Fixed point to floating point conversions (3 options):
The absolute value of an input number, shown below in the drawing, will be converted to:
S = sign mantissa = 'MANTISSA' << (22-E) exp = E + 128
S = sign mantissa = 'MANTISSA' << (22-E) exp = E + 128 + offset
S = sign mantissa = 'MANTISSA' << (22-E) exp = 128 + offset

The value of zero will in all three conversions be converted to: S = '0', mantissa = '0', exp = 0

Imagine Processor

sign 8 bit exponent 23 bit mantissa

31 30 23 22 0

29

sign '0000000'23 times: sign * mantissa
31 30 7 0

!sign
6

32 times: zero
31 0

9 times: sign 22 times: sign * mantissa
23 22 0

!sign
31 21

17 times: sign 14 times: sign * mantissa

15 14 0

!sign

31 13

6 x: sign * mantissa

7 6 5 0

!sign

31

25 times: sign

'0...0' 'mantissa'

E+2 E+1 0

'1'

31 E

Imagine 2 Multi Media Processor 8. Unary Function Unit

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

Chapter

9. DATA I/O UNIT

The Data I/O unit handles the 32 bit bidirectional databus to perform load and
store accesses to memory via the Data Cache or the Internal Peripheral Bus.
 The Imagine Data I/O unit can perform accesses to bytes, 16 bit shorts and 32 bit
words, both signed and unsigned. It supports linear addressing, with optional post
and pre address increment or decrement, 2D addressing and 3D addressing.

The Data I/O unit is closely coupled with the 3D graphics pipeline to read
perspective corrected textures

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit
fig. data i/o unit

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

9.1 general
The Data I/O unit handles random accesses to memory via the Data Cache or the Internal peripheral bus. It is
split into a Data Access Unit which handles data addresses and a Data Transfer Unit which handles data Loads
and Stores. It provides all access mechanisms needed for C generated code as well as special graphics and image
processing functions. The Imagine can perform accesses to bytes, 16 bit shorts and 32 bit words, signed and
unsigned. Words are always aligned to addresses with the two lowest address bits zero, and shorts are always
aligned to even addresses. (The alignment hardware ignores the address bits.). There is direct support for 2D and
3D memory access and memory organisation. Both cache and the memory paging system is optimised for 2D and
3D pixel accesses in the associated memory modes.

9.1.1 Data memory organisation
The Data I/O unit can access all external memory (SGRAM or SDRAM) memory via the Cache. It can view
memory as linear, 2 dimensional (8 modes) or 3 dimensional (8 modes). The eight 2 dimensional modes differ in
the numbers of "bytes per row" which varies from 256, 512, ...32768. The eight 3 dimensional modes provides a
selection of useful volumes with different X, Y and Z sizes.

There are sixteen different banks each of which can have a programmable dimension: 1D, 2D or 3D. This
effectively means that memory is structured to optimise accesses for a certain data type. 2D structured memory
accesses are single cycle within a certain rectangle but incur a penalty if the rectangle's border is crossed. 3D
structured memory accesses are single cycle within a 3D volume but incur a penalty if the volume's boundaries
are crossed.

The IPB bus is located in the high end of the 32 bit memory space. The internal Multi Media I/O units are
located in I/O space 0. External I/O units which are connected to the 8 bit external peripheral bus are located in
I/O space 1. The external EPROM which is also connected to the external peripheral bus can be accessed via I/O
space 3.

Description Access ID
or I/O space

Address
 offset

Address
range

organisation Access
types

memory
page size

Programmable memory: ID = 0..7 0000.0000 16 Mb 2D or 3D 1D, 2D, 3D 64k byte
0100.0000

Sixteen banks of 16 Mb
each with programmable
dimension (1D,2D or3D)
and Access ID

0e00.0000
0f00.0000

IPB: multi media units I/O space[0] f000.0000 64 kb linear 1D none
IPB: external I/O I/O space[1] f001.0000 64 kb linear 1D none
IPB: external EPROM I/O space[3] f002.0000 128 kb linear 1D none

9.1.2 Data memory address types
The Data Memory address can be linear: byte oriented, internally 32 bit. All memory banks can be accessed via
linear addresses independent of the are structured in a 1D, 2D or 3D way. The Data I/O unit also accepts 2D and
3D addresses which are provide with 2x16 bit words (2D) and 4x8 bit words (3D)

9.1.3 Internal data representation
The Imagine has three basic internal data formats: single 32 bit word, double 16 bit word and quad 8 bit word.
These are all stored and loaded as 32 bit words in the Data memory and are stored on aligned addresses.
(The Vector I/O unit memory can do single cycle non-aligned accesses in vector mode.) Bytes and half words
exist in memory. Inside the Imagine they are converted from and to 32 bits words during load and store opera-
tions to avoid explicit conversions in mixed mode operations and to consistently use status flags for conditional
branching and calling. A byte loaded from external memory is loaded internally in the 8 least significant bits. An
unsigned byte has the highest 24 bits set to zero while a signed byte has the highest 24 bits set to its sign bit. A
half word from external memory is loaded in internally in the 16 least significant bits. The highest 16 bit are set
to zero or one depending on the word type (signed/unsigned) and the sign bit itself.

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

9.2 Data Access function

The unit which controls the access of external data devices (address output) is relatively independent of the unit
which handles the data transfers. It is controlled by a three bit field in the instruction code (Ic54..56) and can
perform eight address operations. It selects an address from one of three internal busses and defines if the access
is a READ or a WRITE access. The actual access will take place in the next cycle.

The Address can be taken from either the A bus, the F bus or the M
bus. The A bus can provide an address directly from a register. The
F bus provides the calculated addresses if one or more address
pointers and offsets need to be added together.

The addresses provided by the M bus are more likely to be 2D or 3D
addresses. 2D addresses are formed by a 2x16 bit word (Y,X) and
3D addresses are formed by a 4x8 word (Z,Y,X). The lower three
bytes provide the co-ordinates. These accesses use the cache to
archive a better performance

The DA = extended operation provides extra access functionality.
It enables the use of the 3D graphics pipeline and supports auto
increment and auto decrement modes for vector accesses. Both Post
and Pre increment/decrement is supported

9.2.1 The use of the 3D graphics pipeline
The application of the DA = extended function with the Use_PAG flag set (cr37 bit 30: use Perspective
Address generator) enables the use of the 3D graphics pipeline to generate perspective correct 1D, 2D or 3D read
addresses into external memory. These modes bypass the cache and have their own highly optimised interface
with the external memory controller. These modes can effectively load up to 4 pixels (texels) per cycle needed
for bilinear, trilinear and quad linear interpolation. This mode also supports a wide range of texel format
translations from 1 to 8 bit pseudo colors and 16 bit colors to 32 bit true color αRGB.

9.3 The Data transport function

The Unit which controls the data input and output transfers is controlled by a three bit field in the instruction
word (Ic53..Ic51). The Unit can perform Loads and Stores from bytes, half words (16 bit), and words (signed and
unsigned).

9.3.1 The data store functions
The STORE functions transfer internal data to an external device: the data memory or an I/O port. The STORE
function is given in the same cycle as the data write access function. Otherwise it is not recognised as a STORE
function.

The data is placed into a register (D bus
register), from where it is written to the
cache and simultaneously send to the
memory write buffer. Byte and half words
are aligned to the right byte positions
depending on the two lowest address bits,
(DA0,DA1). The four byte write enable
lines (WR0*..WR*3) take care that only
those
bytes are modified which contain the
byte or half word data. Examples:

DA = wrAd(A), D = byte(B);
DA = wrAd(F), D = word(M);
DA = Again,D = short(B);

Imagine Processor

 The Data Store functions

 53:51 Mnemonic Data transfer operation size

 0 D=D no operation Dsz

 1 D=word(F) store word from the F bus 1x32
 2 D=word(M) store word from the M bus 1x32
 3 D=word(V) store word from the V bus 1x32

 4 D=long(B) future store long from B bus
 5 D=word(B) store word from the B bus1x32
 6 D=short(B) store half word from the B bus 1x32
 7 D=byte(B) store byte from the B bus 1x32

Imagine 2 Multi Media Processor 9. Data I/O unit

The data to be stored in memory can be taken from either the B, the F, the V or the M bus. The B bus is meant
for typical Register to Memory transfers and used by the C compiler which makes use of the type conversions.
The F, M and V busses are used more for graphics and Image processing.

9.3.2 The data load functions
The LOAD function takes data from the Data Input register and loads it into the D register. 'Load' includes zero
or sign extension of bytes and shorts which are placed in the least significant 8 and 16 bits.

The LOAD function is executed when
the Data input register contains read
data from a read access and no
write operation is performed in the same
cycle. some examples:

DA = rdAd(A) --> D = short (uI);
DA = rdAd(F) --> D = byte (sI);
DA = Again --> D = word (sI);

The input data from the cache (directly
or after a cache line read from external
memory in case of a miss) is processed
by the data transfer unit depending on
the type of load instruction and the
address used to access the data:
Byte alignment: The bytes and half words are aligned to the least significant byte positions: Byte -> bit0..7, Half
word -> bit0..15.
Sign Extension: The most significant bits above the loaded data are cleared or set depending on the datatype
(signed/unsigned) and the sign bit of the loaded data.
The data is loaded into the D bus register from where it is available to other units in the Imagine.

9.3.3 The internal zero and sign extend functions
The Internal sign extension function is executed if neither a Write access nor a Read access is executed:
- No Write: Current DA instruction is either Nop, AD = rdAd(X) or AD = extended (read).
- No Read: No Read Data is waiting in the Data input register.

The Load instruction performs all the
operations needed on the standard data
types stored in data memory: byte, half
word and word both signed and
unsigned. When 8 or 16 bit data is read
into the 32 bit processor, then the higher
24 or 16 bits are sign or zero extended
by the Data I/O unit. The sign/zero
extension mechanism is also available
for internal operations. This function
can be used for register variables which
are defined as byte's and short's as a
preparation for certain instructions.
some examples:

D = zextbyte(B);
D = sextshort(B);
D = sextshort(B);

Imagine Processor

53:51 Data load function size

 0 D=D no operation Dsz

 1 D=word(uI) load unsigned word from input 1x32
 2 D=short(uI) load unsigned short from input 1x32
 3 D=byte(uI) load unsigned byte from input 1x32

 4 D=long(sI) future load long from input
 5 D=word(sI) load signed word from input 1x32
 6 D=short(sI) load signed short from input 1x32
 7 D=byte(sI) load signed byte from input 1x32

 53:51 zero and sign extend functions size

 0 D=D no operation Dsz

 1 D=zextword(B) (zero extend) word from B bus 1x32
 2 D=zextshort(B) zero extend short from B bus 1x32
 3 D=zextbyte(B) zero extend byte from B bus 1x32

 4 D=long(B) future copy long from B bus
 5 D=sextword(B) (sign extend) word from B bus 1x32
 6 D=sextshort(B) sign extend short from B bus 1x32
 7 D=sextbyte(B) sign extend byte from B bus 1x32

Imagine 2 Multi Media Processor 9. Data I/O unit

9.4 Data I/O control registers

9.4.1 The D bus register
The D bus register contains results of read and internal sign/zero extend operations for bytes and shorts. It is
accessible as a control register to simplify state save and restore operations.

9.4.2 The DIO_Control register
The extended functions of the DIO are controlled by this register
It support four sets of extended access operations:

- 2 Dimensional and 3 Dimensional accesses
- Linear accesses with post increment, pre-increment and post decrement, pre-decrement options
- Texture read accesses via the 3D graphics pipeline
- Scratch pad operations where part of the data cache is used as scratch pad.
See the paragraphs further on for a detailed explanation.

9.4.3 The DIO_Address register
The address register contains the latest address used and is applied in incremental address modes. The address
can be pre-incremented , post-incremented pre-decremented or post-incremented or left unmodified for fifo and
I/O accesses.

9.4.4 The DIO_offset register
The DIO recognises 2D and 3D addresses by the data size used for the address. 2D addresses are recognised by
their 2x16 bit size and 3D addresses by 4x8 bit size. These values represent XY and XYZ co-ordinates in a
rectangle or volume which origin is defined by a linear offset given in the DIO_Offset register. The address in
the offset is used by the memory management hardware to select how memory is structured (Linear, 2D or 3D)
and what the Image stride is (number of bytes from one row to the next). Bits [27:24] select between 16 different
areas of 16Mb in the 256Mb virtual memory space. The organisation of the virtual memory is governed by
standard memory allocation function. (Malloc, Free for linear memory, CreateSurface for 2D et cetera) the
programmer can rely on the memory pointers and additional parameters returned by these functions).

Imagine Processor

Cr38: DIO_Address, 32 bit Data address register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit bit Data address register
[31:0]

Cr39: DIO_Offset, 32 bit Address offset register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit Address offset register
[31:0]

Cr36,:DIO_Dbus, 32 bit D BUS register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit D BUS register
[31:0]

Cr37: DIO_Control: The Datatransfer Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Use-
PAG

size
[1:0]

‘00’‘0000’
WR

‘0’ Z Coor Size
[3:0]

‘0000’ Y Coor Size
[3:0]

 X Coor Size
[3:0]PO IR DR

‘0’
SP

Cr37: DIO_Control: The Datatransfer Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Use-
PAG

size
[1:0]

‘00’‘0000’
WR

‘0’ Z Coor Size
[3:0]

‘0000’ Y Coor Size
[3:0]

 X Coor Size
[3:0]PO IR DR

‘0’
SP

Imagine 2 Multi Media Processor 9. Data I/O unit

9.5 Data access unit: detailed operation description

9.5.1 Selected Address
The address can come from either one of three busses can be selected to provide the Data Address: bus A, bus F
or bus M. The data size of the selected bus (32,2x16,4x8) determines how the 32 available data bits are translated
into an address. A 32 bit word will be interpreted as a linear address. The 32 data bits are directly used as the
address. The 3D graphics pipeline can supply perspective correct addresses for 1D, 2D and 3D textures in
combination with the DA = extended function.

9.5.2 Higher dimensional addressing via the cache
Double 16 bit addresses words and quad 8 bit addresses words are handled differently as 1x32 bit addresses.
They are used for two and three dimensional addressing. Firstly an area is allocated in the Memory which will be
used to store 2D and 3D data. In 2 Dimensional addressing the two 16 bit words are used as an X and Y address
pair. While the 3D addressing uses the lower 3 bytes as the X, Y and Z co-ordinates. These modes use the
DIO_Offset control register as the pointer to the origin (0,0 or 0,0,0) of the 2D or 3D structure. The
DIO_Control register provides masks for the X, Y and Z co-ordinates which limit the number of bits which can
be used for these co-ordinates (1..15) The size[1:0] field is used (after the mask function) to translate the X
coordinate into a byte address. The size can by byte (00), 16 bit short (01) or 32 bit word (10).

Imagine Processor

Cr37: DIO_Control: The Datatransfer Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Use-
PAG

size
[1:0]

‘00’‘0000’
WR

‘0’ Z Coor Size
[3:0]

‘0000’ Y Coor Size
[3:0]

 X Coor Size
[3:0]PO IR DR

Cr39: DIO_Offset, 32 bit Address offset register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

32 bit Address offset register
[31:0]

A bus, F bus or M bus with data size 2x16: 2D address

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

16 bit Y coordinate
[31:16]

16 bit X coordinate
[15:0]

A bus, F bus or M bus with data size 4x8: 3D address

28293031 24252627 20212223 16171819 12131415 891011 456

 Z, Y and X Coordinate sizes:

 size = 0 Coordinate is 1 bit
 ...
 size = 13 Coordinate is 14 bit
 size = 14 Coordinate is 15 bit
 size = 15 Coordinate is 16 bit

7 0123

8 bit Y coordinate
[15:8]

8 bit X coordinate
[15:0]

8 bit Z coordinate
[23:16]

Not used
[31:24]

 Data size (X Coordinate)

 size = 00 8 bit Data
 size = 01 16 bit Data
 size = 10 32 bit Data

‘0’
SP

Imagine 2 Multi Media Processor 9. Data I/O unit

9.5.3 The use of the 3D graphics pipeline with the extended function

The 3D graphics pipeline can read perspective MIP mapped texture data from external memory via it's own
interface to the Memory Bus Controller. The Data Cache is bypassed and up to four pixels can be loaded per
cycle as is needed for Bi linear interpolation. The 3D graphics pipeline supports many extra functions. It can
translate almost any pixel format into the 32 bit aRGB values which are used internally for calculation. Fog and
lighting coefficients calculated in the 3D graphics pipeline can be applied to the read texture data.

The memory accesses of the 3D graphics pipeline are controlled by Data I/O instructions. The addresses are not
supplied directly by the programmer but are generated in the 3D perspective address generator of the 3D graphics
pipeline. The function DA = extended starts the read access whenever the UsePAG flag (Use Perspective
Address Generator: bit 30) is set and the WR flag (Write: bit 29) is zero.

Texture read accesses take longer than accesses to the data cache which take one cycle to generate the address,
one cycle to read from the cache ram and one to translate the data. The external SDRAM or SGRAM memory
itself will need at least 6 cycles when it is operated at half the clock speed in interleaved mode. The Memory Bus
Controller needs a number of cycles and we want to fill the address fifo in the controller with at least a number of
request to avoid bubbles (empty slots) in the pipeline which degrade performance. The optimal delay is in the
order of 10 to 12 cycles. Reads are completely pipelined so one address can be send each cycle in vector mode.

DA = rdAd(A) - - > D = word (uI) - > Wr(ri++, D);
3DA = extended(A) - - - - - - - - - - - - > 3D = word (uI) - - - - > Wr(ri++, D);

The function D = word(uI) is used to load the data into the D bus register it takes 4 cycles to translate one of 15
different Texture pixels into 32 bit aRGB, apply bilinear interpolation, lighting and fog calculations. The use of
the keywords 3DA and 3D instead of DA and D is only to inform the assembler about the different behaviour of
these instructions. Both options generate the same code.

Imagine Processor

Cr37: DIO_Control: The Datatransfer Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Use-
PAG

size
[1:0]

‘00’‘0000’
WR

‘0’ Z Coor Size
[3:0]

‘0000’ Y Coor Size
[3:0]

 X Coor Size
[3:0]

PO IR DR
‘0’

SP

WR = 0: Read Operation

UsePAG = 1: Use Perspective Address Generator

Imagine 2 Multi Media Processor 9. Data I/O unit

9.5.4 Vector accesses with the extended function

The DA = extended function can be used to load and store Vectors (Streams of data) without the need for
explicit supply of new addresses each and every access. These Vectors are elementary in the programming
philosophy of the Imagine. Another use of these functions are the common Stack Push and Pop operations.

The 24 lowest word address bits, (bit 2 through bit 25, are (pre- or post) incremented / decremented each time
when the function DA = extended is executed with a linear address (data size = 1x32) and one of the IR/DR
bits in the DIO_Control control register, cr38, is set to a logical '1'. The PO bit selects between post- (PO=1)
and pre- (PO=0) functionality. The WR flag determines the direction of the access (Read or Write)

9.5.5 Scratch pad accesses

The SP (Scratch Pad) flag (DIO_Control, bit 24) disables cache operation if set and uses the on chip cache ram
simply as on chip memory. Write operations to memory are not written trough to external memory and
subsequent read operations can take place directly from these cache lines which are marked witch a 'scratch' flag.
A 'cache line scratch flag clear' signal is send to the cache when bit 24 in DIO_Control is reset.

This function is useful in for instance vector operations which already read and / or write from memory via the
vector I/O unit and which need temporary scratch memory via the Data I/O unit. Scratch Pad accesses do not
degrade the bandwidth available to external memory.

Imagine Processor

Cr38: DIO_Address, 32 bit Data address register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

address register
[31:26] fixed

24 bit Linear address incrementer / decrementer
[25:2]

fixed
[1:0]

Cr37: DIO_Control: The Datatransfer Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Use-
PAG

size
[1:0]

‘00’‘0000’
WR

‘0’ Z Coor Size
[3:0]

‘0000’ Y Coor Size
[3:0]

X Coor Size
[3:0]PO IR DR

Scr_
Pad

DR = 1 Linear Address Decrement

IR = 1 Linear Address Increment

PO = 0 Pre-Increment / Decrement
PO = 1 Post-Increment / Decrement

‘0’

WR = 0 Read Operation
WR = 1 Write Operation

Cr37: DIO_Control: The Datatransfer Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Use-
PAG

size
[1:0]

‘00’‘0000’
WR

‘0’ Z Coor Size
[3:0]

‘0000’ Y Coor Size
[3:0]

X Coor Size
[3:0]

PO IR DR

SP = 0 Normal Cache operation
SP = 1 Scratch Pad operation

‘0’
SP

Imagine 2 Multi Media Processor 10. Vector I/O unit

Chapter

10. VECTOR I/O UNIT

The Vector I/O unit handles vector type accesses to and from external memory. It
can handle incoming and outgoing data at the same time. It can convert 8 bit
pseudo color and various 16 bit hi-color pixel data to an internal 32 bit αRGB
value. The data is made visible on the internal V bus. It can select data from any of
the eight internal data buses for vector output and convert the internal 32 bit
αRGB to external 8 bit pseudo color or 16 bit hi-color using advanced dither and
error propagation techniques. An transparent color range can be defined which sets
the alpha value to 0 for input conversions while the (OpenGL) alpha test can be
applied which is linked to the write enable signal of the pixels. The result of the
Alpha test can also be applied by the Mask Generator. The output alpha value can
be applied for transparency dithering in the 8 bit pseudo color mode. The unit
contains a byte selector to swap byte channels on the fly during input and output
operations.

Imagine Processor

Imagine 2 Multi Media Processor 10. Vector I/O unit

fig. image i/o unit

Imagine Processor

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.1 Image I/O function select

The operation of the Vector I/O bus is controlled with the
Vector I/O instruction field, together with the Vector I/O
control registers. This unit Itself does not start read and
write operations to image memory. These are initiated with
a multiple cycle Vector Access instruction before I/O
instructions are executed. Up to 128 input and /or output
instructions can be executed in vector mode after a single
Vector Access function. A single Input or Output function
is executed in combination with a Scalar access function.
See chapter 12 for more details.

10.2 Output operation

Any of the eight internal busses can be selected for the
output operation. Several functions can be applied on the
output data.
- Output bus selection
- Byte selection
- True color to 16 bit color conversion with error diffusion
- True color to 8 bit conversion with advanced dithering
- True color to 8 bit alpha transparency dithering
- Alpha Tests

10.2.1 Output source selection

OSOURCE[2:0] Image data output source. Data from any
internal bus can be used for vector write operations to
external memory.

10.2.2

Byte selection

Output byte selection is used if the SO flag (Select Output
Bytes) of the VIO_Control1 control register is set (cr45,
bit 8) This feature can be used to reorder color formats,
duplicate bytes, extend 8 bit to 16 bit pixels et cetera. There
are four byte selectors BY0, BY1, BY2 and BY3. These
four 2 bit words select between the four bytes in the 32 bit
selected output word. BY0 determines the output of bits
0..7 while BY3 selects the output for bits 24..31. The value
'0' selects the lowest byte while the value '3' selects the
highest byte.

Imagine Processor

 INSTRUCTION CODE FIELD

 58-57 Mnemonics Vsize

 00 {no op} hold
 01 V=feedback Vsize
 10 V=input Vsize
 11 V=output Vsize

 OUTPUT BUS SELECTION

 VIO_Control1 [15:13]

 OSOURCE selected bus

 000: A_BUS select A bus
 001: B_BUS select B bus
 010: Q_BUS select Q bus
 011: F_BUS select F bus
 100: M_BUS select M bus
 101: U_BUS select U bus
 110: D_BUS select D bus
 111: V_BUS select V bus

 SELECT OUTPUT BYTES

 SO VIO_Control1 [8]

 0: BYTE_SELECT_DIS no byte select
 1: BYTE_SELECT_EN select bytes

 example: color reformatting:
 (αRGB -> RGBα or αBGR)

 example: duplication:
 (αRGB -> αααα)

 example 8 bit pixels to 16 bit
 (xxAB  AABB)
 (xAxB  AABB)

 BYTE SELECTION

 VIO_Control1 [7:0]
 operation for each byte

 00: 0 select byte 0 (bits 7:0)
 01: 1 select byte 1 (bits 15:8)
 10: 2 select byte 2 (bits(23:16)
 11: 3 select byte 3 (bits(31:24)

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.2.3 True color to 16 bit error diffusion:

Error diffusion can be selected individually on each of the
four bytes. It is enabled with the DE flag (Diffuse Enable
flag) of the VIO_Control1 control register (cr45, 24). The
Error diffusion works on bytes. One of four different
diffusion sizes can be individually set for all four bytes.
E.g.: 5 bit error diffusion means that the lowest 3 bit of the
previous value are added to the new 8 bit value. The DB
flag (Diffusion Begin flag) should be set to '0' if you start a
diffusion operation. It disables diffusion for the first output
after which it is set automatically to '1'

10.2.4 True color to 16 bit color conversion:

After the Bus selection function, Byte selection function
and the Error diffusion comes the Color format conversion.
Among the formats supported are: Targa 16 bit HiColor,
XGA 16 bit HiColor and a symmetric format with four
components of 4 bit for αRGB. There is an extra 0555
format where bit 15 does not have any relation with alpha
(which becomes always 0xff when read) and a 565 format
where red and blue are swapped. Both these formats are
Microsoft Direct3D HEL supported texture types.

10.2.5 True color to 8 bit pseudo color

The Imagine 2 contains sophisticated logic to translate 32
bit True color to 8 bit pseudo color in a way which is
relatively independent of the color look up table. A 384
entry reversed table is used with extra information for error
correction. The conversion is enabled by setting the PO
flag (Pseudo Output Conversion) in the VIO_Control2
control register (cr46, bit 30)

10.2.6 True color to 8 bit dithering

The CD flag (Color Dithering) in the VIO_Control2
control register (cr46, bit 28) must be set to enable the True
color to pseudo color dithering process

Imagine Processor

 ERROR DIFFUSION

 VIO_Control1 [23:16]
 operation (per byte)

 00: DIT8 no error diffusion
 01: DIT6 6 bit error diffusion
 10: DIT5 5 bit error diffusion
 11: DIT4 4 bit error diffusion

 TRUE COLOR TO 16 BIT COLOR

 OCOL: VIO_Control1 [28:26]

 000: COLOR_PASS no hicolor conv.
 001: COLOR_TARGA 8:8:8:8  1:5:5:5
 010: COLOR_XGA 8:8:8:8  0:5:6:5
 011: COLOR_RGBA4 8:8:8:8  4:4:4:4
 101: COLOR_0555 8:8:8:8  0:5:5:5
 110: COLOR_r565 8:8:8:8  0:5:6:5

(red  blue)

A[7] R[7:2] G[7:2] B[7:2]

R[7:2] G[7:1] B[7:2]

A[7:3] R[7:3] G[7:3] B[7:3]

'0' R[7:2] G[7:2] B[7:2]

B[7:2] G[7:1] R[7:2]

COLOR_TARGA

COLOR_XGA

COLOR_RGBA4

COLOR_0555

COLOR_r565

 PSEUDO COLOR DITHER ENABLE

 CD: VIO_Control2 [28]

 0: DITHER_DIS no color dithering
 1: DITHER_EN color dithering enabled

 PSEUDO COLOR CONVERSION ENABLE

 PO: VIO_Control2 [30]

 0: PSEUDO_DIS no conversion
 1: PSEUDO_EN conversion enabled

 HICOLOR ERROR DIFFUSION ENABLE

 DBDE: VIO_Control1 [25:24]

 00: DITHER_DIS no error diffusion
 01: DITHER_EN start diiffusion
 11: DITHER_EN_BUSY continue diffusion

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.2.7 True color to 8 bit dither matrix
There are two options for the dither matrix which can be
used for true color to pseudo color generation. One is the
well known ordered dither matrix. The size of the dither
matrix used is 16 by 16 which is significantly larger then the
more common 4x4 format. The ordered matrix has the
disadvantage of showing visible '+' and 'x' structures in the
rendered image. This is much less the case with the
improved version which has a more random appearance The
MT flag in VIO_Control2 (bit 25) selects between both
options

10.2.8 True color to 8 bit error correction
The pseudo color table stores pseudo colors based on a
3+3+3 bit rgb entry address. The errors of the pseudo color
compared to its red, green and blue entry is also stored in
the table. This error value can be used to correct output
colors. The EC flag in VIO_Control2 (bit 27) controls
this feature .

10.2.9 Alpha Compare Test
The result of this test can be used to disable the writing of
the pixel into external memory or to replaces the output
color with the transparency color. The result (pass =1) also
goes to the mask generator where it can be added to the
range mask to disable e.g. the writing of the corresponding
Depth value. The alpha value of the output color is
compared with the reference alpha in control register cr47:
VIO_Alpha bits [31:24]. The result
can disable the writing of the pixels if it fails the test. It can be replaced with the transparent color value: cr49
VIO_Transparent if it fails the test The transparent color replaces the result from any color conversion,
dithering error-diffusion et cetera

10.2.10 Alpha Dithering
The result of this test can be used to disable the writing of the pixel into external memory or to replace the output
color with the transparency color. The alpha value of the output color is compared with an 8 bit dither value.
Writing is disabled or the transparency color is selected if the alpha is smaller compared to the test value or if the
alpha value is zero.

10.2.11 Write Disable
Writes to external memory can be disabled via various test
These test are selected with the WRdis field (Write
Disable) in control register cr47: VIO_Alpha bits [19:16].
Bit 16 set to '1' determines that a failed alpha test disables
writing, Bit 17 set to '1' disables writing if alpha is zero and
bit 19 set to 1' disables writing if the alpha is smaller then
the dither value or zero.

10.2.10 Transparency color
The transparent color can replace the actual internal color
during writes to external memory via various test These test
are selected with the TCout field (Write Disable) in
control register cr47: VIO_Alpha bits [19:16]. Bit 12 set
to 1 selects the transparent color when the alpha test fails
Bit 13 set to '1' selects the transparent color when alpha is
zero and bit 15 set to 1' selects the transparent color when
the alpha is smaller then the dither value or zero.

Imagine Processor

 PSEUDO COLOR DITHER MATRIX

 MT: VIO_Control2 [25]

 0: ORDERED_DIT standard matrix
 1: IMPROVED_DIT improved matrix

 PSEUDO COLOR ERROR CORRECTION

 EC: VIO_Control2 [27]

 0: ERR_CORR_DIS no error correction
 1: ERR_CORR_EN correction enabled

 ALPHA COMPARE TEST

 A_CMP: VIO_Control2 [30:28]

 000: GL_NEVER passes never
 001: GL_LESS alpha < ref.alpha
 010: GL_EQUAL alpha == ref.alpha
 011: GL_LEQUAL alpha <= ref.alpha
 100: GL_GREATER alpha > ref.alpha
 101: GL_NOTEQUAL alpha != ref.alpha
 110: GL_GEQUAL alpha >= ref.alpha
 111: GL_ALWAYS passes always

 WRITE DISABLE TESTS

 WRDIS[3:0] VIO_Alpha[19:16]

 bit 0: use Alpha test
 bit 1: use Alpha zero
 bit 3: use Alpha dither

 TRANSPARENT OUTPUT COLOR

 TCOUT[3:0] VIO_Alpha[15:12]

 bit 0: use Alpha test
 bit 1: use Alpha zero
 bit 3: use Alpha dither

Imagine 2 Multi Media Processor 10. Vector I/O unit
10.3 Input instruction.

The input instruction loads the external data available on
the Image bus into the V bus register/driver. Several
functions can be applied on the incoming data before it is
stored in the V-bus register:

- 16 bit color to 32 bit true color format conversion
- 8 bit pseudo color to 32 bit true color conversion
- Alpha generation with color key range
- Byte selection
- Data size definition

10.3.1 16 bit input c

olor conversion:
Incoming 16 bit colors can be expanded to 32 bit true color
αRGB. The color format is defined by bits [31:29] of the
VIO_Control1 control register (see table above). The
lower bits which are added during the expansion are copied
from the most significant bits of the 1, 4, 5 or 6 bit color
components. This ensures that the 8 bit results components
are spread evenly over the entire range of 00 to FF.

10.3.2 8 bit input color conversion
8 bit pseudo colors can be translated to 32 bit true color via
the 256 entry Color Look Up table. This option is enabled
by setting the PI flag: VIO_Control2[31].

10.3.3 Alpha generation by color key range
A 32 bit, 16 bit or 8 bit color which is translated to 32 bit αRGB can be tested on a αRGB transparency range.
This feature is particular useful for 16 bits colors who do not have any alpha information. 8 bit pixels are
converted via the color look up table which itself already allows an alpha to be assigned to each individual
pseudo color. The lowest and highest transparent value for red, green and blue (and alpha are contained within
control registers cr50 and cr51: VIO_ColorKeyLo and VIO_ColorKeyHi. The individual color components
can be enabled by the four ColorKeyEn flags in the VIO_Alpha[11:8] control register. The Alpha value is
 passed unchanged is none of the four flags is set. If 1 or
more is set then the alpha is set to zero if the enabled color
components are within their transparency range otherwise
the alpha is set to 0xff (opaque). The Edge Alpha value in
VIO_Alpha[7:0] can replace the alpha values of non-
transparent pixels which come directly before or after a
transparent pixel. Edge Alpha must be 0xff to disable
this function.

10.3.4 Byte selection:
The byte selection field from the image I/O control registers
can be applied by the input instruction to perform a byte
swap operation on the bytes coming from the Color Format
Conversion unit. Each byte of the V-bus register can be
loaded with each of the four input bytes.

10.3.5 Data Size definition:
The two bit word size information which will be attached to
the input data and stored in the V bus register is determined
by Size:

Imagine Processor

 TRUE COLOR TO 16 BIT COLOR

 ICOL: VIO_Control1 [31:29]

 000: COLOR_PASS no hicolor conv.
 001: COLOR_TARGA 8:8:8:8  1:5:5:5
 010: COLOR_XGA 8:8:8:8  0:5:6:5
 011: COLOR_RGBA4 8:8:8:8  4:4:4:4
 101: COLOR_0555 8:8:8:8  0:5:5:5
 110: COLOR_r565 8:8:8:8  0:5:6:5

(red  blue)

 PSEUDO COLOR CONVERSION ENABLE

 PI: VIO_Control2 [31]

 0: PSEUDO_DIS no conversion
 1: PSEUDO_EN conversion enabled

 SELECT INPUT BYTES

 SI VIO_Control1 [9]

 0: BYTE_SELECT_DIS no byte select
 1: BYTE_SELECT_EN select bytes

 DATA SIZE DEFINITION

 VSIZE: VIO_Control1 [11:10]

 00: QUAD_BYTE 4x8 bits data
 01: DOUBLE_SHORT 2x16 bits data
 11: SINGLE_WORD 1x32 bits data

 BYTE SELECTION

 VIO_Control1 [7:0]
 operation for each byte

 00: 0 select byte 0 (bits 7:0)
 01: 1 select byte 1 (bits 15:8)
 10: 2 select byte 2 (bits(23:16)
 11: 3 select byte 3 (bits(31:24)

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.4 Feedback instruction
The feedback instruction does not perform any communication with the outside world. It uses the capability of
the image I/O port to select any of the eight internal databuses and to perform a Byte Selection in the same way
as the output instruction. The result is visible after one cycle in the V bus register.

10.5 Simultaneous input and output
The Imagine2 can perform simultaneous in and output. The program below reads 32 bit data from memory, does
a table look up operation in the register file and writes the result back to external memory. The read data comes
from the input fifo while the write data is stored in the output fifo and then passed to external memory. The
external memory bus speed is twice as high as the VIO speed so the complete operation can be finished within a
single vector.

repeat, graph (table_look_up);
;;
table_look_up:
V = input => genad(A) => A = rd4x8(ri) => V = output;

10.6 Setting up the translation tables
The VIO contains two tables for the conversion between pseudo color to 32 bit true color and visa versa. Both
tables can be accessed via control register: VIO_Control2 the table addresses are given by bits [8:0] and the
selection between the two tables is made by TS (bit 9) '0' selects the 256 entry pseudo color to true color
conversion table while '1' selects the 384 entry true color to pseudo color table. These tables can be read if the
RD flag (bit 10) is set. This flag needs to be '0' if the tables are used in normal operation. The read and write
operations use control register cr48: VIO_PseudoData as the entry point. Both read and write operations are
auto incremental. Write but also Reads can be done in vector mode. A modification of the table index or the TS
flag when the RD flag is set or setting the RD flag itself will initiate a two cycle pre-load mechanism to read
entries two entries in advance.

10.6.1 The contents of the pseudo color to true color table.
This table contains 256 entries with alpha, red, green and blue values for each of the 256 possible palette entries.
Bits [31:24] = Alpha [7:0]
Bits [23:16] = Red [7:0]
Bits [15:8] = Green [7:0]
Bits [7:0] = Blue [7:0]

10.6.2 The contents of the true color to pseudo color table.
The table which contains information to translate true color information to 8 bit pseudo colors. It has 384 entries
based on a 3 bit Red, 3 bit Green and 3 bit Blue index. The table index used during translation is given by Red +
8 x Green + 64 x Blue. This limits the number of blue entries to 6. The number of entries per color component is
given by REDNO[2:0], GREENNO[2:0] and BLUENO[2:0] in control register cr46: VIO_Control2. Each
entry contains the best fitting pseudo color. The error value for red, green and blue compared to the ideal values
based on the entry address: RED_error[5:0], GREEN_error[5:0] and BLUE_error{5:0] plus three left/right
neighbour field for red, green and blue: RED_next[1:0], GREEN_next[1:0] and BLUE_next[1:0]. The
format of the errors is signed 2.4 where the binary point separates entry numbers and sub entry values. Values
higher then binary 1.1111 and lower then binary (minus) -10.0000 must be clamped to these values. The
neighbour bits detect if the neighbour above (in the red or green or blue direction) or below has a red, green or
blue component which is identical (or nearly identical) to the one of this entry. Bit 1 corresponds to the entry
above while bit 0 corresponds with the entry below.

Imagine Processor

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.7 The control registers of the VIO

10.6.1 The Vector I/O Control register no. 1

Imagine Processor

Cr45: VIO_Control1: The Vector I/O Control register no. 1

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

BY0
[1:0]DB DE

DE = 1 Error Diffusion enabled

BY1
[1:0]

BY2
[1:0]

BY3
[1:0]SO

VSIZE
[1:0]

‘0’OSOURCE
[2:0]

DT0
[1:0]

DT1
[1:0]

DT2
[1:0]

DT3
[1:0]

OCOL
[2:0] SI

ICOL
[2:0]

 16 bit Input Color
 ICOL = 0 Non 16 bit color input
 ICOL = 1 1555 color input
 ICOL = 2 0565 color input
 ICOL = 3 4444 color input
 ICOL = 5 0555 color input
 ICOL = 6 0565 color input (r↔b)

 16 bit Output Color
 OCOL = 0 Non 16 bit color output
 OCOL = 1 1555 color output
 OCOL = 2 0565 color output
 OCOL = 3 4444 color output
 OCOL = 5 0555 color output
 OCOL = 6 0565 color output (r↔b)

 16 bit HiColor Error Diffusion

 DTx = 0 No error diffusion
 DTx = 1 6 bit error diffusion
 DTx = 2 5 bit error diffusion
 DTx = 3 4 bit error diffusion

 DT3[1:0] Alpha channel [31:24]
 DT2[1:0] Red component [23:16]
 DT1[1:0] Green component
[15:8]
 DT0[1:0] Blue component [7:0]

 Byte Selection Function

 BYx = 0 Select bits [7:0]
 BYx = 1 Select bits [15:8]
 BYx = 2 Select bits [23:16]
 BYx = 3 Select bits [31:24]

 BY3[1:0] Alpha channel [31:24]
 BY2[1:0] Red component [23:16]
 BY1[1:0] Green component
[15:8]
 BY0[1:0] Blue component [7:0]

 Output Bus Selection

 OSOURCE = 0 Select A bus
 OSOURCE = 1 Select B bus
 OSOURCE = 2 Select Q bus
 OSOURCE = 3 Select F bus
 OSOURCE = 4 Select M bus
 OSOURCE = 5 Select U bus
 OSOURCE = 6 Select D bus
 OSOURCE = 7 Select V bus

SO = 1 Select Output bytes enabled

 Size used for Input Data

 VSIZE = 0 quad 8 bit word
 VSIZE = 1 double 16 bit word
 VSIZE = 2 single 32 bit word

DB = 1 Diffusion Begin Flag set
Diffusion enabled

SI = 1 Select Input bytes enabled

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.6.2 The Vector I/O Control register no. 2

10.6.3 The alpha test and alpha generation control register

Imagine Processor

Cr47: VIO_Alpha: Alpha test and Alpha generation Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

A_CMP
[2:0]

ColorKeyEn
[3:0]

INPUT COLOR KEY TEST

ColorKeyEn[3] Enable Alpha
ColorKeyEn[2] Enable Red
ColorKeyEn[1] Enable Green
ColorKeyEn[0] Enable Blue

TEST_ALPHA
[7:0]

TEST_ALPHA [7:0]
Alpha value used as a reference in
the Alpha compare Test

CKout[3:0]
EDGE_ALPHA

[7:0]

EDGE_ALPHA [7:0]
Alpha used for pixels adjacent
to transparent pixels

TCOUT[2:0] Transpar.out
bit 0: use Alpha test
bit 1: use Alpha zero
bit 2:
bit 3: use Alpha dither

Cr46: VIO_Control2: The Vector I/O Control register no. 2

RD = 0 Read Access disabled (Normal Operation)
RD = 1 Read Access enabled (Table state save)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

TAB_ADDR
[8:0]

Pre_ld
[1:0] RD

‘0’
TS

Table read pre-load [1:0]
(read only status)
 0 = No read pre-load
 1 = Pre-load busy
 2 = Pre-load ready

TS = 0 Pseudo  True Table
TS = 1 True  Pseudo Table

TAB_ADDR [8:0]
0..255 for Pseudo  True color Table
0..383 for True  Pseudo color Table

REDNO
[2:0]

GREENNO
[2:0]

BLUENO
[2:0]EC MTCDPI PO

‘0’ ‘0’

REDNO: Red entries

GREENNO: Green entries

BLUENO: Blue entries

PO = 1 Output
 Pseudo Color

PI = 1 Input
Pseudo Color

MT = 0 Ordered Dithering
MT = 1 Improved Dithering

CD = 1 Color Dithering Enabled

EC = 1 Error Correction Enabled

WRDIS[2:0] Write disable

bit 0: use Alpha test
bit 1: use Alpha zero
bit 2:
bit 3: use Alpha dither

WRdis[3:0]
‘0’

ALPHA COMPARE

 A_CMP = 0 GL_NEVER
 A_CMP = 1 GL_LESS
 A_CMP = 2 GL_EQUAL
 A_CMP = 3 GL_LEQUAL
 A_CMP = 4 GL_GREATER
 A_CMP = 5 GL_NOTEQUAL
 A_CMP = 6 GL_GEQUAL
 A_CMP = 7 GL_ALWAYS

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.6.4 The pseudo  true color conversion tables entry

10.6.5 The transparent output color

10.6.6 The transparent color input range

Imagine Processor

Cr50: VIO_ColorKeyLo Lowest Transparent values of the Input and Output
Color Keys

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Blue low level
color key [7:0]

Green low level
color key [7:0]

Red low level
color key [7:0]

Alpha or Pseudo low level
 color key [7:0]

Cr51 VIO_ColorKeyHi Highest Transparent values of the Input and
Output Color Keys

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Blue high level
color key [7:0]

Green high level
color key [7:0]

Red high level
color key [7:0]

Alpha or Pseudo high level
color key [7:0]

Cr49: VIO_ColorKeyOut: The Output Color Key

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Blue low output
color key [7:0]

Green low output
color key [7:0]

Red low output
color key [7:0]

Alpha or Pseudo output
 color key [7:0]

Cr48: VIO_PseudoData: The Vector Pseudo  True Color Table Data

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

GREEN component
[7:0]

BLUE component
[7:0]

ALPHA component
[7:0]

RED component
[7:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

PSEUDO color
[7:0]

RED
error [5:0]

RED
next
[1:0]

GREEN
error [3:0]

BLUE
next
[1:0]

BLUE
 error [5:0]

GREEN
next
[1:0]

The Pseudo Color  True Color Table's Data format

The True Color  Pseudo Color Table's Data format

COLOR ERROR

format: signed 2.4

from -10.0000 to +01.1111
where the binary point sepa-
rates table entry values and
sub entry values

COLOR NEIGHBOUR

bit [1] indicates that the higher neighbour (in
the direction of higher color intensity) for the
specific component has an equal or an
almost equal color component. Bit[0]
indicates the same for the lower neighbour

Imagine 2 Multi Media Processor 11. The Program Sequencer

Chapter

11. THE PROGRAM SEQUENCER

The Program Sequencer
is responsible for the control flow of a program running on the IMAGINE. It is
optimised for both high level language processing and specialised assembly code. It
handles Jumps, Calls, Returns and Repeat functions. Together with the ALU, all C
language expressions like A==B, A!=B, A>B, A>=B, A<B, A<=B, are handled
with a single ALU function and a single control flow function.
The IMAGINE can control complex Multi Media systems. It handles Interrupts and
return from interrupts for many real time functions like Video I/O, Audio I/O, and
several communication channels.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.1 The program sequencer instruction word

The Program Sequencer instruction determines the value of the 24 bit instruction address pointer. The instruction
address points to 64 bit wide instructions so the 24 bits cover an address range of 128 Mbyte.

(The current instruction set allows future 32 bit addresses)

Function group field (Ic58..59)
One of four major groups of instructions can be selected with instruction
bits IC[59:58] The jump, call and return are familiar instructions which
will be specified in detail in this chapter. The repeat function plays an
important role in vector processing type operations, including vectors with
variable length.

Address Mode field (Ic55..57)
The Sequencer instructions select from seven address modes to
obtain a destination address (see table)
 The Instruction word can provide a 24 bit absolute address or
signed offset. This is the type of instruction which is mostly used
for code generation: the destination address is known during
compilation time. Within a program, the jumps and calls should
always use relative addresses to be re-locatable. The address
register can also provide a 24 bit absolute address or signed offset
for the cases where the destination address is not known during
compilation. This occurs frequently in C programs with calls using
pointers to functions. The function to be called is given during run-
time and not known during compilation time. A calculated goto
instruction is used by optimising compilers to implement fast
switch statements. In this case the jump instruction should be
executed with the calculated destination address stored in the
address register.

Imagine Processor

Instruction code Ic[63:50]

not
con

60616263 56575859 52535455 5051

Condition
select

Address
mode

Funct
group

Sequencer:
‘1100’

Instruction code Ic[23:0]: jump, branch, call, subr

Instruction code Ic[23:0]: repeat instruction for vector processing

Instruction code Ic[23:0]: continue, push, pop, jump_reg, branch_reg,
 call_reg, subr_reg, call_int, return, access_IC

20212223 16171819 12131415 891011 4567 0123

Absolute or Relative Address Offset
[23:0]

20212223 16171819 12131415 891011 4567 0123

FLAG VALUE FIELD
[2:0]MI

2
UF
0

‘0000’

20212223 16171819 12131415 891011 4567 0123

Last in repeat zone
[5:0]

Start repeat zone
[5:0] ‘00’‘0’

Fixed repeat count option
[7:0]

R
C
S

UF
1

UF
2

‘0’‘0’‘0’MI
1

FLAG MODIFICATION FIELD
[2:0]MI

2
UF
0

UF
1

UF
2

‘0’‘0’‘0’MI
1

F
V
S

I
A
I

I
R
D

I
W
R

Function group:

 0 jump instructions
 1 call instructions
 2 return instructions
 3 repeat instruction

Sequencer Address Modes

 0 PC := PC + 1
 2 PC := Interrupt table register
 3 PC := Top of (Internal) Stack
 4 PC := Address register
 5 PC := PC + Address register
 6 PC := Immediate Address
 7 PC := PC + Immediate Offset

Imagine 2 Multi Media Processor 11. The Program Sequencer

The fifth way of obtaining an destination address is using the interrupt table register. This option is provided to
enable high speed real time processing in Multi Media applications.
Ranging from medium to complex systems with many different simultaneous interrupts from both video and
audio I/O. A number of interrupts coming from different real time tasks can be handled in a single pass of circa
1.0 microsecond without the need of saving and restoring the processor state over and over again. The interrupt
table register contains the start of the interrupt service routine table in its highest bits (23:8). The lower bits are
defined by the interrupt waiting to be serviced (see description further on).

The Conditional Execution Field
Allows the program sequencer instruction to be condi-
tional depending on status information from the ALU or
the sequencer control/status register. The contents of the
following registers are set conditionally: the Program
Counter, the Internal Micro StackPointer, the Flags in
the sequencer control register and the Address Regis-
ter.

The Condition field (Ic51..54)
The actual condition to be used by the jump, call or
return function is selected with this field. It selects
between the individual status bits coming from the ALU
or status bits from the Sequencer status register.

The 'Not' field (IC 50).
If an instruction (jump, call, return) is executed
conditionally, then the value of the status bit used for the
conditional instruction can be used as it is, or can be
inverted with the use of the ‘Not’ field. If the status bit is
not inverted the instruction will be executed if the
instruction is true. Otherwise, when the status bit is in-
verted, the instruction will be executed if the condition
is false.
Not = '0' Execute if (condition), (cond.='1')
Not = '1' Execute if not (condition)

C Language compatibility
A C compiler or an assembly code programmer can
implement all conditional jumps and calls like X==Y, X!=Y,
X>Y, X>=Y, X<Y, X<=Y for both signed and unsigned
numbers with just two instructions: a single ALU and a single
Sequencer instruction. The table specifies the individual
cases.

The Vector Processing Flags
These flags are typically used in assembly code programs.
The Image mask can be checked to see if any of the up to 256
pixels covered by it, needs to be written to the frame buffer
(im_mask_empty/im_mask_filled). The entire Vector write
may be skipped if empty. The Image Bus Access test is used
to wait for the end of a Vector read or write operation.

The Interrupt pending flags
These are typically used during interrupt service routines with
provisions for advanced Multi Media systems.

Imagine Processor

Conditional control flow options:

 Pos. Condition Neg. Condition

 0 if (always) if not (always)

------------------------- User flags ---------------------------
 1 if (user_flag0) if not (user_flag0)
 2 if (user_flag1) if not (user_flag1)
 3 if (user_flag2) if not (user_flag2)

------------------------- ALU flags ---------------------------
 4 if (zero) if not (zero)
 5 if (negative) if not (negative)
 6 if (carry) if not (carry)
 7 if (sgncmp) if not (sgncmp)

----------------- Vector Processing flags ------------------
 9 if (repeat_smaller) if not (repeat_smaller)
 10 if (im_mask_empty) if not (im_mask_empty)
 11 if (im_access_busy) if not (im_access_busy)

------------------ Floating Point flag------------------------
 12 if (float_error) if not (float_error)

------------------------ Interrupts -----------------------------
 14 if (interrupt1) if not (interrupt1)
 15 if (interrupt2) if not (interrupt2)

C compare functions:

Equation: ALU Condition

X == Y X-Y if (zero)
X != Y X-Y if not (zero)

signed:
X >= Y X-Y if (sgncmp)
X <= Y X-Y-1 if not (sgncmp)
X > Y X-Y-1 if (sgncmp)
X < Y X-Y if not (sgncmp)

unsigned:
X >= Y X-Y if (carry)
X <= Y X-Y-1 if not (carry)
X > Y X-Y-1 if (carry)
X < Y X-Y if not (carry)

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.2 Sequencer control registers

control
register

assembly code
name

REGISTER FUNCTION word size byte access
b3 b2 b1 b0

default
at reset

cr52 SEQ_Status Status and Control Register 16 bit --- --- ro ro 0x00C0
cr53 SEQ_PrCounter Program Counter 24 bit --- ro ro ro 0x000000
cr54 SEQ_Address Address Register 24 bit --- rw rw rw 0x000000
cr55 SEQ_Interrupt Interrupt Table Register 24 bit --- rw rw ro
cr56 SEQ_Repeat Total Vector Length 16 bit --- --- rw rw 0x0000
cr57 SEQ_MaxRepeat Vector Stride 8 bit --- --- --- rw 0x3F
cr59 SEQ_Test Sequencer Test Register 30 bit ro ro ro ro
cr60 ICA_Low Instruction Cache Low 32 bit rw rw rw rw
cr61 ICA_High Instruction Cache High 32 bit rw rw rw rw

Imagine Processor

cr53: SEQ_PrCounter: Program Counter

20212223 16171819 12131415 891011 4567 0123

Program Counter
[23:0]

cr52: SEQ_Status: Sequencer status / control

12131415 891011 4567 0123

I
P
2

I
P
1

‘0’
F
P
E

I
A
B

I
M
Z

R
R
S

M
I
2

‘0’
M
I
1

‘000’
U
F
2

U
F
1

U
F
0

cr54: SEQ_Address: The Address register

20212223 16171819 12131415 891011 4567 0123

Address register
[23:0]

The Address micro stack, sixteen levels deep

20212223 16171819 12131415 891011 4567 0123

Address stack
[23:0]

cr55: SEQ_Interrupt: The Interrupt Routine Pointer

20212223 16171819 12131415 891011 4567 0123

Interrupt Table Address
[23:0]

L
E
V

S
/
H

‘00’
Interrupt

 Vector [3:0]

cr56: SEQ_Repeat: The Repeat Count

12131415 891011 4567 0123

Vector Length
[15:0]

cr57: SEQ_MaxRepeat: The Max Repeat Count

4567 0123

Vector Stride
[7:0]

cr60 and cr61: ICA_Low, ICA_High: The Instruction Cache access registers

28293031 24252627 20212223 16171819 12131415 891011 4567 123

Instruction Cache data for low level cache access
[31:0]

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.3 The control register functions

SEQ_Status: The Status / Control Register cr52
The Status and control Register contains a number of flags which are related to the program flow of the Imagine.
The Interrupt handler provides/uses 4 flags. There are 3 user flags. The repeat count, the Image Mask generator,
the Floating point handler and the Vector access unit also provide flags.

SEQ_PrCounter: The Program Counter cr53
The Program counter holds the address which is used to access the Instruction memory. The Jump, Call, Return
and Repeat instructions use this register to control the program flow. The register is read-only for control register
accesses. The PC contents leads the actual executed instruction by two cycles. This means that any change of the
PC due to a Jump, Call or Return happens to be two cycles before the instruction is loaded and being executed.
These two cycles are called branch delay cycles, and are typical for RISC processors. The Instructions they
execute are called branch delay instructions. It is clear that another Jump, Call or Return is not recommended in
a branch delay cycle.

SEQ_Address: The Address Register cr54
The Address Register is readable and writable by external access. The contents can be used as an absolute
address or a signed offset for Jumps and Calls. This feature is used to Jump and Call to destination addresses
which are not known during compilation time. The Address Registers Internal Stack access function: A value in
the Address Register can be Pushed to the Stack and vice versa: the Top of Stack value can be Popped to the
Address Register (see PUSH and POP). The Control Flag Restore function: Bits [7:0] can be restored to the
corresponding control flags of the Control/Status register. The Instruction cache access function: The Address
register contains the Instruction address during low level read/write accesses to the Instruction cache.

The Micro Address Stack
The Imagine contains a small 16 entry internal stack to temporary save Program Counter addresses. It can be
used by interrupt service routines, Assembly code and (not excluded) by optimising compilers. The Programmer
can access the Stack with the use of the Address register. A value in the Address Register can be Pushed to the
Stack while the Top of Stack value can be Popped back into the Address Register. This feature is used by high
level language function calls to save the return address on an external stack and to restore it at the end of the call.

SEQ_Interrupt: The Interrupt Service Routine Pointer cr55
This register contains the start address of the Interrupt to be served. The highest 16 bits (23:8) are writable by
external access. The lowest 8 bits are provided by the pending interrupt: The Interrupt level and the Interrupt
Vector. The least significant Table Entry address bit indicates if the actual branch to the service routine is done
by hardware or software. Software Interrupt Jumps and Calls can be applied to handle several waiting interrupts
in one pass without the need to Save and Restore the Processor state for each interrupt.

SEQ_Repeat: The Repeat Register cr56
This register is used by the Repeat function and by Vector accesses to external Memory. The Value defines the
total (variable) Vector Length. The Repeat function catches instructions in a socalled repeat catch range and
repeats these functions a programmable number of times (in a range from 1 to 256 times). This enables variable
length vector processing (all Interrupts are disabled during both catching and repeating). The maximum repeat
value is 32768 (stored as N-1 = 32767).

SEQ_MaxRepeat: The Maximum Repeat Count Register cr57
This register is used to split long vectors into vectors with length ([cr57] + 1) plus a final (smaller) 'tail' vector.
This is the socalled Vector Stride. Register cr57 is set to its default value of 0x3F (repeat=64) during reset.

ICA_Low and ICA_High: The Instruction Cache access registers cr60,cr61
The 64 bit value contained in both registers can be written to the Instruction cache memory. This is typically used
in the boot process where a small on chip boot rom will load the boot program from an external EPROM into the
instruction cache. These registers are also used for low level reads from cache ram.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.4 The control flow instructions

11.4.1 The jump instructions

The JUMP Instruction

The 24 bit address in the instruction word is used for the new address. In
case of an absolute address JUMP, the value replaces the current value of
the program counter. The jump will be effectuated after the two branch
delay instructions. If the jump is relative the 24 bits value from the
instruction word is added to the instruction address of the last branch
delay instruction: the current instruction address plus two. Within
programs the relative jumps should be used while absolute jumps should
be used for system functions. The mnemonics differentiate between the
two: relative jumps are called branches while absolute jumps are simply
referred to as jumps.

The JUMP REGISTER Instruction

The 24 bit address register, (SEQ_Address: cr54), is used for the new
address. In case of an absolute address JUMP REGISTER, the value
replaces the current value of the program counter. The jump will be
effectuated after the two branch delay instructions. If the jump is relative
the 24 bits value from the address register is added to the instruction
address of the last branch delay instruction: the current instruction address
plus two. It can be combined with the flags() function: The 24 bit data
field can be used independently to set/reset any number of flags in the
status/ control register.

The JUMP INTERRUPT Instruction

Provided together with the Call Interrupt for quick response interrupt
service processing in complex Multimedia designs. The jump can test the
pending of a second interrupt while servicing one. The jump has the same
effect as a serviced interrupt but has the advantage that the state of the
processor does not have to be saved and restored between these interrupts.

The 24 bit interrupt table register (SEQ_Interrupt: cr55) is used for the new address. The Interrupt table address
(bits [23:8]) is combined with information from a pending interrupt: interrupt level and interrupt vector. The
'least' significant bit (bit2) is set to '1' which means that the software entry for the interrupt is used. The resulting
address replaces the current value of the program counter. The jump will be effectuated after the two branch
delay instructions and is always absolute. It can be combined with the flags() function: The 24 bit data field can
be used independently to set/reset any number of flags in the status/ control register.

The CONTINUE Instruction

This is the default sequencer instruction: a dummy JUMP instruction. It
uses the address mode: PC+1 and it’s mnemonics continue is optional. It
should be used when you want to modify the (timings-critical) bits in the
status and control register. (The equivalent dummy instructions for the
CALL and RETURN functions are: PUSH STACK and POP STACK.)

Imagine Processor

Mnemonics:

jump (label);
branch (label);
if (condition), jump (label);
if (condition), branch (label);
if not (cond.), jump (label);
if not (cond.), branch (label);

Mnemonics:

jump_reg;
branch_reg;
if (condition), jump_reg;
if (condition), branch_reg;
if not (cond.), jump_reg;
if not (cond.), branch_reg;

Mnemonics:

jump_int;
if (condition), jump_int;
if not (cond.), jump_int;

Mnemonics:

[continue]
flags(....);
flags_restore;
if (condition), flags(...);
if not (cond.), flags(...);

Imagine 2 Multi Media Processor 11. The Program Sequencer
11.4.2 The call instructions

The CALL Instruction

The 24 bit address in the instruction word is used for the new address
while the contents of the Program Counter + 1 is pushed on the small
internal Stack which holds eight words. This address can be used by the
function call handling software for a future return. Highly efficient
assembly code can use the tiny Stack for function calling without
overhead in timing critical inner loops (up to six levels with two levels
reserved for interrupts). In case of an absolute address Call, the value
replaces the current value of the program counter. The call will be
effectuated after the two branch delay instructions. If the call is relative
then the 24 bits value from the instruction word is added to the instruction
address of the last branch delay instruction: the current instruction address
plus two. Within programs the relative jumps should be used while
absolute jumps should be used for system functions. Absolute calls are
simply calls while relative calls are referred to as subrs.

The CALL REGISTER Instruction

The 24 bit address register (SEQ_Address: cr54) is used for the new
address while the contents of the Program Counter + 1 is pushed on the
small internal Stack which holds eight words. The CALL REGISTER
Instruction is identical with the normal CALL instruction. The Call can be
absolute and relative. It is used in situations in which the destination
address is not known during compilation time. A common example are
function calls which use the pointer to a function to execute the call. The
software determines during Run time which version of a certain function
will be used. A function may have several versions because it drives
different devices. Another reason may be a 'global' parameter which
defines various quality levels of rendering. This function can be combined
with flags().

The CALL INTERRUPT Instruction

Is provided together with the Jump Interrupt for quick response interrupt
service processing in Multimedia designs with two or more display
formats. The call can test the pending of a second (Line-) interrupt while
servicing one. The call has the same effect as a serviced interrupt but has
the advantage that the internal state of the processor does not have to be
saved for the second time.

The 24 bit interrupt register (SEQ_Interrupt: cr55) is used for the new address while the contents of the Program
Counter + 1 is pushed on the internal Stack. The Interrupt table address (23:8) is combined with information
from a pending interrupt: interrupt level and interrupt vector. The 'least' significant bit (bit2) is set to '1' which
means that the software entry for the interrupt is used. The resulting address replaces the current value of the
program counter. The jump will be effectuated after the two branch delay instructions. The CALL on
INTERRUPT is by definition an absolute call. This function can be combined with flags().

The PUSH STACK Instruction

This instruction does not influence the program flow. The Address
Register is pushed onto the internal Stack (16 deep) instead of the
Program Counter. High level Function calls use it to return to an
externally saved return address.

Imagine Processor

Mnemonics:

call (label);
subr (label);
if (condition), call (label);
if (condition), subr (label);
if not (cond.), call (label);
if not (cond.), subr (label);

Mnemonics:

call_reg;
subr_reg;
if (condition), call_reg;
if (condition), subr_reg;
if not (cond.), call_reg;
if not (cond.), subr_reg;

Mnemonics:

call_int;
if (condition), call_int;
if not (cond.), call_int;

Mnemonics:

push, [flags()];
if (condition), push, [flags()];
if not (cond.), push, [flags()];

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.4.3 The return instructions

The RETURN Instruction

The return mechanism is used to continue operation from the point
on which a function call or an interrupt became effective. The Top
Of Stack is popped from the tiny internal stack and placed into the
Program Counter. The Return will be effectuated after the two
branch delay instructions. The program will continue at the address
which is popped from the Top Of Stack to the Program counter. C
code which uses pointers to functions for run-time depended
function calling should use the return mechanism for this type of
function calls. If the return is used to return from an Interrupt the
Reset function should be applied
to reset the interrupt mask in the status register of the corresponding
level.

The POP STACK Instruction .

This instruction does not influence the program flow. The Address
Register instead of the Program Counter is popped from the internal
Stack. High level Function call's use it to obtain the return address
to save it on an external stack. This function can be combined with
flags().

11.4.5 The repeat instruction

The REPEAT Instruction

This instruction is used by for vector (stream) processing.
Processing continues normally until the repeat range is reached.
Instructions within the repeat range are catched and repeated a
variable number of times. The last instruction of the repeat range
also holds the program counter. Two 6 bit values define the range
which may start at any instruction from 3 cycles up to 67 cycles
after the repeat instruction and end at any other in that same range
provided that the last instruction is equal to or after the first
instruction. as the target instruction. The assembler has four ways of
obtaining the start and end offsets: The graph option uses a single
label in the assembly where it expects to find a graph. The last
instruction of the graph is also the last instruction of the range. The
range options requires two labels for both the first and the last
instruction of the range. The after option defines a single instruction
range (start == last) and requires the actual number of instructions
between the repeat and the instruction which should be repeated. The
label option also defines a single instruction range but uses the label
of this instruction to calculated the offset.

The target instruction will be repeated for a given number of times. The repeat function is limited to a maximum
of 2562 cycles. During both waiting and repeating all interrupts are masked. The repeat count can be hard coded
as immediate data within the instruction word or it can be taken as a run_time variable from the repeat count
register (SEQ_Repeat: cr56) where it can be stored by software (if SEQ_Repeat == 0 then the instructions are
executed 1 time: they are 0 times repeated). A simple mechanism is provided to operate on vectors of arbitrary
length: A long vector is subdivided in vectors of the length defined by SEQ_MaxRepeat: cr57 and a smaller 'tail'
vector at the end. This maximum repeat count is the Vector Stride. Higher values in the repeat count register (up
to 32768) will be replaced by this maximum repeat count. The repeat register is decremented by the maximum
repeat count each time a conditional sequencer instruction refers to the RRS flag of the SEQ_Status register. This
flag (Repeat Register Smaller) can be used to test if the contents of the repeat register is still larger than the
maximum repeat count before decrementing it. In this case another repeat is needed. The Repeat function is
always executed unconditionally.

Imagine Processor

Mnemonics:

return [, flags()];
if (condition), return [, flags()];
if not (cond.), return [, flags()];

Mnemonics:

pop [, flags()];
if (condition), pop [, flags()];
if not (cond.), pop [, flags()];

Mnemonics:

Multiple Instruction catch range:

repeat, graph (label);
repeat, range (label1,label2)
repeat_fixed (N), graph (label);
repeat_fixed (N), range (lab1,lab2);

Single instruction catch range:

repeat, after (W);
repeat, label (label);
repeat_fixed (N), after (W);
repeat_fixed (N), label (label);

N = 1..256, W = 3..67

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.5 Sequencer usage

11.5.1 The branch delay slots in the instruction address generation

The Imagine has a branch delay of 2 instructions. This means that a Jump, a Branch or a Call becomes effective
after two more instructions following the instruction which caused the branch. These two instructions are called
the branch delay instructions. They fall into the branch delay slots. Branch delay slots are typical for RISC
processors. The number of delay slots is an indication for the level of pipelining in the instruction address
generation and fetching.
The Timing figures below show that the current instruction (= fetched instruction) trails the value of the Program
Counter by two cycles. These two cycles are used to output the instruction address, to access the instruction
cache and to load the instruction into the instruction register. (The instruction is called currently executed
instruction or fetched instruction when loaded into the instruction register.)

clock Contents of Currently Instruction Fetched
cycle Program Executed cache addr. Instruction

Counter Instruction registers

170 N - 1 instr(N-3) (continue)
171 N instr(N-2) (continue) N - 1
172 N + 1 SUBTRACT(A,B) N instr(N-1)
173 N + 2 JUMP X IF ZERO N + 1 instr(N) = JUMP X
174 X instr(N+1) (b_delay 1) N + 2 instr(N+1) delay 1
175 X + 1 instr(N+2) (b_delay 2) X instr(N+2) delay 2
176 X + 2 FIRST X instruction. X + 1 instr(X) = First X
177 X + 3 instr(X+1) (continue) X + 2 instr(X+1)

11.5.2 The usage of the internal program counter stack

The Internal stack consists of eight registers: a TOS (Top Of Stack) and seven further registers. It handles
subroutine calls on high level (C language) and low level assembly code. High level calls use the TOS register as
the place where the return address can be found to continue after exiting a C function. The return is executed by
writing the externally saved value from TOS register back and performing a Return function.

Low level calls in the inner loops of assembly library functions can use the Tiny Stack for function calling
without any overhead.
The Program Counter can be saved up to Six levels (the two remaining levels are reserved for interrupt calls).
The TOS is obtained by the POP STACK function which moves the TOS register to the Address register. It can
be restored with the PUSH STACK function which moves the Address register to the TOS.

Interrupt handling is the third task of the internal Stack. An Interrupt causes the Program Counter to be saved on
the Internal Stack. The contents of the Interrupt table register is placed in the PC. A return from interrupt pops
the value from the TOP register back to the Program Counter. A number of very frequent interrupts can be
handled completely without state save and restore because of the internal micro stack..

11.5.3 Using the Imagine's ALU status for conditional control flow

The example above shows how status information from the Imagine ALU can be used for conditional control
flow. The chapter on the ALU in the Imagine device specification manual shows how all typical C equations like
A==B, A!=B, A>B, A>=B, A<B and A<=B for both signed and unsigned data types can be
translated into a combination of one ALU function followed by a conditional control flow instruction. If there are
any other functions between the ALU function and the Control flow function, then the ALU should execute Nops
to preserve the Status information.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.5.4 The usage of the immediate data in the instruction field

Option 1

The 24 bit dataword is either a 24 bit absolute address or a 24 bit signed offset depending on the addressing
mode.

Option 2

The control flags (bits 0..7) in the control/status register can be individually modified with this option. A '1' in the
Flag Modify Field allows the corresponding control flag [7:0] in the SEQ_Status register to be changed to the
value in the Flag Value Field. Another way to modify the control flags and the state flag is the use of the
corresponding 8 least significant bits of the SEQ_Address register. This option is typically used to restore the
control flags before a return from interrupt. This option is selected with FVS = '1'. The 8 control flags are set
with the values of the corresponding bits in the address register as is the value of the State Flag which also is
saved in case of an interrupt.
A modification with the Flag Modify/Value fields has the highest priority so all nine control/state flags may be
restored from the address register while individual flags are set with higher priory in the same instruction.

Option 2 contains a three bit field which is used for direct read and write operations in the instruction cache ram.
(IAI, IRD, IWR) The use of this field is explained elsewhere.

Option 3

This option defines the repeat range:

If RCS: (Repeat Count Select) = '0' then SEQ_Repeat used during a repeat operation. If the repeat count is
larger than then SEQ_MaxRepeat (cr57) then this value is used instead.
If RCS: (Repeat Count Select) = '1' then bits [7:0] of the Instruction Code are used during a repeat operation.

Imagine Processor

Instruction code Ic[23:0]: jump, branch, call, subr

Instruction code Ic[23:0]: repeat instruction for vector processing

Instruction code Ic[23:0]: continue, push, pop, jump_reg, branch_reg,
 call_reg, subr_reg, call_int, return, access_IC

20212223 16171819 12131415 891011 4567 0123

Absolute or Relative Address Offset
[23:0]

20212223 16171819 12131415 891011 4567 0123

FLAG VALUE FIELD
[2:0]MI

2
UF
0

‘0000’

20212223 16171819 12131415 891011 4567 0123

Last in repeat range
[5:0]

Start repeat range
[5:0] ‘00’‘0’

Fixed repeat count option
[7:0]

R
C
S

UF
1

UF
2

‘0’‘0’‘0’MI
1

FLAG MODIFICATION FIELD
[2:0]MI

2
UF
0

UF
1

UF
2

‘0’‘0’‘0’MI
1

F
V
S

I
A
I

I
R
D

I
W
R

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.6 The program sequencer mnemonics

THE JUMP FUNCTIONS fun, mode

jump (label) Jump Absolute to the address in the Instruction word 00 110
branch (label) Jump relative, Add Instruction word offset to PC 00 111
jump_reg Jump Absolute to the address in the address register 00 100
branch_reg Jump relative, Add Address register offset to PC 00 101
jump_int Software Jump to Interrupt 00 010
[continue] 'Default Dummy Jump' to PC+1, can be combined with flag modification 00 000

THE CALL FUNCTIONS fun, mode

call (label) Call Absolute to the address in the Instruction word 01 110
subr (label) Call relative, Add Instruction word offset to PC 01 111
call_reg Call Absolute to address in the address register 01 100
subr_reg Call relative, Add Address register offset to PC 01 101
call_int Software Call Interrupt 01 010
push Push Address register to the internal Stack 01 000

THE RETURN FUNCTIONS fun, mode

return Return from Subroutine, Pop PC from Internal Stack 10 011
pop Pop Address register from the Internal Stack 10 000

THE REPEAT FUNCTIONS fun, mode

repeat Repeat instruction (Variable length Vector operations) 11 000

THE INSTRUCTION CACHE ACCESSFUNCTIONS fun, mode

set_IC_address Place the contents of the Address register on the Instruction Address Bus 01 100
access_IC Read \ Write the Instruction word on the selected location and continues. 10 011

ORTHOGONAL OPERATION: DEFINE CONDITION FIELD

if (condition), Condition field: can be combined with any instruction except the repeat function
if not (condition), negated Condition field: can be combined with any instruction except the repeat function

ORTHOGONAL OPERATION: SET ADDRESS/DATA FIELD (IC0..23)
option 1
 (label) Define Contents of Ic0..23 as Address field or Relative Address offset,

Can be combined with Jump, Branch, Call and Subr.

option 2
, flags (flags)Define Contents of Ic8..15 as a Flag Modify Field and Ic0..7 as the Flag Value Field

flags: mask_int1, unmask_int1, mask_int2, unmask_int2, set_user_flag_0,
 reset_user_flag0,set_user_flag1, reset_user_flag1,set_user_flag2,reset_user_flag2.

.
, flags_restore Bits [7:0] from SEQ_Address (cr54) are restored in SEQ_Satus (cr52) (Ic23='1')
_read Combined with access_IC: Read the Instruction code into the Imagine's user IC registers
_write Combined with access_IC: Write the Instruction code from the Imagine's user IC registers
++ Combined with access_IC: Increment the SEQ_Address register

option 3
_fixed (count) Define Repeat Count Field (Ic0..Ic4). This field is combined with the Repeat Instruction.
, after (count) Define Start Range and Last in Range fields of the Repeat instruction.(fields are equal)
, label (label) Identical to after but calculated as the difference of the instruction addresses.
, graph (label) Start range is defined by label. Last instruction in the graph becomes the Last in range.
, range (lab1,lab2) Start range is defined by label 1. Last in range is defined by label 2.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.7 Vector processing control flow

11.7.1 Variable length vector processing
The Imagine has powerful variable length vector processing facilities which are briefly described here. Vector
processing is implemented with the following properties of the Imagine:
♦ The Repeat Instruction of the Sequencer
♦ Vector processing functional units
♦ Vector type register and memory access

11.7.2 The repeat instruction
During the processing of a variable length vector, the same operation is repeated for a variable number of times.
A catch range can be defined where in instructions are catched and repeated. The repeat catch range is defined by
two 6 bit numbers in the instruction word. The range must lay betwee 3 and 67 cycles away from the repeat
instruction itself. The instructions in this range are executed from 1 to 256 times. Larger vectors can be
subdivided into smaller sized ones. The total Vector Length is defined in SEQ_Repeat while the vector stride is
defined in SEQ_MaxRepeat. The Program counter itself is repeated during the “Last in range” instruction. While
the other instructions hold their own instruction fixed during repeat time.

11.7.3 Vector processing functional units
All data processing units like the ALU, the Barrel shifter and the Multiplier/Accumulator can perform vector
operations. Each one can perform operations each cycle and the units are interconnected by a flexible bus
structure which allows a pipeline to be set up from the reading of the operands, trough various function unit to
the writing of the results.

The pipelined processing above is generated by the following assembly code program:

repeat, graph (merge_ARGB);;;
merge_ARGB:
genad(A)=>V=input,A=rd4x8(ri)=>M=mult(A,V,nuu)===>genad(B)=>B=rd4x8(ri)=>F=add(M,B)=>V=output;

11.7.4 Vector type data storage access
All types of data storage known to Imagine have a vector access mode. There are four types of data storage:

♦The Vector access memory unit One vector can be read and one can be written simultaneously.
♦The Data access memory. unit One vector can be read or written.
♦The three port register file. 2 vectors can be read and 1 can be written simultaneously
♦The Multiplier/Accumulator register file. One vector can be read and one can be written simultaneously
All these units can operate simultaneously.

Imagine Processor

genad(A)

 genad(B)

 A=rd4x8(ri)

 B=rd4x8(ri)

1 2 16 17 18 19 20 21 223 4 5 6 7 8 9 10 11 12 13 14 15

F=add(M,B)
 V=output

 V=input

 M=mult(A,V,nuu)

23 24

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.8 The multimedia interrupt handler in the Imagine 2

11.8.1 Programmers view:

The status of a pending Interrupt of level 1 or level 2 is visible with the IP1 and IP2 (Interrupt Pending) bit in the
SEQ_Status register. The servicing interrupt causes the MI1 or MI2 (Interrupt Mask) bit in the sequencer status
register of the Imagine to be set. It prohibits other interrupts of that level and lower priority levels from causing
interrupt calls. These status bits can be set and reset by software.

A '1' for IP1 or IP2 means that the interrupt of that level is detected, acknowledged and that the interrupt vector
belonging to this interrupt is loaded and visible in bits 3..7 of the interrupt table register.

The two bits are mutually exclusive. It is possible that IP2 belonging to the lower priority level 2 interrupt is
temporary overruled by a later arrival of a level 1 interrupt before it gets the chance to be handled (which is just
what we want). The IP2 becomes temporary '0' and bits 3..7 of the interrupts now show the interrupt vector of the
level 1 interrupt. The state of the suppressed level 2 interrupt will be restored at the moment the level 1 interrupt
service call has been made and no other level 1 interrupt has shown up in the meantime.

The Interrupt address is assembled within the interrupt table register. Bits [23:8] of this register contain the base
address of the interrupt table. The lowest eight bits of the address for the interrupt call are depending on the
Interrupt Vector provided by the served interrupt requesting device. Bit 7 is depending on the level of the
interrupt. Bit3..bit6 are replaced with the interrupt vector. Bit 2 depends on the way the interrupt routine is
called: by hardware or by software. The lowest two bits are always zero.

SEQ_Interrupt[7] : Level 1: 'LEV:=0', Level 2: 'LEV:=1'
SEQ_Interrupt[6:3] : Interrupt Vector:
SEQ_Interrupt[2] : Hardware: 'S/H:=0', Software: 'S/H:=1'.

When the sequencer detects a pending interrupt which is not masked and not disabled by functions like Vector
memory operations and Repeat functions, and the current instruction is not a sequencer instruction, then it
executes a call to the interrupt service routine. The Program Counter of the previous instruction is pushed on the
tiny internal Stack and the contents of the Interrupt table register is copied to the Program Counter:

SEQ_PrCounter  Top of Internal Micro Stack, and
SEQ_Interrupt  SEQ_PrCounter

The two instructions PC-1 and PC which were already in the instruction pipeline are disabled and discarded.

The opposite process takes place during a Return from interrupt operation. The return address is popped back
from the tiny Stack, placed into the Program Counter and the Instruction address output register. This return
should reset the MIn control flag of it interrupt priority level which was set by the hardware at the start of the
interrupt service routine call.
Example:

return, flags (unmask_int1);

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.8.2 Multiple interrupts without repeated state saving and restoring:

The level 1 interrupts will typically come from video fifo, line
and raster interrupts for video output and input and DirectX
cache line requests. The interrupt allocation table has
reserved interrupts for two different simultaneous video
formats. Handling of all the interrupts should be possible
within 1.0 to 1.5 microseconds at most. The Vector access
generator has multiple display pointers with auto increment
capabilities to allow interrupt handling times of circa 100
nanoseconds to preserve as much time as possible for
graphics processing instead of interrupt handling. These
interrupts are fast because there is no need for state saving
and restoring.

Most of the other Multi Media I/O interrupts and
communication interrupts need software interference and the
state of the processor needs to be saved at the start and
restored at the end of the interrupt. Multiple interrupts of
different sources can clash and can (once in a while) occur all
at the same time. Repeated state saving and restoring take to
much time and would degrade the real time performance of
the Imagine. However the processor is equipped with a
special mechanism which allows the handling of multiple
interrupts in one go.

The first interrupt is called by the hardware and therefor takes
the hardware entry in the interrupt table. This entry saves all
the state of the processor which is needed by any of the
interrupts. At the end of the routine and before restoring the
state of the processor a test is made if another (level 1)
interrupt is pending and if so a (software) jump is made to the
routine for this particular interrupt. The software entry for the
interrupt is now taken which points to exactly the same
routine but skips the initial state saving instructions.
This goes on until the last pending interrupt has been served
which will restore the processor state and do a return. This
procedure is demonstrated with a 'simulator' run which
demonstrates a link from an interrupt 6 to an interrupt 7.

CONTENTS INTERRUPT TABLE:
.......;
.......;
entry_int5_hardware:jump (int5h);;;;
entry_int5_software: jump (int5s);;;;
entry_int6_hardware:jump (int6h);;;;
entry_int6_software: jump (int6s);;;;
entry_int7_hardware:jump (int7h);;;;
entry_int7_software: jump (int7s);;;;
.......;
.......;
END CONTENTS INTERRUPT TABLE.

Imagine Processor

SIMULATOR RUN:
/* hardware interrupt 6 */

entry_int_6_hardware:
jump (int6h);
.........; /* branch delay 1
.........; /* branch delay 2

int6h: /* save state of processor
.........; /* save state
.........; /* save state
.........; /* save state
.........; /* save state

int6s: /* Actual Interrupt service instr.
.........; /* interrupt 6 code
.........; /* interrupt 6 code
.........; /* interrupt 6 code
.........; /* interrupt 6 code
if (interrupt1), jump_int;
.........; /* branch delay 1
.........; /* branch delay 2

entry_int7_software:
jump (int7s);
.........; /* branch delay 1
.........; /* branch delay 2

int7s: /* Actual Interrupt service instr.
.........; /* interrupt 7 code
.........; /* interrupt 7 code
.........; /* interrupt 7 code
.........; /* interrupt 7 code

if (interrupt1), jump_int;
.........; /* branch delay 1
.........; /* branch delay 2

int7restore: /* no other interrupt
.........; /* restore state.
.........; /* restore state.
.........; /* restore state.
.........; /* restore state.

exint7: return, flags (unmask_int1)
.........; /* branch delay 1
.........; /* branch delay 2

xxxxx: ; /* interrupted instr.

END SIMULATION.

cr55: The Interrupt service Routine Pointer register

20212223 16171819 12131415 891011 4567 0123

Interrupt Table Address
[23:0]

L
E
V

S
/
H

‘00’
Interrupt

 Vector [3:0]

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.9 The status / control register

SEQ_Status
The Status and control Register contain a number of flags which are related to the program flow of the Imagine.
The Interrupt handler provides/uses the largest part, but Floating Point (FPE), the Image Mask generator (IMZ)
and the Vector Access unit (IAB) and the Sequencer (RRS) also provide flags.

The highest 8 bits reflect the status of the hardware, either the interrupts status or the status of some of the
working registers. These bits are read only. The lowest 8 bits are used for control purposes.
These flags can be read and written. The flags command which can be combined with a number of sequencer
instructions can be used to set selected individual flags with either immediate value in the instruction word or
run-time value coming from the corresponding bits in the address register. The instruction contains 8 bits which
can be set to enable the modification of individual flags and 8 bits which can contain the values to be given to the
flags. Alternatively the last 8 bits can come from the lowest 8 bit of the SEQ_Address register. Writing directly
to the SEQ_Status register is not possible.

Read Only Status Flags:
These flags which can be consulted by the sequencer for conditional instructions reflect external and internal
status information. These flags do not need to be saved during interrupts since they reflect non changeable or
indirect (redundant) information (e.g. Image Mask zero).

The Interrupt Pending flags IP1 and IP2 are '1' when an interrupt has arrived externally, has been Acknowledged
and an Interrupt Vector has been received and placed in bits [6:3] of the Interrupt table register.
The bits are reset when the Interrupt Service Routine is called by the hardware or when either the jump_int or
call_int functions are executed by software. The two bits are mutually exclusive because only one vector can be
placed in the Interrupt Table register. An interrupt of the higher priority level 1 can temporary overrule the IP2
flag. The IP2 flag will be temporary '0' and the contents of bits [6:3] of the Interrupt Table register will be
temporary replaced by the level 1 Interrupt vector.
The State of the level 2 interrupt is restored once the level 1 interrupt service routine is called.

IPn: = '1': No Interrupt Waiting.
IPn: = '0': Interrupt Waiting

Interrupts are acknowledged externally but stay pending when:
1 The MIn (Mask Interrupt flag) is set.
2 The IMAGINE executes non interruptable code.

The Image Data Access Busy flag: IAB indicates that the Image Memory Access Generator is Busy. It functions
as an Interrupt Mask to avoid Interrupts in the Middle of an Access.
IAB: = '1': Access Busy.
IAB: = '0': Not Access Busy.

The Image Mask Zero flag: IMZ is high if the entire Image Mask is zero: all 4x64 bits are '0'. This implies that
any write action to DRAM or VRAM is superfluous since no pixel will be written anyway.
IMZ: = '1': Image Mask Zero.
IMZ: = '0': Image Mask Not Zero.

Repeat Register Smaller: RRS
Used for the handling of long vectors (> 64..256). The length-1 of the vector is placed in the Repeat Register.
The RRS flag is true ('1') if the contents of the Repeat register is equal to or smaller than the maximum repeat
count.

Imagine Processor

cr52: Sequencer status / control register

12131415 891011 4567 0123

I
P
2

I
P
1

‘0’
F
P
E

I
A
B

I
M
Z

R
R
S

M
I
2

‘0’
M
I
1

‘000’
U
F
2

U
F
1

U
F
0

Imagine 2 Multi Media Processor 11. The Program Sequencer

Program example:

loop_label
repeat, graph (graph_label);
image_vector(write, quad_byte,image1, ...);
................................;
................................;
graph_label: <repeated dataflow graph>;
................................;
branch (loop_label), ifnot(repeat_smaller);

The Repeat register is automatically decremented with the maximum repeat count each time a conditional
sequencer instruction refers to the RRS bit from the Control/Status register (the register is decremented
independent of the value of the condition, true or false).

Control Flags:
These flags are used in various real time control operations.

The Mask Interrupt flags: MI1 and MI2 are set to '1' when an interrupt service call is effectuated. They inhibit
other interrupt requests from causing an unwanted call to an interrupt service routine. The MI2 flag masks level 2
interrupts while the MI1 flag masks level 1 and level 2 interrupts.

The flags can be set and reset by software.
If MI1 is set then level 1 interrupts are still externally acknowledged but no Interrupt call is made by the
sequencer. The level of such an interrupt is placed in the Interrupt table entry register and the IR1 flag in the
status register is set to '1' so software can observe pending level 1 interrupts. Level 2 interrupts are not externally
acknowledged when MI1 is set.

MIn: = '1': Mask Interrupt.
MIn: = '0': Do Not Mask Interrupt.

UF2, UF1, UF0: User Flags 2, 1 and 0.
All eight control flags can be modified by the (assembly code) programmer. Some of them are designated to
special functions while others are reserved for future purposes and should be left '0'. The three User Flags are left
to the user. They can be used in highly optimised innerloops to select between various options with minimal
overhead (example 1) or they can be used to temporary save the state of other flags and use the saved information
later for a conditional control flow instruction (example 2)

Example 1:

If (user_flag2), branch (module2a);

Example 2:

if (carry), flags (set_user_flag1);
......;
......;
......;
if (user_flag1), subr (carry_detect);

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.10 Direct read and write accesses to the instruction cache

A secondary activity of the sequencer is to handle low level read and write accesses of 64 bit instruction data
directly to the Instruction cache ram. The Data for the instruction memory stems from two 32 bit user registers on
the Imagine which can be freely read and written to: ICA_Low (cr60) and ICA_High (cr61). The Data stored in
these registers can be stored into the instruction cache ram and Instruction cache data can be read back into these
registers. Writing to the instruction cache happens typically after a reset / power up during the booting process
when the caches are not yet enabled. The instruction address on which the access takes place is provided the
SEQ_Address register (cr54). This address can be auto-incremented during the Instruction memory access.

Two Instructions are reserved for down(up)-loading of instruction cache data:

Set_IC_address_...;
IC_access_...;

These two instructions always have to be applied together, one after the other and unconditional.
Set_IC_address... places the Instruction code address which is stored in the address register in the PC and
saves the PC+1 on the internal Stack. The access can either be an Instruction read or an instruction write access:
Set_IC_address_read,
Set_IC_address_write
Using these mnemonics causes the flags IRD and IWR to be set in the instruction word (IC[21], IC[20]).

IC_access_.. outputs the control information which handles the transfer and pops the PC+1 back from the
internal register Stack. The last branch delay instruction is disabled because this instruction was loaded with the
use of an irrelevant instruction address.

IC_access can be accompanied with ++.
This causes the IAI flag to be set in the instruction word (IC[22]). IC_access++ copies the incremented PC
used for the read/write operation back to the address register where it can be used for the next transfer options:

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

Chapter

12. THE MASK GENERATOR

The Image Mask Generator
contains a very powerful set of units to deal with a very wide range of graphics
primitives. A mask can define the outlines of characters, polygons, arbitrary shapes,
window borders etc. A drawing operation will very often need a combination of
several mask functions. A simple example shows the amount of code needed to draw
a single pixel, e.g.: A Textured triangle which is rendered in OpenGL: A pixel may
be drawn only if: It is inside a visible window. If it is inside the area confined by the
triangle. If it is in front of previously drawn pixels. If it is between the front and
back clipping planes. If the Polygon Stipple pattern for this pixel is '1'. If the Alpha
value of the texture is not to low, et cetera . All These conditional operations
consume large amounts of instructions, and thus cycles, on standard processors.

The Imagine however can process up to four pixels per clock cycle!
The powerful mask generator plays a central role in this achievement in co-
operation with the HISC principles which are the base of the architecture.

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

Imagine Processor

Spanline 0 Start/ End

Spanline 1 Start/ End

Spanline 2 Start/ End

Spanline 3 Start/ End

Range mask 0

Range mask 1

Range mask 2

Range mask 3

Window X min /max

Window Y min /max

Spanline 0 start & end

Spanline 1 start & end

Spanline 2 start & end

Spanline 3 start & end

Spanline Delta Start

Spanline Delta End

Spanline Y min / max

Spanline Address

Spanline Length (-1)

Range mask 0

Range mask 1

Range mask 2

Range mask 3

Complex mask 0

Complex mask 1

Complex mask 2

Complex mask 3

Complex mask 0

Complex mask 1

Complex mask 2

Complex mask 3

The Control Register
Read / write Bus

Polygon Start entry

Polygon End entry

Polygon Coord entry

Window mask Spanline mask Complex mask Range mask

Mask assembly unit

Complex mask 0

Complex mask 1

Complex mask 2

Complex mask 3

Opaque mask 0

Opaque mask 1

Opaque mask 2

Opaque mask 3

Opaque mask

Complex mask 0

Complex mask 1

Complex mask 2

Complex mask 3

Transparent mask 0

Transparent mask 1

Transparent mask 2

Transparent mask 3

Transp. mask

To the Vector Access Unit

Overview of the Mask Generator

Range

ALU

Depth

VIO

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.1 introduction

12.1.1 The image masks
The Image mask is applied used during write operations of the vector access unit. It corresponds to up to four
spanlines of up to 64 pixels. The mask is arranged in eight 32 bit registers with each bit representing a individual
pixel. There are several masks like this in the mask generator, two of them are result masks which are connected
to the vector access unit. The transparent mask bits are used as write enable for the pixels which are written while
the opaque mask bits can be expanded to the 32 bit databus.

12.1.2 The vector access unit
The capability possibility of this unit to access external memory in a vector mode ensures a high basic speed from
and to Images. One input word and one output word can be transferred per clock cycle. Internal fifos will read
the entire input vector first and then write the buffered output vector. A 200 MHz Imagine 2 with 100 MHz
external SGRAM reaches a 1.6 Gigabyte bandwidth for vector I/O accesses. Pixels within stored images can be
read or written in the form of vectors. These vectors can have sizes varying from 1 to 64 words. A vector covers
a horizontal strip in an image on the screen. The first word is at the left-most position of the strip, while the last
word is at the right-most side. Each word in a vector can contain one or several pixels. A 32 bit for example can
contain four 8 bit pixels which are on different vertical positions (line 0 ... line 3). The pixel with byte number 0,
which contains the eight least significant bits, is at the top position while the pixel with byte number 3 is at the
bottom position. This arrangement is consistent with the industry norms where the x-axis is increasing from left
to right while the y-axis is increasing from top to bottom. A very important feature of the Imagine is that is can
access these 2-dimensional vectors or stripes with the starting point at any X,Y location in the image. This unique
feature allows a straight forward implementation of a very wide range of graphics and image processing func-
tions.

12.1.3 The usage of the image mask
A strip drawn by a two-dimensional vector has a rectangular nature and only few graphics primitives are
rectangular. Characters, Polygons, Circles or arbitrary shaped objects cannot efficiently be drawn with rectangles.
In many cases a graphical primitive can obscure other ones partly or wholly. A classical example are the 3D
textured triangles which overlap the triangles behind them. A character can be drawn with its background or its
foreground set to 'transparent' so that it shows the image below it. Graphics standards like Microsoft's Direct
Draw define transparent colours, pixels which have a transparent colour are not written when the image is copied
(source transparency) or can be overwritten by another image (destination transparency).

12.1.4 The image mask and its construction
All previously mentioned drawing operations can be realised by introducing a (2-dimensional) Image mask.
Objects and graphics primitives are rendered with the aid of this mask which is stored in up to eight 32 bit
registers. The actual decision of pixels is
written or not to the destination is hold in the Image mask registers. The registers contain mask bits for a total of
64 times 4 pixels. The mask bits represent a Boolean decision related to many elementary situations listed below.
In practice the final image mask used to render a graphics primitive will be the result of several of these Boolean
decisions combined together.

♦ The pixel is falling inside OR outside the area occupied by a polygon (which may be self intersecting)
♦ The pixel is within a certain colour range OR falls outside the range.
♦ The alpha value of a pixel is within a range OR falls outside the range.
♦ The Z buffer value is before the closest pixel and behind the nearest visible point OR it is invisible.
♦ The pixel belongs to the body of a character OR to the background of the character.
♦ The pixel is within the window OR it falls outside the window.
♦ The pixel is inside OR outside a scanline defined object.

Imagine Processor

64 long

Line 0
Line 1
Line 2
Line 3

Imagine 2 Multi Media Processor 12. The Image Mask Generator

Imagine Processor

Window X min /max

Window Y min /max

Spanline 0 Start/ End

Spanline 1 Start/ End

Spanline 2 Start/ End

Spanline 3 Start/ End

Spanline Delta Start Spanline Delta End

Spanline Y min / max

Spanline Address

Spanline Length (-1)

Overlap
triangle

Range mask 0

Range mask 1

Range mask 2

Range mask 3

Complex mask 0

Complex mask 1

Complex mask 2

Complex mask 3

The Range Mask contains the result of the
Depht buffer test (overlapping triangle)

The Complex Mask is used in this example to
hold the Polygon Stipple pattern

The Spanline registers define
the outlines of the triangle

The Window is defined by
the Window registers

Example how the mask generator can be used to
draw Depth buffered Stippled Triangles

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.2 The image mask control registers

12.2.1 The mask generation control registers:

MSK_Control1, MSK_Control2
These registers determine the operation of the Image Mask generator. They can be written as control registers or
alternatively via Image Mask Generator Instructions which define the contents with the lower 32 bit of the
Instruction code.

12.2.2 The Window mask control registers

MSK_Window_X and MSK_Window_Y
These two registers contain the definition of the drawing window. They can be used to disable drawing outside a
particular rectangle. MSK_Window_X contains the minimum X co-ordinate in its highest 16 bits and the
maximum X co-ordinate (-1) in the least significant 16 bits. MSK_Window_Y does the same for the Y co-
ordinates. The 16 bit values are interpreted as signed integers. Negative X and Y co-ordinates do exist and are
handled correctly when compared with the contents of these registers. The Window registers should not contain
negative values. The valid co-ordinate range is defined from -32768,-32768 to +32767,+32767. The minimum
value contains the first pixel belonging to the window while the maximum points to the first pixel outside the
window.

12.2.3 The Spanline mask control registers

MSK_SpanStart, MSK_SpanEnd, MSK_SpanLines,
Two sets of four spanline registers contain the 32 bit values in signed 16.16 fixed point which represent the
startpoints and endpoints for four horizontal spanlines lines. MSK_SpanStart, MSK_SpanEnd provide post
incremental access to these registers which are indexed by the SPAN_RW_PTR[1:0] field in control register
MSK_Control1 [5:4] The control register MSK_SpanLines reads the 16 bit integer parts of both Start and End
value when read and writes the same fields when written. (The fractional parts are set to zero)

MSK_Spanline_Y
This register defines a vertical window for spanline objects . MSK_Spanline_Y contains the minimum Y co-
ordinate in its highest 16 bits and the maximum Y co-ordinate (-1) in the least significant 16 bits. This vertical
window is combined with the spanline start and end points to define a spanline object

MSK_DeltaStart, MSK_DeltaEnd
define 32 bit values in signed 16.16 fixed point format which can be added to 1, 2 or all 4 spanline Start registers
and corresponding spanline End registers. The instruction code spanlines++ will activate this function which
takes as many cycles as there are spanline Start / End register pairs which are incremented. The registers to be
incremented are selected with the MASK_MOD_MAP[2:0] field in control register MSK_Control1 [22:20] which
can select the four individual lines, line pair 0,1 or pair 2,3 or all four lines at once

MSK_SpanLength, MSK_SpanAddr
These two read only registers contain calculated values which can be copied directly into the SEQ_Repeat
control register (MSK_SpanLength) and bits [15:0] of the VAU_Image1 control register (MSK_SpanAddr). The
first value represents the difference between the lowest spanline Start co-ordinate and the highest spanline End
co-ordinate of all the spanlines which are enabled by the MASK_MOD_MAP[2:0] field in control register
MSK_Control1 [22:20] This number is equal to the repeat count needed to write 1, 2 or 4 spanlines with a single
vector. The second value is equal to the lowest spanline Start co-ordinate and thus represents the start X co-
ordinate of the vector mentioned above. Remark: the lowest spanline Start co-ordinate and the highest spanline
End co-ordinate are selected by looking at the sign of the Start slope and the End slope which are defined by
MSK_DeltaStart, MSK_DeltaEnd This method is designed for (and thus limited to) triangles for 3D graphics
applications

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

Imagine Processor

cr96: MSK_PolyCoord Polygon Start & End co-ordinates

cr95: MSK_PolyEnd Polygon End Co-ordinate entry

cr94: MSK_PolyStart Polygon Start Co-ordinate entry

cr93: MSK_Spanline_Y Spanline Y minimum / maximum

cr91: MSK_Window_Y Window Y minimum / maximum

cr88: MSK_Control1 Mask generator control register 1
MASK ENABLES

[3:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

MASK
SIZE
[1:0]

‘00000000' MASKMOD
MAP
[2:0]

I
M
E

MASK
LWPTR

[1:0] WM SM RM CM

‘00' ‘00' ‘00'CPLX
ASM
[1:0]

MASK
RW-PTR

[1:0]

SPAN
RW-PTR

[1:0]

cr89: MSK_Control2 Mask generator control register 2
RANGE

INPUT MAP
[2:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

‘00000000' RANGE INPUT
POINTER

[5:0]

RANGE
OP

[1:0]

‘0'RANGE
SEL
[1:0]

LS
[1:0]

SF
[1:0]

CPLX
ALPHA

[1:0]

‘0'R
I
O

‘00'

cr90: MSK_Window_X Window X minimum / maximum

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

WINDOW X CO-ORDINATE MINIMUM VALUE
 [15:0]

WINDOW X CO-ORDINATE MAXIMUM VALUE
 [15:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

WINDOW Y CO-ORDINATE MINIMUM VALUE
 [15:0]

WINDOW Y CO-ORDINATE MAXIMUM VALUE
 [15:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

SPANLINE Y CO-ORDINATE MINIMUM VALUE
 [15:0]

SPANLINE Y CO-ORDINATE MAXIMUM VALUE
 [15:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

POLYGON START CO-ORDINATE (16.16 FIXED POINT)
 [31:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

POLYGON END CO-ORDINATE (16.16 FIXED POINT)
 [31:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

POLYGON START CO-ORDINATE (16 BIT FIXED POINT)
 [15:0]

POLYGON END CO-ORDINATE (16 BIT FIXED POINT)
 [15:0]

cr99: MSK_SpanLines Spanline Start & End co-ordinates (4 registers)

cr98: MSK_SpanEnd Spanline End Co-ordinates (4 registers)

cr97: MSK_SpanStart Spanline Start Co-ordinates (4 registers)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

SPANLINE START CO-ORDINATE (16.16 FIXED POINT)
 [31:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

SPANLINE END CO-ORDINATE (16.16 FIXED POINT)
 [31:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

SPANLINE START CO-ORDINATE (16 BIT FIXED POINT)
 [15:0]

SPANLINE END CO-ORDINATE (16 BIT FIXED POINT)
 [15:0]

Imagine 2 Multi Media Processor 12. The Image Mask Generator

Imagine Processor

cr107: MSK_Opaque Opaque Mask registers (4 x 2 registers)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

OPAQUE MASK REGISTERS
4 times [63:0]

60616263 56575859 52535455 48495051 44454647 40414243 36373839 32333435

cr106: MSK_Transp Transparent Mask registers (4 x 2 registers)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

60616263 56575859 52535455 48495051 44454647 40414243 36373839 32333435

TRANSPARENT MASK REGISTERS
4 times [63:0]

cr105: MSK_RangeClip Range Mask registers (4 x 2 registers)

cr103: MSK_ SpanAddr Spanline Vector X Co-ordinate

cr102: MSK_SpanLength Spanline Vector Length (-1)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

'0000 0000 0000 0000' SPANLINE VECTOR LENGTH (-1) +32383..-32384
 [15:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

SPANLINE VECTOR SPANLINE VECTOR X CO-ORDINATE
[15:0]

 CO-ORDINATE
[15:0]

SPANLINE VECTOR X CO-ORDINATE
[15:0]

cr101: MSK_DeltaEnd Slope of the Spanline End Co-ordinates

cr100: MSK_DeltaStart Slope of the Spanline Start Co-ordinates

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

SLOPE OF THE SPANLINE START CO-ORDINATES (16.16 FIXED POINT)
 [31:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

SLOPE OF THE SPANLINE END CO-ORDINATES (16.16 FIXED POINT)
 [31:0]

cr104: MSK_CplxAlpha Complex Mask registers (4 x 2 registers)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

COMPLEX MASK REGISTERS
4 times [63:0]

60616263 56575859 52535455 48495051 44454647 40414243 36373839 32333435

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

RANGE MASK REGISTERS
4 times [63:0]

60616263 56575859 52535455 48495051 44454647 40414243 36373839 32333435

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.2.4 The Range mask control registers

MSK_RangeClip
The four times two range mask registers contain Boolean data for a rectangular block of 64x4 pixels which can
be used for the construction of the transparent and opaque image mask registers. This mask can gather status
information of the Range Unit in the Multiplier / Accumulator, status information from the ALU, results from the
Depth compare test of the 3D graphics pipeline or Alpha test information from the Vector I/O unit. The eight
registers are accessible via control register MSK_RangeClip. If the mask is defined as 64 bit then the incremental
order is: maskline 0 bits [31:0], then bits [63:32], then maskline 1 bits [31:0], then bits [63:32] et cetera and
wrapping back to the first register at the end. The maskline number is given by the MASK_RW_PNT[1:0] field in
control register MSK_Control1 [1:0] and the bits are selected by the MASK_LW_PTR field in MSK_Control1
[16]. If the mask is defined as 32 bit then the MASK_LW_PTR field is ignored

12.2.5 The Complex mask control registers

MSK_CplxAlpha
These registers contain typically 64 4-bit values which can be used in more complex mask calculations.
Alternatively it contains Boolean data for a rectangular block of 64x4 pixels similar to the range mask registers.
In its native operation mode it works with 4 bit
values which can be sums of line crossings for complex polygons according to either the odd/even rule or the
winding rule. The eight registers are accessible via control register MSK_CplxAlpha. If the mask is defined as 64
bit then the incremental order is: maskline 0 bits [31:0], then bits [63:32], then maskline 1 bits [31:0], then bits
[63:32] et cetera and wrapping back to the first register at the end. The maskline number is given by the
MASK_RW_PNT[1:0] field in control register MSK_Control1 [1:0] and the bits are selected by the
MASK_LW_PTR field in MSK_Control1 [16]. If the mask is defined as 32 bit then the MASK_LW_PTR field is
ignored

MSK_PolyStart, MSK_PolyEnd, MSK_PolyCoord
These write only registers serve as entry points for calculated coordinate data and are used to calculate the area
covered by complex polygons. The co-ordinates are translated to 64 bit coverage masks which are send to the
Complex Mask generator. The Polygon Start coordinate and Polygon End coordinate entries (MSK_PolyStart,
MSK_PolyEnd) expect significant coordinate data in the 16 most significant bits (signed integer). The lowest 16
bits are considered as the fractional coordinate parts are discarded. Alternatively MSK_PolyCoord can be used to
enter coordinate data. This entry expects both a Start and an End coordinate entry in compacted form. The 16
most significant bits should contain the Start point. These registers can not be read back.

12.2.6 The Result mask registers

MSK_Transp: The Transparent Image Mask registers
The transparent Image Mask contains the calculated Image Mask result for a rectangular block of 4x64 pixels.
This Mask can be used for write operations in which case the bits can inhibit writing of individual pixels. The
bits are sent 4 at a time to the Vector Access Unit which write pixel vectors to external memory.

MSK_Opaque: The Opaque Image Mask registers
The opaque Image Mask contains the calculated Image Mask result for a rectangular block of 4x64 pixels. This
Mask can be used for write operations in which case the bits can select the 32 bit colour/mask data which is
written to external memory via the Vector Access unit.

The two sets of eight registers are accessible via control registers MSK_Transp and MSK_Opaque. If the mask is
defined as 64 bit then the incremental order is: maskline 0 bits [31:0], then bits [63:32], then maskline 1 bits
[31:0], then bits [63:32] et cetera and wrapping back to the first register at the end. The maskline number is
given by the MASK_RW_PNT[1:0] field in control register MSK_Control1 [1:0] and the bits are selected by the
MASK_LW_PTR field in MSK_Control1 [16]. If the mask is defined as 32 bit then the MASK_LW_PTR field is
ignored

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.3 The function specific mask generators

The final image mask is constructed by combining four major function specific mask generators:

♦ The Window Mask
♦ The Spanline Mask
♦ The Range Mask
♦ The Complex Mask

All these units calculate various masks in parallel, which are then combined together by the mask assembly unit.
If any of the input registers for the various mask units is changed this will result in an immediate change of the
image mask. However the image mask registers which are used for the rendering itself will only take over the
new Mask when it is instructed to do so. This will typically be after the end of a vector draw operation and before
the start on the next one which will use the image mask registers. This means that you can construct the new
Image mask while the previous one is used in the drawing operation.

12.3.1 The Window mask generator

Window systems in general restrict the locations where a program may render its graphics primitives to
rectangles or regions consisting of a list of rectangles. The window mask generator generates a mask with bits set
to 1 for pixels inside the window.The mask can then later be used to enable or disable writing. The term
scissoring is used if this technique is used to simplify 'software only' clipping.

The simplest polygon, a trapezium (two trapezia make
one arbitrary triangle) can intersect in 48 different
ways with a rectangular window. All these cases have
to be taken into account and calculations have to be
done with subpixel precision to avoid artefacts. These
extra calculations give a lot of overhead in the case of
smaller polygons. The window mask generator allows
to define a rectangular area to which all rendering
primitives are clipped by hardware. The software
renders all pixels of the primitive anyway but the
actual writing into Image memory is inhibited by the
hardware. Handling all polygons by scissoring can
have counter effects (imagine a triangle with a surface
100 times that of your visible window) You can use
the
following practical method: Do a simple test to give an
indication of the size of the polygon. If the size is big
then calculating intersection points with the window
rectangle does not represent a significant overhead. If
it is small, do a test if the polygon is either totally
outside the window or partly or wholly inside the
window. If the latter is the case you can render it
directly with the scissoring technique.

MSK_Window_X: bits [31:16]: X minimum / bits [15:0]: X maximum coordinate. (16 bit signed)
MSK_Window_Y: bits [31:16]: Y minimum / bits [15:0]: Y maximum coordinate. (16 bit signed)

The minimum co-ordinates point to the first location which is inside the window while the maximum co-ordinates
point to the first location outside the window. The window co-ordinates are compared to the Reference X and Y
co-ordinates found in control register VAU_Image1: Image address pointer 1. This register contains the top left
position of the vector to be drawn or read from the image memory. If the Window Mask generator is enabled,
then the pixels outside the window are masked during a vector write operation. The end result needed for the
construction of the Transparent and/or Opaque mask needs 4 x 64 bits representing 4 lines of 64 pixels. The 256
bit mask can be used in the Mask assembly unit in which it is combined with the result from the other mask
generators.

Imagine Processor

MSK_Window_X

MSK_Window_Y

VAU_Image1 [15:0]

Vector to be drawn

Window

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.3.2 The Spanline mask generator

The purpose of Spanlines: Many basic graphics primitives including convex polygons, can be defined with a
Spanline representation. A spanline is a horizontal line with a start point and an end point. A spanline shape
defines a list of start and end points of horizontal lines on top of each other.
An arbitrary shape can be represented
with a single spanline shape if no
horizontal line contains disjunct areas. If
this is the case the shape can be
represented by a combination of several
spanline shapes. A pixel belongs to a
spanline by definition when it lays on
top of or after the start point and before
the scan line's end point. The Image
Mask generation unit contains two sets
of 4 registers which each hold these start
and end points for the 4 lines of the
Image mask. The Spanline Mask
generator combines these co-ordinates
in combination with the Image address
pointer (which points to the four 64
pixel lines in Image memory which are
about to be updated and its special
purpose hardware which of these 256
pixels fall inside the defined spanline
shape. All the programmer has to do is
to supply the co-ordinates, and the
hardware does the rest!
 The Image Mask is automatically updated for the next 4x64 pixels if you update Image Address pointer 1:
control register VAU_Image1. This means a significant reduction of overhead in the time critical inner loop of the
algorithm. An update of the X,Y reference address which points to the X,Y location from where data will be
written causes an immediate update of both the Window Mask and the Span Mask.

Defining the Spans: The Span Mask generator has two sets of four registers, one set for each horizontal line.
Each line has a 32 bit start point register and a 32 bit end point register, both expect signed 16.16 fixed point
values. The start point is the first point which is included in the span and is located at the left side. The end point
is the first point which is excluded from the span and is located at the right side. A top and bottom limit can be
dined with the MSK_Spanline_Y control register which contains the minimum and maximum values.

Accessing the Spanline registers: The way to write to the Spanline register is to use the MSK_SpanStart and
MSK_SpanEnd control registers together with the SPAN_RW_PTR[1:0] index in MSK_Control1[5:4]. The index
select any of the the four spanlines and is auto-incremented after a read or a write. The control registers expect a
32 bit X co-ordinate in signed 16.16 format. (The lower 16 bit are fractional). The control registers
MSK_SpanLines can read the 16 significant bit of both SpanStart and SpanEnd simultaneously or write the same
fields in a single write access. (zeroes file the fractional parts).

Incrementing the Spanline registers: The four SpanStart and SpanEnd registers can be incremented by the
Delta values stored in the MSK_DeltaStart and MSK_DeltaEnd control registers. One or more of the four
spanlines can be incremented depending of the contents of the MASK_MOD_MAP[2:0] field in
MSK_Control1[22:20]. The operations takes the same number of cycles as the number of spanlines which is
incremented.

Obtaining information for Vector processing: Two read only registers provide information for Vector
processing: MSK_SpanAddr contains the Start X co-ordinate of a vector which contains one, two or four scan-
lines. This value can be moved to VAU_Image1. Control register MSAK_SpanLength contains the value which
can be placed in the SEQ_Repeat register and which defines the length of the vector from the start of the left
most Spanline start co-ordinate to the end of the right-most Spanline end co-ordinate. A "Bressenham Delta is
send to the 3D graphics unit to select between the two Delta value used for the Bressenham interpolation by this
unit The MASK_MOD_MAP[2:0] field defines the Spanlines which are used for all these functions.

Imagine Processor

MSK_SpanEnd [1]

MSK_SpanEnd [2]

MSK_SpanEnd [3]

MSK_SpanEnd [0]MSK_SpanStart [0]

MSK_SpanStart [1]

MSK_SpanStart [2]

MSK_SpanStart [3]

MSK_DeltaStart MSK_DeltaEnd

MSK_SpanLine_Y

MSK_SpanAddr

MSK_SpanLength

The Spanline registers define
the outlines of the triangle

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.3.3 The Range mask generator

In the cases as described so far, the mask was derived from geometric information. Co-ordinates are translated to
individual bits in the mask registers. These masks then determine the shape of a graphics primitive. Another
important class of masks is represented by the Range mask generator. Here the contents of the mask is not deter-
mined by geometric information but by some properties of the contents of the individual pixel. The most simple
case is a character bitmap font. The bits in the bitmap control if the pixel is written or not, or if it is written in
either the foreground or the background colour.

The Range Mask generator has the ability to assemble the boolean results flags from vector operations into the
Range mask. Multiple results can be Or-ed or AND-ed together. The results from four different units can be
selected. The RANGE_SEL[1:0] field in MSK_Control2[9:8] determines which of the four is used.

1) The status flags from the Multiplier/ Accumulator (4x8, 2x16 or 32 bit)
 Within the multiplier / accumulator you can select the following options:
 Inside, Higher, Lower, Wrong, not Inside, not Higher, not Lower, not Wrong

2) The status flags from the ALU
 Within the ALU you can select the following options: (4x8, 2x16 or 32 bit)
 Zero, Minus, Carry, Sgncmp, not Zero, not Minus, not Carry, not Sgncmp

3) The results from the 3D graphics Depth buffer compares (2x16 signed/unsigned, 32 signed/unsigned/float)
 Within the Depth Compare unit you can select the following 'Open GL' options for the Depth Test:
 Never, Less, Equal, Less/Equal, Greater, not Equal, Greater/Equal, Always
 (A parallel options is a compare with the front clipping plane)

4) The result from the Alpha test in the VIO (32 bit aRGB values)
 Within the VIO unit you can select the following 'Open GL' options for the Alpha Test:
 Never, Less, Equal, Less/Equal, Greater, not Equal, Greater/Equal, Always
 (Parallel options are a test on Alpha not Zero and a compare of Alpha with a dither value)

The four bits from the Range Clip unit in the Imagine data processor can be written to a location in the Image
Mask register. The second Image mask control register contains a 6 bit counter: RANGE_INPUT_POINTER[5:0]
which can be set by writing to the control register or using an image mask instruction to modify the control
register. see MSK_Control2[23:18]. The value contained in the counter points to the location where the four
comparison result bits will be written. Valid values are in the range from 0 to 63. The pointer should start at 0
according to standard conventions which define the most significant bit in a word as the left-most pixel on the
screen. The counter is post-incremented after the bits are inserted. The fields RANGE_OP[1:0],
RANGE_INPUT_MAP[2:0] and RIO determine which operations are performed during the construction of the
Range mask. These fields can be found in MSK_Control2[17:10]

Imagine Processor

Line 0
Line 1
Line 2
Line 3

Flag
Input

Selector

Range Unit
A L U
Depth Unit
V I O

Flag
Input

Function

Moving Window
Bit 0 Bit 63

The Range mask Generator

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.3.4 The Complex mask generator.

This unit can be used to generate pixel masks for complex, self intersecting polygons These polygons can for
instance represent scaleable Latin or Japanese characters, It is more complicated to determine which pixels fall
inside and which fall outside the body of the polygon. Two different definitions exist to specify the inside area of
a complex polygon: The Odd/Even rule and the Winding rule. The definitions for these two are as follows:

Odd/Even rule: A point belongs to the polygon if an infinitely long half line in any arbitrary direction with
its starting point in the tested crosses an odd number of edges.

Winding rule: A point belongs to the polygon if an infinitely long half line in arbitrary direction with its
starting point in the tested point crosses an unequal number of left winding and right winding edges.

 Odd/Even rule Winding rule

All graphics standards can select between the two rules demonstrated above.

The Complex Polygon Mask generator resolves the membership question for 64 pixels on a horizontal line. The
programmer needs to provide the Generator with the crossing points of the edges and the infinite horizontal line
which contains the set of pixels under test. An entire 64 pixel line with 12 crossings can take as few as 6 cycles
to resolve.

Both the Odd/Even rule and Winding rule allow an infinite number of crossing points. The Winding rule
evaluation has the practical limitation that the sum of left and the sum of right winding edges may not differ more
than 15, which will not be the case in any practical situation.

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

The image mask generator instructions

An Image Mask Instruction can be a combination of up to 8 instructions separated by commas. The individual
instructions correspond with the 8 fields in the Instruction word bit [59:49]. The instructions of the Image Mask
Generator define Mask Assembly Instructions for the 2 result masks: Transparent and Opaque masks, Set / Reset
instructions for Function Specific Masks, information for the 2 Image Mask control registers, et cetera.

SET_CTRL: Set contents of Control Registers:

Control register information can be written directly into
one of the two control registers of the Image Mask
generator. The definition of the parameters which can be
supplied with these functions is given in the paragraphs
which describe the mnemonics of the control registers
itself. The control registers are modified in the same cycle
in which the instruction is executed.

Imagine Processor

INSTRUCTION WORD: New control register contents for MSK_Control1
MASK ENABLES

[3:0]

INSTRUCTION WORD

60616263 56575859 52535455 5051

I
R
M

‘1101' CA
MASK
[1:0]

SET_
CTRL
[1:0]

I
S
L

I
M
M

T
I

M

O
I

M

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

MASK
SIZE
[1:0]

‘00000000' MASKMOD
MAP
[2:0]

RC
MASK
[1:0]

49

I
M
E

MASK
LWPTR

[1:0] WM SM RM CM

‘00' ‘00' ‘00'CPLX
ASM
[1:0]

MASK
RW-PTR

[1:0]

SPAN
RW-PTR

[1:0]

INSTRUCTION WORD: New control register contents for MSK_Control2
RANGE

INPUT MAP
[2:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

‘00000000' RANGE INPUT
POINTER

[5:0]

RANGE
OP

[1:0]

‘0'RANGE
SEL
[1:0]

LINE
SIZE
[1:0]

SPAN
FUNCT

[1:0]

CPLX
ALPHA

[1:0]

‘0'R
I
O

‘00'

SET_CTRL[1:0] = IC[59:58]

00: no op (default)
01: mask_control1 (option list)
10: mask_control2 (option list)

List of assembly mnemonics:

IC[59:58]: mask_control1(option list) or mask_control2(option list)
IC[57:56]: reset_complex_alpha_mask or set_complex_alpha_mask or invert_complex_alpha_mask
IC[55:54]: reset_range_clip_mask or set_range_clip_mask or invert_range_clip_mask
IC[53]:mask_modification_map++
IC[52]:range_input_map++
IC[51]:make_transparent_mask
IC[50]:make_opaque_mask
IC[49:48]: spanlines++

48

I
S
P

Imagine 2 Multi Media Processor 12. The Image Mask Generator

RC MASK and CA MASK

These fields enable some simple operations to be
performed on the Range Clip Mask and the Complex/
Alpha Mask The Range/Clip Mask and the
Complex/Alpha mask can be initialised to 0 or 1 or
alternatively they can be inverted (all 128 bits at once).
This action takes place at the same cycle in which the
instruction is issued.

IRM and IMM: Post Increment Fields

The control registers contain two fields which can be
incremented with the instruction word: The Range Input
Mapping and the Mask modification mapping. The
increment takes place one cycle after the instruction is
issued. IRM post increments the value of the
RangeInMap field (reg #09, bits 11..13) in the next cycle.
IMM post increments the value of the Mask Modification
Mapping field (reg #08, bits 20..22) in the next cycle.

The post-increment operations do not influence all the bits
in the field:

001: Do not modify any bit
01x: Modify only bit x
1xx: Modify only bits xx

TIM and OIM Assemble the result masks

Both the Final Masks (the Transparent and Opaque mask)
can be assembled by the a Mask instruction. They are
assembled one cycle after the instruction is issued. This
means that a single instruction can set a control register,
initialise or invert any of the two input masks and then
generate the mask with the newly provided data. TIM
assembles the Transparent Image Mask in the next cycle.
OIM assembles the Opaque Image Mask in the next cycle.

ISL (post) Increment the Span lines

The four Spanlines each have a Start X co-ordinate and an
End X co-ordinate. These values are defined as 32 bit
fixed point values with the binary point in the middle
(16.16) The increment function controlled with the ISL
flag will add a Start Delta value and an End Delta value to
all Spanlines which are selected with the MASK
Modification MAP (MSK_Control1[22:20]). This
post-operation does not influence the assembly of the
Transparent or the Opaque mask caused by the current
instruction

Imagine Processor

RC_MASK[1:0] = IC[55:54]

00: no op (default)
001 reset_range_clip_mask
10 set_range_clip_mask
11 invert_range_clip_mask

CA_MASK[1:0] = IC[57:56]

00: no op (default)
01: reset_complex_alpha_mask
10: set_range_clip_mask
11: invert_complex_alpha_mask

IMM = IC[53]

0: no op (default)
1: mask_modification_map++

IRM = IC[52]

0: no op (default)
1: range_input_map++

Imagine 2 Multi Media Processor 12. The Image Mask Generator
 Detailed description of Image Mask control register 1. (cr88)

The instruction mask_control1() needs a number of parameter, any of the following parameters may be given,
separated by commas, when this instruction is used. They parameters are optionally. The default value is used
when a parameter is omitted.

Some mask register addresses have multiple registers for
multiple spanlines. The masks for different lines are
accessed with the use of two entry pointers:

Maskline_pointer Mask Read/Write Pointer
This field is used as a selector when any of the four mask
register sets. are accessed. (Range mask, Complex mask,
Transparent mask, Opaque mask). The field represents a
two bit auto increment pointer which is used as a reference
for read and write accesses to the Complex registers, The
Range registers, the Transparent image mask registers and
the Opaque image mask registers. The pointer is post-
incremented after an access to any of these registers.

Spanline_pointer Span line Read/Write Pointer
This field is used as a selector when the four spanline
registers are accessed. The field represents a two bit auto
increment pointer which is used during read and write
actions of the Spanline Coordinate registers. The pointer is
post-incremented after a spanline register access or a
Polygon End Coordinate Entry access if the Entry function
(cr41) has defined the Entry points as inputs for the
Spanline register.

Imagine Processor

cr88: MSK_Control1
MASK ENABLES

[3:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

MASK
SIZE
[1:0]

‘00000000' MASKMOD
MAP
[2:0]

I
M
E

MASK
LWPTR

[1:0] WM SM RM CM

‘00' ‘00' ‘00'CPLX
ASM
[1:0]

MASK
RW-PTR

[1:0]

SPAN
RW-PTR

[1:0]

List of assembly mnemonics for MSK_Control1:

cr88 [31]: little_endian (default) or big_endian

cr88 [22:20]: make_lines_0123 or
make_lines_01 or make_lines_23 or
make_line_0 or make_line_1 or make_line_2 or make_line_3

cr88 [19:18]: masksize_64 (default) or masksize_32
cr88[15]: window
cr88[14]: spanline
cr88[13]: range or clip
cr88[12]: complex or alpha
cr88 [9:8]: straight (default) or odd_even or winding
cr88 [5:4]: spanline(0) (default) or spanline(1) or spanline(2) or spanline(3)

cr88 [1:0]: maskline(0) (default) or maskline(1) or maskline(2) or maskline(3)
 (cr88 [16]==0) maskline(0, 31:0) or maskline(1, 31:0) or maskline(2, 31:0) or maskline(3, 31:0)
 (cr88 [16]==1) maskline(0, 63:32) or maskline(1, 63:32) or maskline(2, 63:32) or maskline(3, 63:32)

SPAN_RW_PTR () = MSK_Control1[5:4]

00 spanline(0) access line 0
01 spanline(1) access line 1
10 spanline(2) access line 2
11 spanline(3) access line 3

MASK_RW_PTR() = MSK_Control1[1:0]
MASK_LW_PTR() = MSK_Control1[16]

00 0 maskline(0) line 0 bits[31:0]
01 0 maskline(1) line 1 bits[31:0]
10 0 maskline(2) line 2 bits[31:0]
11 0 maskline(3) line 3 bits[31:0]

00 0 maskline(0, 31:0) line 0 bits[31:0]
01 0 maskline(1, 31:0) line 1 bits[31:0]
10 0 maskline(2, 31:0) line 2 bits[31:0]
11 0 maskline(3, 31:0) line 3 bits[31:0]

00 1 maskline(0, 63:32) line 0 bits[63:32]
01 1 maskline(1, 63:32) line 1 bits[63:32]
10 1 maskline(2, 63:32) line 2 bits[63:32]
11 1 maskline(3, 63:32) line 3 bits[63:32]

Imagine 2 Multi Media Processor 12. The Image Mask Generator

The Final Image Mask Assembly functions:

The final Image Mask which is represented by the
Transparent Image Mask and/or the Opaque Image Mask
is assembled from four function specific Mask assembly
Units. The Image Mask assembly function defines which
of these units are used and how they are used: Four bits,
one for each of the four function specific units defines if
the particular unit is used or not.

WM: Window Mask Enable.
SM: Span Line Mask Enable.
RM: Range Mask Enable.
CM: Complex Mask Enable.

'1': Use Mask, '0' do not use Mask.

Mnemonics
A mask is selected by adding its mnemonic to the
parameter list of the function mask_control1(). The
mask is deselected if it is omitted from the parameter list.

Complex Mask registers Usage

This parameter defines the use of the contents of the
complex/ alpha mask for the assembly of the Transparent
and/or Opaque masks. (The default value is 00) The
Complex Mask register contents can undergo an extra
processing step before it is used in the construction of the
final Image Mask. Four bits on equal bit positions in the
four registers are considered as a four bit data word. The
function defines how these four bits are mapped to the
four bits used for the final mask assembly. The straight
function uses the four Complex bits directly. This option
should be used if the mask is used for alpha plane
calculations or as a simple clip mask which is written
straight into the complex alpha mask. The odd_even and
winding functions are typically used during the rendering
of complex polygons. The odd_even function sets all four
bits to logical '1' if the four bit input value is 'odd',
otherwise it resets all four bits to '0'. The winding function
operates in a similar way: all four bits are set to '1' if the
four bit input value is 'not zero', otherwise it resets all
four bits to '0'.

Mask Modification Mapping

This field determines which register from either the
Transparent Image Mask and the Opaque image mask are
updated. This field can be post-incremented with a bit in
the Image Mask Generation Instruction word. The post-
increment operation does not influence all the bits in the
field

Imagine Processor

MASK_MOD_MAP[2:0]
= MSK_Control2 [22:20]

000: none (default)
001: make_lines_0123
010: make_lines_01
011: make_lines_23
100: make_line_0
101: make_line_1
110: make_line_2
111: make_line_3

WM = MSK_Control1[15]

0: do not use the Window Mask
1: window

SM = MSK_Control1[14]

0: do not use the Spanline Mask
1: spanline

RM = MSK_Control1[13]

0: do not use the Range Mask
1: range or clip

CM = MSK_Control1[12]

0: do not use the Complex Mask
1: complex or alpha

CPLX_ASM[1:0] = MSK_Control1[9:8]

00 straight straight mask usage
01 odd_even complex odd/even rule
10 winding complex winding rule

Imagine 2 Multi Media Processor 12. The Image Mask Generator

Detailed description of Image Mask control register 2. (cr89)

The instruction mask_control2() needs a number of parameter, any of the following parameters may be given,
separated by commas, when this instruction is used. They parameters are optionally. The default value is used
when a parameter is omitted.

Complex/ Alpha Mask generation Function

This parameter defines what operation is executed in the Complex/Alpha mask when data is written to the
Polygon Entries. MSK_PolyStart (cr94), MSK_PolyEnd (cr95) and MSK_PolyCoord (cr96). These entries start
functions in the Complex / Alpha Mask generator. The Complex/Alpha mask ALU works on 64 nibbles of 4 bit
each. These nibbles can be set and reset with the instruction word and incremented and/or decremented with data
input. Two 64 bit masks can be generated via these entries. MSK_PolyStart entry will generate the 64 bit Start
mask when written to. It expects a spanline start X co-ordinate with a 16.16 fixed point format.
 The upper 16 bit are compared with the 16 X co-ordinate
bits from VAU_Image1 (cr116). Bit 0 of the mask
corresponds with the Start co-ordinate written to
MSK_PolyStart (cr94). Bit 1 corresponds to the next
pixel (at the right side) et-cetera. The corresponding
Mask bits are set to '0' if the are before (left) of the
reference value from VAU_Image1 and are set to '1' if the
are behind (right) of the reference value. This array of 64
single bits is added to the array of the 64 nibbles of the
Complex / Alpha mask when either mask_incinc or
mask_incdec are selected. A similar second 64 bit mask is generated by writing to MSK_PolyEnd (cr95). This
64 bit mask is added to the array of the 64 nibbles of the Complex / Alpha mask when mask_incinc is selected
and subtracted when mask_incdec is selected. A write operation to MSK_PolyCoord (cr96) will generate both
64 bit masks. This entry expects the 16 bits Start X co-ordinate in bits [31:16] and the End X co-ordinate in bits
[15:0]. An alternative usage is to supply the mask directly to MSK_PolyCoord (cr96). The 32 bit input data is
now added (option data_inc) or subtracted (option data_dec) as an array from 32 single bits. It is the
MASK_LWPTR[1:0] field MSK_Control1 [17:16] which decides which 32 nibbles are modified. A '0' modifies
nibbles [31:0] while a '1' modifies nibbles [63:32]

Imagine Processor

cr89: MSK_Control2
RANGE

INPUT MAP
[2:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

‘00000000' RANGE INPUT
POINTER

[5:0]

RANGE
OP

[1:0]

‘0'RANGE
SEL
[1:0]

LS
[1:0]

SF
[1:0]

CPLX
ALPHA

[1:0]

‘0'R
I
O

‘00'

List of assembly mnemonics for MSK_Control2

cr89 [23:18]: range_pointer(0) (default) or range_pointer (1) or ... or range_pointer (63)
cr89 [17:16]: and_range_flags or or_range_flags or copy_range_flags

cr89 [13:10]: copy_to_0123 or
and2_to_01 or and2_to_23 or or2_to_01 or or2_to_23 or
and4_to_0 or and4_to_1 or and4_to_2 or and4_to_3 or
or4_to_0 or or4_to_1 or or4_to_2 or or4_to_3

cr89 [9:8]: range_flags (default) or alu_flags or depth_flags or vio_flags
cr89[6:5]: data_inc (default) or data_dec or mask_incinc or mask_incdec
cr89[3:0]: do not use for new code (see Imagine 1 manual)

CPLX_ALPHA[1:0] = MSK_Control2 [6:5]

00 data_inc increment. with data
01 data_dec decrement with data
10 mask_incinc inc / inc with mask(s)
11 mask_incdec inc / dec with mask(s)

Imagine 2 Multi Media Processor 12. The Image Mask Generator

The Range mask flags Select function

The Range Mask Input Functions
The control fields of the Range Clip Mask define how incoming status flags from the Range Clip unit are inserted
into the Range Mask. The four flags undergo a transformation before being applied to the Range Mask. The
mnemonics defines two fields with one mnemonic. (RANGE_INPUT_MAP[2:0] and RIO)

RANGE_INPUT_MAP[2:0]:
The four Range flags selected from the Range Clip Unit,
The ALU, The Depth Test unit or the Vector IO unit can
be mapped in various ways to the four bits which are
stored in the four Range mask registers. The four flags can
be and-ed / or-ed to modify one mask register bit in one
mask-register, two flags can be and-ed / or-ed to modify
one bit in one mask register while the other two flags are
also and-ed /or-ed to modify the same bit in another mask
register or the four flags are independently applied to bits
in all four mask registers. The RANGE_INPUT_MAP field
in the control register can be post-incremented with a
Mask
instruction. This post-increment operation only influences
certain bits in the field depending on the MSB bits:

RIO: Range Input Operation:
This is the operation used to combine 2 or 4 flags when
used for 1 line. A '0' ANDs flags and a '1' ORs flags.

RangeOp: Range Mask Operation:
The newly arriving flags can be combined with the current
values in the Range/Clip registers. The status flags can
overwrite the old information of the Range Mask (copy)
but can also be combined with it (and, or):

Range Input Pointer
This parameter defines the bit position in the Range/Clip masks where the status flags from the Range unit, the
ALU, the Depth buffer compare unit or the Vector I/O unit are inserted. The default value is 0. The input
information will be stored or merged with existing information. This pointer is post-incremented after each time
that flags are received by any of the mentioned units.

Mnemonics: range_pointer (0) ... range_pointer (63) (MSK_Control2 [23:18])

Imagine Processor

RANGE_SEL = MSK_Control2 [9:8]

00 range_flags from multiplier
01 alu_flags from ALU
10 depth_flags from the 3D pipeline
11 vio_flags from the vector IO unit

RANGE_INPUT_MAP[2:0] and RIO
 = MSK_Control2 [13:10]

000.0 no-op (default)
001.x copy_to_0123

010.0 and2_to_01 010.1 or2_to_01
011.0 and2_to_23 011.1 or2_to_23

100.0 and4_to_0 100.1 or4_to_0
101.0 and4_to_1 101.1 or4_to_1
110.0 and4_to_2 110.1 or4_to_2
111.0 and4_to_3 111.1 or4_to_3

Increment the RANGE_INPUT_MAP[2:0]:

001 Do not Increment
01X Increment only bit 0
1XX Increment bits [1:0]

RANGE_OP = MSK_Control2 [17:16]

00: no op <default>
01: and_range_flags New = Old&Input
10: or_range_flags New = Old|Input
11: copy_range_flags New = Input

and4_

or4_

and2_
or2_

and2_
or2_

to_0
to_1
to_2
to_3

to_01

to_23
copy_to_0123

Imagine 2 Multi Media Processor 12. The Image Mask Generator

AN EXAMPLE OF A GENERATED MASK:

Imagine Processor

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Chapter

13. VECTOR ACCESS UNIT

The Vector Access Unit
Can access external memory in vector mode. Simultaneous input and output
operations are possible via the internal bi-directional fifo. Quad byte and Double
short accesses can be with bytes / shorts after each other or above each other.
Access can be non-aligned without speed penalty. Accesses can be in horizontal
direction or vertical direction.

User’s Manual 10/2/2008 page 139

Imagine 2 Multi Media Processor VLC decoder and dequantizer

User’s Manual 10/2/2008 page 140

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Introduction to the Vector Access functions.
Firstly the basic read and write instructions and how to utilise the two masking sources will be described:

'Quasi' Simultaneous read and write vector operations:

The vector access operations transfer vector data between the SDRAM or SGRAM memory and the Imagine
Processor core. The Imagine vector access unit supports peak data rates of 1.600 Gigabyte per second with a 200
MHz clock speed. The Processor can read and write (simultaneously) vectors from 1 to 64 (32-bit) words on a
horizontal line at a speed of one read word plus one write word per cycle.

Supported Memory Access Types

Vector accesses to memory can be both horizontal and vertical, The pixel types can be single 32 bit pixels, single
or double 16 bit pixels and single or quadruple 8 bit pixels.
The individual pixels in a word are on top of each for horizontal accesses and after each other for vertical
accesses with the least significant one at the top (hor) or left-most (ver) location. Accesses for multi pixel words
can be non-aligned without speed penalty

So a Vector access can access a single line of 32 bit pixels, it can access two lines of 16 bit pixels or four lines of
8 bit pixels in parallel with the lines on top or after of each other. A special and very important feature is that the
32 bit word can be accessed in a non aligned fashion. The pixels (which are byte addressed) are not bound to 32
bit borders. Any 8 or 16 bit pixel can be accessed as being the top left pixel of the Vector (the addresses used by
the Imagine are the Top-Left co-ordinates of the Vector).

User’s Manual 10/2/2008 page 141

Horizontal Vector Accesses

Vertical
Vector

Accesses

32 bit

2x16 bit

16 bit

4x8 bit8 bit

32 bit

2x16 bit

16 bit

4x8 bit

8 bit

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Mnemonics of the Vector Access Generator

vector_load (origin origin1 or origin2 or origin3
 ,coordinate Dcoord1 or Dcoord2 or Dcoord3 with optional ++

where D is either blank, 1D, 2D or 3D
[,direction] horizontal (default) or vertical
[,pixel_type] 8 or 16 or 32 or 4x8 or 2x16 or 1x32
[,fixed_length] length(X) where X is 1...128
[,byte_enables] bytes_enables
[,state_select] select_stateX or clear_stateX where X is 0...3
[,continue]); continue

vector_store (origin origin1 or origin2 or origin3
 ,coordinate Dcoord1 or Dcoord2 or Dcoord3 with optional ++

where D is either blank, 1D, 2D or 3D
[,direction] horizontal (default) or vertical
[,pixel_type] 8 or 16 or 32 or 4x8 or 2x16 or 1x32
[,fixed_length] length(X) where X is 1...128
[,pixel_mask] pixelmask or new_pixelmask
[,data_source] bicolor, or new_bicolor
[,byte_enables] bytes_enables
[,mask_pointer] mask_pointer(X) or mask_reference(X)

with optional ++ and X is 0...63 or blank
[,state_select] select_stateX or clear_stateX where X is 0...1
[,line_mapping]);line_map with optional ++

vector_control ([reset flag] reset_on or reset_off
[coordinate_dim] 1Dcoord or 2Dcoord or 3Dcoord
[,pixel_type] 8 or 16 or 32 or 4x8 or 2x16 or 1x32
[,byte_enables] bytes_enables
[,mask_pointer] mask_pointer(X) or mask_reference(X)

with optional ++ and X is 0...63 or blank
[,state_select] select_stateX or clear_stateX where X is 0...3
[,line_mapping]);line_map

enables: 0 or 1 or 2 or 3 or 01 or 02 or 03 or 12 or 13 or 23 or 012 or 013 or 023 or 123 or 0123
map : none or 8 or 16_01 or 16_23 or 32_0 or 32_1 or 32_2 or 32_3 or map

User’s Manual 10/2/2008 page 142

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Instruction word definition of the Vector Access Unit

AC vector access 1 = vector access, 0 = update control register only
RW read or write 0 = read, 1 = write, (1 = update VAU Reset Flag)
HV horizontal or vertical 0 = horizontal, 1 = vertical
ORIG select address origin 0 = origin1, 1 = origin2, 2 = origin3
COORD select coordinate reg. 0 = coordinate1, 1 = coordinate2, 2 = coordinate3
IAD increment Address. 1 = (post) Increment selected coordinate in control register
TIM make Transparent mask 1 = Enable Transparent mask for write enables
OIM make Opaque mask 1 = Enable Opaque mask for Bi Color expansion
TIE use Transparent mask 1 = Enable Transparent mask for write enables
OIE use Opaque mask 1 = Enable Opaque mask for Bi Color expansion
CD coordinate dimension 1 = Load coordinate dimension in control register
PT pixel type 1 = Load pixel type in control register
BE byte enables 1 = Load byte enables in control register
MP mask pointer 1 = Load mask pointer enables in control register
ST state select 1 = Load state select/clear in control register
OM mask output mapping 1 = Load mask output mapping in control register
IMP increment map pointer 1 = (post) Increment mask pointer in control register
IOM increment output map. 1 = (post) Increment mask output mapping in control register
FV fixed/variable length 0 = fixed length, 1 = variable length
FIXED_LENGTH fixed length 0..127 represents a length of 1 to 128
VAU_RST VAU reset flag contents 0 = Reset OFF, 1 = Reset ON
COORD_DIM coordinate dimension 0 = 1D, 1 = 2D, 2 = 3D, 3 = old XY coordinate
PIXEL_TYPE pixel type 0 = bytes, 1 = shorts, 2 = words,
BYTE_ENABLES byte enables 0 = mask, 1 = write, bit[3]  [31:24],..,.., bit[0]  [7:0]
MASK_POINTER mask pointer value range is 0 ..63 for the Imagine 2
MR mask reference The reference X coordinate points to the mask pointer position.
SCL state clear clear / initialise the selected history state
STATE state select selected history state (0..3 for reading, 0..1 for writing)
MOM mask output mapping 0=no_op, 1=line_8, 2=line16_01, 3=line16_23,

4=line_32_0, 5=line_32_1, 6=line_32_2, 7=line_32_3,

User’s Manual 10/2/2008 page 143

INSTRUCTION WORD

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

MOM
[2:0]

MASK_POINTER
[5:0]

‘0000'PIX
TYPE
[1:0]

‘00'BYTE_ENABLES
[3:0]

‘0'STATE
[1:0]

MRCOORD
DIM
[1:0]

INSTRUCTION WORD

60616263 56575859 52535455 5051

IOM
‘1110'

IAD TIETIM OIMORIG

48 47 46 44

OIE

49

COORD

45

OMMPPT BERW HV

43 42

FIXED LENGTH [6:0]

4041 38 37 36 3439 35 33 32

STAC FVCD IMP

‘00'‘0'Vau
RST

SCL

Imagine 2 Multi Media Processor VLC decoder and dequantizer

The Transparent Pixel Mask
Individual 8 or 16 bit pixels can be masked during a vector write with a the use of the Transparent Image Mask
of the Mask generator. Individual components of 32 bit true color pixels can also be masked. The chapter on the
Image Mask generator explains the assembly of this mask. The Transparent Mask is contained in a 4x64 bit
register set. The programmer can invoke the usage of the Transparent mask with the keyword pixelmask for the
corresponding parameter. If the mask needs to be assembled before you start the vector write, use the keyword
new_pixelmask; if you do not specify anything the pixels will not be masked.

Example: image_vector (write, quad_byte, surface2, coord1, pixelmask);

This instruction causes a vector write of 4x8 bit pixel words (quad_byte) starting at the pixel at the XY location
defined in coordinate register 1 on the 2D surface pointed to by the Surface register 2 and masks pixels by
applying the Transparent Pixel mask.

The Opaque Pixel Mask
The Opaque Pixel Mask ♦ The Bicolor option uses the four mask bits to select between the foreground and
background colours contained in the registers with these names. The bits from Opaque Mask register 0 select
between the bytes 0 of the foreground and background registers (bit 0..7) which are then placed on bit 0..7 of the
external Image databus. These eight bits correspond to the highest of the four lines in case of 8 bit colours when
four lines are written in parallel. The four mask bits define in a one-to-one fashion.
♦ bicolor, new_bicolor
The bicolor option supports very high speed colour expansion;
Example: image_access (write, quad_byte, image2, bicolor);

User’s Manual 10/2/2008 page 144

Imagine 2 Multi Media Processor VLC decoder and dequantizer
The vector access control register

The fields of the Image Memory Access control register.

Mask Output Pointer

The Mask information stored in the Transparent and Opaque Mask is accessed during a vector write with use of
the Mask output pointer. This pointer walks through the mask during the vector write. It is decremented for each
new horizontal address (the left-most pixel has the highest bit address, compatible with industry standards). A
typical 32xn vector starts with the mask at bit location 31 and ends with bit location 0.

The Mask Output mapping

Both Transparent and Opaque masks are line oriented masks. Each of the four registers in both masks has
information for another line which may be 8, 16 or 32 bit/pixel. The output bus is 32 bit wide for the first version
of the Imagine. This means that four 8 bit, or two 16 bit pixel lines can be drawn in parallel. The mapping of the
internal mask lines to the 32 bit databus is handled with the Mask Output mapping field.

Mask output mapping
MSK0 MSK1 MSK2 MSK3
Byte0 Byte1 Byte2 Byte3

000 <default> '1' '1' '1' '1'
001 line_8 line 0 line 1 line 2 line 3
010 line_16_01 line 0 line 0 line 1 line 1
011 line_16_23 line 2 line 2 line 3 line 3
100 line_32_0 line 0 line 0 line 0 line 0
101 line_32_1 line 1 line 1 line 1 line 1
110 line_32_2 line 2 line 2 line 2 line 2
111 line_32_3 line 3 line 3 line 3 line 3

User’s Manual 10/2/2008 page 145

Cr112: VAU_Control, Vector Access Unit Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

MOM
[2:0]

MASK_POINTER
[5:0]

‘0000'PIX
TYPE
[1:0]

‘00'BYTE_ENABLES
[3:0]

‘0'STATE
[1:0]

‘0'COORD
DIM
[1:0]

‘00'‘0'Vau
RST

SCL

Imagine 2 Multi Media Processor VLC decoder and dequantizer

VECTOR ACCESS UNIT CONTROL REGISTERS

User’s Manual 10/2/2008 page 146

cr116: VAU_Coord1 1,2 or 3 dimensional Coordinate 1 register

Y coordinate [15:0] X coordinate [15:0]

cr120: VAU_Surface1 Surface 1 offset pointer

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Linear offset address for 2D surface number1
 [31:0]

cr114: VAU_Foreground Foreground Color register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Foreground Color value [31:0]

cr115: VAU_Background Background Color register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

cr118: VAU_Coord3 1,2 or 3 dimensional Coordinate 3 register

cr121: VAU_Surface2 Surface 2 offset pointer

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Linear offset address for 2D surface number2
 [31:0]

cr122: VAU_Surface3 Surface 3 offset pointer

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Linear offset address for 2D surface number3
 [31:0]

cr112: VAU_control Vector Access unit control register

Background Color value [31:0]

cr117: VAU_Coord2 1,2 or 3 dimensional Coordinate 2 register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

MOM
[2:0]

MASK_POINTER
[5:0]

‘0000'PIX
TYPE
[1:0]

‘00'BYTE_ENABLES
[3:0]

‘0'STATE
[1:0]

MRCOORD
DIM
[1:0]

‘00'‘0'Vau
RST

SCL

X coordinate [31:0]

X coordinate [15:0]Y coordinate [15:0]Z coordinate [15:0]

Y coordinate [15:0] X coordinate [15:0]
X coordinate [31:0]

X coordinate [15:0]Y coordinate [15:0]Z coordinate [15:0]

Y coordinate [15:0] X coordinate [15:0]
X coordinate [31:0]

X coordinate [15:0]Y coordinate [15:0]Z coordinate [15:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

cr113: VAU_status Vector Access unit status register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

TASK BUFFER LEVEL
[4:0]

WRITE FIFO LEVEL
[5:0]

128 BIT WORDS

‘000' ‘00' READ FIFO LEVEL
[4:0]

128 BIT WORDS

Vio
Inp
wait

‘00'Bi
Col

Vau
Inp
wait

‘00'Vau
Out
wait

Int
Dis

Imagine 2 Multi Media Processor VLC decoder and dequantizer

'image_access' executes a single access to memory opposed to an 'image_vector' which accesses from 1 to 64
consecutive image memory locations in the X direction. The image access is a 'write' access of a 32 bit 'word' and
the address is taken from 'image2': the image address pointer 2. 'bitplane' is used to present the bitplane mask
register to the Image databus during the leading RAS edge.

The Foreground & Background colour registers

The Foreground and Background colours are standard features of all window systems and many graphics
standards. They are basically used in combination with character fonts where binary information is expanded into
for- and background colours. The Foreground and Back-ground colour registers are intended as 'semi-permanent'
locations for these colours which can stay there until software needs other ones.

The contents of the 32 bit register can be placed on the databus during the leading RAS and CAS edges. The
colour registers are 32 bit wide. In 8 or 16 bit operations the 8 or 16 bit colours should be repeated over the
entire 32 bit width of the registers. The colours can be used in these modes to handle 2 or 4 pixels in parallel.

All these modes work in both scalar and vector mode.

1♦ The Opaque Mask Expansion is invoked by using the bicolor option for the data during the CAS edges. The
32x4 opaque mask is used for a maximum of 32 writes in vector mode.

The binary information in the mask will be expanded to the foreground and background colours which are then
placed on the CAS edges during writing.

Example of an opaque mask expansion vector write operation:

image_vector (write,quad_byte,image1,bit_plane,bicolor)

2♦ In the Transparent Mask mode only one of the two colours is used and should be specified with either
foreground or background as the data source during the CAS edges. The binary information in the 32x4
Transparent Mask is then used to write/not write this colour into Image memory. Example of Transparent Mask
operations which use a colour register:

image_vector (write,word,image1,foreground,pixel_mask);

The foreground colour is written to the non masked pixels.

The Image Memory Address Registers.

These registers contain 2 dimensional Image memory addresses (X,Y) which can be selected by the Image
Access function. They can be post-incremented when they are referred by the image access function.
These X,Y addresses are byte oriented and represented by two sixteen bit integer numbers in the range from
-32768 to +32767. The X address is supplied in the highest 16 bit (16..31) while the Y address is supplied in the
lowest 16 bit (0..15).

The Image Address Pointers
Three registers can be used during graphics operations. A typical usage is one destination address pointer (IA1)
and two source address pointers (IA2,IA3). Image Address Pointer 1 is per definition the one which is referenced
by the Image Mask generator to generate a new pixel mask. All three registers can be post-incremented in
horizontal direction in a way that allows operations on arbitrary length vectors. The length (-1) of such a vector is
stored in the repeat register and can range from 1 to 32768 (the values stored range from 0 to 32767). The
maximum vector we can read or write contains 32 words; the actual maximum that will be used can be smaller
and is defined by the maximum repeat register which can define any value from 1 to 32.

The length of both vectors which is written in the example and the number of times the vector instruction is
repeated is defined by either the repeat register or the maximum repeat register if the contents of the repeat
register is larger than the maximum.

Say we want to write a vector with a scan length of 117 pixels and the maximum vector length has the default

User’s Manual 10/2/2008 page 147

Imagine 2 Multi Media Processor VLC decoder and dequantizer
value 32. This vector is then split up into 3 vectors of 32 and a tail vector of 21 during four loops by the
following sample program which demonstrates a basic programming mode of the Imagine:

lab: repeat after (4);
 image_vector (write,word,image1++,data,pixel_mask);
 ;
 ;
 <repeated vector instruction>, V = output;
 ;
 branch (lab), ifnot (repeat_smaller);
 ;
 ;

The repeat instruction refers to the repeat register (var) for its repeat count. It will get three times the value 32
and the last value will be 21. It will wait every time for 4 cycles until the target function has arrived which will be
repeated by the specified number of times.

During the execution of the image_vector function quad_byte data will be written to the address specified by
Image address pointer 1. This function will write 3 times a 32 word vector and a final 21 word vector. The
address register is referred to by Image++ which causes an post-increment by 32 in the first 3 loop passes and 21
during the last loop pass.

Note that the <repeated vector instruction contains an output instruction which places calculated data (from the
Imagine's data processing units) on the Image databus while the image_vector instruction has the parameter data
which means the data should come from this source indeed.

The output instruction is repeated 3 x 32 times and 1 x 21 times. The data can for instance be read from the
internal register file or the data memory with an auto increment mode.

The branch causes the loop to be executed four times. The status flag being tested is found in the control/status
register and is the result of a comparison of the repeat register and the maximum repeat count register. If the first
one is larger then we are not ready yet.
If it is smaller or equal then we need one or more extra passes. The repeat register is post-decremented with the
maximum repeat count each time an arbitrary sequencer instruction refers to the flag mentioned above.

User’s Manual 10/2/2008 page 148

Imagine 2 Multi Media Processor VLC decoder and dequantizer

TRANSLATION FROM MNEMONICS INTO INSTRUCTION WORD

Mnemonics of the Image Memory Access Generator:

image_function (function, pixel_type, address_source [,data_source][,plane_mask][,pixel_mask])

Image Function (Ic59..58)

Fn image_function description
00 image_access Single image memory access
01 image_vector Vector image memory access (From 1 to 32 reads or writes in burst mode)
11 image_control Set control register cr52 (copy bits 0..23 from the instruction word.

The Parameters for the Image Access Functions

function (Ic17..13) and (Ic10..0)

A large number of functions can be selected from the two large tables on the following pages. These functions
include all existing functions for Dual and Triple ported DRAM and will extended (in software) as new functions
become available. The function determines the values which are send to the control inputs of the various memory
chips.

Pixel Type/Size (Ic57..55, Ic54)

This parameter defines the size and type of the pixel which is used during the image memory access. The types
byte and short modify only 8 or 16 bit in image memory during write operations while all others write 32 bit
The types double_short and single_word causes
automatic alignment on 16 and 32 bit Y addresses (bit 0 and/or bit 1 of the Address is cleared during the
Address selection which chooses between 5 control registers for the access address. The size determines also the
Y-increment value for the two Display registers.

The Output mapping (cr52[2:0] can be incremented by adding ++ to the pixel type (no space in between). This
causes bit IC[54] of the instruction word to be set.

T/Sz pixel_type size
0 00 quad_byte (++) 4x8 bit
0 01 double_short(++) 2x16 bit
0 10 single_word (++) 1x32 bit
1 00 byte (++) 8 bit
1 01 short (++) 16 bit
1 10 word (++) 32 bit

User’s Manual 10/2/2008 page 149

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Coordinate
 source (IC[5554]

This parameter selects between five different control registers. Three of the are Image addresses which are used
typically for graphics operations. E.g.: They can point to two source areas and one destination area. The other
two registers contain display addresses which are typically used during the line refresh interrupt to supply the
next line address.
Both types of registers can be auto incremented by attaching ++ to the mnemonic. An auto-increment for an
Image Address results in an X-address increment with 1 for single accesses and N = 1..32 for vector access,
where N is the length of the Vector. An autoincrement of the Display pointers results in an Y-address increment
with 1,2,4 or 8 depending on the size of the pixel (Ic55..56): byte, short, word or double.

IC[22,21,53] selected address source:
00 0 image1 Image Addr. Pointer 1.
00 1 image1++
01 0 image2 Image Addr. Pointer 2.
01 1 image2++
10 0 image3 Image Addr. Pointer 3.
10 1 image3++

data source (Ic20..18)

This parameter defines the origin of the data send to Image memory during write operations
♦ The default option 'data' uses data from the Image I/O unit which can select Data from any data processing unit
of the Imagine.
♦ The color registers can be used to download a color externally.
♦ The bicolor mode uses 4 bit at a time from the opaque mask register to decide between either the foreground
or the back-ground color for each of the four bytes of the Image Databus

CD2..0 data_source selected CAS data source:
00 0 data Image I/O unit (default)
11 0 bicolor Selected for/background
11 1 new_bicolor Selected for/background

Transparent Mask assembly usage (IC(50..51)

This parameter selects the transparent mask to be used when writing to image memory. Four bits at a time can be
send to image memory via the four external MSK output pins. the option new_pixel_mask generates a new
transparent mask just before the actual write actions to image memory start.

E/A pixel_mask Transp. Mask operation
00 <default> do not use the mask.
10 pixel_mask use the Transp. mask.
11 new_pixel_mask generate & use mask.

User’s Manual 10/2/2008 page 150

Imagine 2 Multi Media Processor VLC decoder and dequantizer

 Chapter

 VLC DECODER / DEQUANTIZER

The block level VLC decoder/dequantizer supports MPEG 2, MPEG 1, and H.261
encoded video bit-streams. The input to the unit are 32 bit chunks of serial data in
either big or little endian format. The VLC decoder takes five cycles to generate the
12 bit decoded and dequantized coefficient and the 2D sub-address within the 8x8
block after scan conversion. The sub-address is added to a 2D address to obtain the
destination address in external memory. Only the non-zero coefficients are
generated and written. The external memory should be cleared previously with for
instance the SGRAM block fill mode (12..16 Gigabyte/second) to account for the
zero coefficients.

A separate register contains the value for coefficient [7][7] which may not have
been encoded but has been made non-zero by either the MPEG 2 or Yagasaki
oddification method used to correct the IDCT rounding mismatch. This value may
always be written to memory after the EOB occurs without the need for any test.

The values in memory are completely processed and the next step in the decoding
process is the Inverse DCT.

User’s Manual 10/2/2008 page 151

Imagine 2 Multi Media Processor VLC decoder and dequantizer

BLOCK LEVEL VLC DECODER :

EXAMPLE BLOCK LEVEL VLC DECODER SUB-ROUTINE:

vlc_block_level_subroutine:
B = rd(VLC_Control) => F = copy(B); // prepare for "Data Request" test
;
// The block inner loop is executed once for each non-zero coefficient in the block
// The VLC_decode has no effect if new data is needed, we may therefor perform the
// test after the VLC_decode instruction is given.

vlc_block_loop: // start of the block inner-loop
VLC_decode(ReadStart(6), WriteIndex(0)); // VLC decode instruction
if (minus), call (load_new_stream_data); // call to load new bit stream chunk
B = rd2x16(VLC_Data); // read sub address for 8x8 block
A = rd2x16(BlockAddr), F = copy(B); // sub address to ALU for zero test
if (zero), return; // return if End Of Block detected
B = rd(VLC_Data), F = add(A,B); // read coefficient, calculate address
DA = wrAd(F), D = short(B); // write calculated coefficient
jump (vlc_block_loop); // jump to start of the loop
B = rd(VLC_Control); // branch delay:
 F = copy(B); // prepare for "Data Request" test

User’s Manual 10/2/2008 page 152

VLC DECODER
DC INCREMENTER

COEFFICIENT DEAD ZONE ADJUST
ZIG-ZAG SCANNER

QUANTIZER TABLE (SOFT/FIXED)
QUANTIZER SCALE PRE-MULTIPLIER

DEQUANTIZER-MULTIPLIER
ODDIFICATION

endian

endian

32

32

28

5

BIT STREAM INPUT (CHUNKS OF 32 BIT)

INDEX(7)
12 bit de-quantized
Coefficient Value

INDEX(6)
2 Dimensional address
within 8x8 Block

INDEX(0)
Bit Stream data input

INDEX(0)
Bit Stream data
output

INDEX(1) :
BitStreamPointer,
Luminance DC coefficient
INDEX(2) :
Chrominance U and V coefficients
INDEX(3) :
Linear and 2D scan pointers,
Quantizer Scale Code

VLC_Control (cr124):

intra or non intra frame, 8, 9, 10 or 11 bit intra DC precicion luminance or chroma U or
chroma V, intra VLC format 0 or 1 8, 12 or 16 bit escape level length, normal or alternate
scan quantizer scale code conversion (x2 / MPEG 2 non intra tab) fixed or downloaded
quantizer table, big or little endian input
oddification method: MPEG 2, MPEG 1, H.261 or Yagasaki

Imagine 2 Multi Media Processor VLC decoder and dequantizer

VLC_decode (Luminance, ReadStart(4), WriteIndex(0));

VLC_control (Chrominance_U, ReadStart(3), WriteIndex(0));

User’s Manual 10/2/2008 page 153

INSTRUCTION WORD

60616263 56575859 52535455 5051

‘1010'

4849

READ INDEX
[4:0]

WRITE INDEX
[4:0]

L/C
[1:0]

‘1100' RD
inc

WR
inc

47 46 45 44

Dec BT

43 42 41 40

Imagine 2 Multi Media Processor VLC decoder and dequantizer

User’s Manual 10/2/2008 page 154

INDEX 3

cr124: VLC_control Variable Length Code unit Control register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

READ INDEX
[4:0]

EobReq WRITE INDEX
[4:0]

EscL/C
[1:0]

VlCINT AS QSODD
[1:0]

‘0'IDP
[1:0]

‘00'

INDEX 0

INDEX 3

cr125: VLC_Data Variable Length Code unit Data

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

INDEX 0 : BIT STREAM I/O
[31:0]

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

'00'LINEAR SCAN POINTER
[5:0]

'00' 2D SCAN ADDRESS
[5:0]

'0000 0000 000' QUANTIZER
 SCALE CODE [4:0]

QT EM

Quantiser Scale Table Select

QS = 0 Quantiser Scale Code x2
QS = 1 MPEG 2 non intra table

AS = 0 standard ZigZag
AS = 1 alternate ZigZag

Intra VLC format

VLC = 0 use table 0
VLC = 1 use table 1

Intra / Non Intra

INT = 0 non Intra Frame
INT = 1 Intra Frame table

Luminance/Chrominance

L/C = 1x Luminance
L/C = 00 Chrominance U
L/C = 01 Chrominance V

EM = 0 big, 1 = little endian

REQ = 1 Request for new Serial Data Word
(read only). All evaluations are disabled as long
as this bit is '1'. The bit is cleared by writing a
new 32 bit word to the Index 0 reg.

EOB = 1 End Of Block detect (read only)
All results and scan pointers (linear and 2D)
are reset to zero when an EOB is detected. A
2D scan address = '0' test can be used as an
alternative End Of Block detect.

ESC Escape Level Length

 0 = 8,16 bit: MPEG 1, H.261
 1 = 12 bit: MPEG 2

Intra DC Precision

IDP = 0 8 bit DC coef
IDP = 1 9 bit DC coef
IDP = 2 10 bit DC coef
IDP = 3 11 bit DC coef

Read and Write Indices
 0 = Bit Stream I/O register
 1 = Bit Stream pointer + DC Luminance
 2 = DC Chrominance coefficients
 3 = Scan & 2D pointer, Quant scale code
 4 = Decoded coefficient register
 5 = Quantizer value register
 6 = 2 Dim address output register
 7 = De-quantized Coefficient output register
 8 = De-quantized Coefficient [7][7] output reg.
 16:31 Downloadable Quantizer Table
 Bit 29 / 21 = 1: Post Read / Write Index Incr.

QV = 1 Use Quant Table

INDEX 1

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

LUMINANCE INTRA DC COEFFICIENT
[11:0]

INDEX 2

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

CHROMINANCE INTRA DC COEFFICIENT FOR V
[11:0]

CHROMINANCE INTRA DC COEFFICIENT FOR U
[11:0]

BIT-STREAM POINTER
[5:0]

'0000'

'0000' '0000'

'0000 0000 00'

RD
inc

WR
inc

‘0'

Oddification Method

 0 = MPEG 1 1 = MPEG 2
 2 = H.261 3 = Yagasaki

‘0'

Imagine 2 Multi Media Processor VLC decoder and dequantizer

User’s Manual 10/2/2008 page 155

INDEX5

INDEX 4

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

DECODED COEFFICIENT OUTPUT REGISTER [12:0]
(2 X LEVEL [+ SIGN])

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

QUANTISER SCALE: [14:0]
 QSCALE_TYPE [QSCALE_CODE] X QUANT_TABLE [N][M]

cr125: VLC_Data Variable Length Code unit Data

INDEX 6
X Address

[2:0]
Y Address

[2:0]
'0000 0000 0000 0' '0000 0000 0000 0'

'0000 0000 0000 0000 0'

EXTENDED SIGN BIT

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

INDEX 7
FINAL DE-QUANTIZED COEFFICIENT

[11:0]
'0000 0000 0000 0000 0000'

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

INDEX 8
FINAL DE-QUANTIZED COEFFICIENT FOR POSITION

77 [11:0]
'0000 0000 0000 0000 0000'

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

INDICES 16 through 31
Down loadable Quantizer Table Value

Row N, Column 0 or 4, bits [7:0]
Down loadable Quantizer Table Value

Row N, Column 1 or 5, bits [7:0]
Down loadable Quantizer Table Value

Row N, Column 2 or 6, bits [7:0]
Down loadable Quantizer Table Value

Row N, Column 3 or 7, bits [7:0]

Imagine 2 Multi Media Processor 15. Motion Estimator

Chapter

15. MOTION ESTIMATOR.

The Motion Estimator performs 200 operations per cycle sum of difference
operations needed for MPEG1 and MPEG 2 encoding. It supports arbitrary MxN
kernel sizes up to 256x256 and arbitrary search space sizes up to 4096 by 4069

User’s Manual 10/2/2008 page 156

Imagine 2 Multi Media Processor 15. Motion Estimator

User’s Manual 10/2/2008 page 157

Imagine 2 Multi Media Processor 15. Motion Estimator

Overview

The motion estimator pipeline is designed to find the motion vector which is used for various type of motion
picture compression algorithms including MPEG-1, MPEG-2, and H.261. It is flexible and programmable
enough to support all possible motion estimation parameters. The search area can range from 1x1 to
4,096x4,096 pixels, and the search kernel can range from 1x1 to 128x128 pixels without any restriction like the
alignment of some integer. The minimum value detection hardware is also included in the pipeline so that the
pipeline can continue to work at the highest efficiency.
Description

The motion estimator pipeline is the autonomous unit that does not always require clock-by-clock instruction
feeding. The unit starts processing when the motion estimator instruction is given. The motion estimator
instruction is the set of instructions designed only for motion estimator pipeline. No other instruction can be
executed in the same clock as the motion estimator instruction is specified.

Fig.2 Block diagram of motion estimator pipeline
Fig.2 shows the block diagram of the motion estimator pipeline. It consists of four parts, the Kernel register
array (notated as KRA), the Search register array (SRA), the Calculation unit (CU), and the Minimum detection
unit (MDU).
The KRA holds the pixel data of the motion estimation kernel, and the SRA holds the pixel data of the motion
estimation search area (Fig.2). Each array consists of 16 registers of 32bit width. Every 32bit register represents
the 4 pixels of 8bit data, so two register array hold 64 pixels per each. The CU calculates the sum of the absolute
differences of the corresponding 64 pixel-pairs. The summation of this unit is affected by the Columns Mask and
the Row Mask described later. The CU can also add the optional subtotal input data. The MDU is optionally
used, and records the minimum value of the CU output and its corresponding XY position.
The motion estimator instruction initiates the particular type of processing, and also specifies the number of
clocks of the processing. During the processing, the motion estimator pipeline read the data from V-bus and A-
bus at each clock cycle. V-bus input is used to fill the search register array. This means the V-bus value is
written in the leftmost register of the array, and other contents are shifted to the right. Depending on the motion
estimator instruction that started the processing, the motion estimator pipeline executes in the following way.
When the motion estimator instruction is motion_estimator_load, A-bus input is used to fill the KRA in the same
way as the SRA. In this case, the CU and the MDU do not work nor change. The cr81 doesn’t change neither.
When the motion estimator instruction is motion_estimator_calc, A-bus input is used as the subtotal input value.
The subtotal input value is optionally used to be added to the output of the CU, depending on the add_subtotal
flag in the cr80. The resulting value is written to cr81.
When minimum_test flag in cr80 is set, the MDU is enabled. The MDU compares the cr81 with the minimum
value register in the cr82. If the minimum value register is larger, the minimum value register is updated and the
current X and Y positions held in the MDU are written to the minimum X and Y position registers in the cr83.
The current X position is incremented when the MDU is enabled.
The Column mask and the Row mask specify the valid pixel pairs that should be joined to the summation of the
CU. These masks enhance the flexibility of the motion estimator pipeline in the two meanings. First, they
enable the motion estimator pipeline to support arbitrary size of the motion estimation kernel by hiding the
unneeded pixel pairs. Second, they enable the pipeline to support not only 8bit/pixel data but also 16bit/pixel
and 32bit/pixel data by incorporating the pragmatic approximation. The examples of the usage are shown in the
Section 5.
When the motion estimator instruction is given, the new_search flag and the new_row flag affect the current XY
position held in the MDU in the following way. If the new_search is set, both current X and current Y are set to
zero. If the new_row is set, current X is set to zero and current Y is incremented.
Control registers
Flags and the values obtained from calculation are kept in the four 32-bit control registers, cr80, cr81, cr82, and
cr83. The location of the flags and values are shown in Fig.3. The result of the sum of absolute differences is
stored in the lower 24 bits of cr81, and the minimum value of the sum of absolute differences is stored in the
lower 24 bits of cr82. When the resulting value of the sum of absolute differences is smaller than the one in cr82,
the current values of X and Y positions are written to cr83 as indicated below. The Column mask, the Row mask,
and the flags, new_search, new_row, minimum_test, and add_subtotal, are located in cr80.

User’s Manual 10/2/2008 page 158

Imagine 2 Multi Media Processor 15. Motion Estimator

Fig. 3 Control registers, cr80, cr81, cr82, and cr83

Pipeline description
The process in the motion estimator pipeline has six stages:
Stage 1: Motion estimator instruction is given (only once for each processing).
Stage 2: Motion estimator reads V-bus and A-bus value, shift the KRA and the SRA.
Stage 3: CU reads the KRA and the SRA, calculates the difference for 64 pixel pairs, reduces 64 values to
32 values using Wallace tree.
Stage 4: CU reduces 32 values to 2 values.
Stage 5: CU adds 2 values and optional subtotal input, and writes the result to the cr81.
Stage 6: MDU updates the cr82 and cr83, according to the result of the previous stage. The current X is
incremented.

Examples
8bit/pixel, kernel:16x4, search area:47x4(32x1position)

/* Set new_search, minimum_test. Reset new_row, add_subtotal */
/* Set the Column Mask and the Row Mask to all 1’s */
A = rd(ri), V = input;
motion_estimator_load(16);
A = rd(ri), V = input;
/* repeat 14 times */

V = input;
motion_estimator_calc(32);
V = input;
/* repeat 30 times */
;;;;;

B = rd(cr82); /* Read the minimum value */
B = rd(cr83); /* Read the XY position */

8bit/pixel, kernel:16x8, search area:47x8(32x1position)
/* Set new_search. Reset minimum_test, new_row, add_subtotal */
/* Set the Column Mask and the Row Mask to all 1’s */
A = rd(ri), V = input;
motion_estimator_load(16);
A = rd(ri), V = input;
/* repeat 14 times */

V = input;
motion_estimator_calc(32);
V = input;
V = input;
V = input;
V = input;
V = input, B = rd(cr81);
V = input, B = rd(cr81), wr(ri, B);
/* repeat 31 times */

/* Set minimum_test, add_subtotal. Reset new_search, new_row. */

A = rd(ri), V = input;
motion_estimator_load(16);
A = rd(ri), V = input;
/* repeat 14 times */

A = rd(ri), V = input;
motion_estimator_calc(32);
A = rd(ri), V = input;
/* repeat 30 times */

User’s Manual 10/2/2008 page 159

Imagine 2 Multi Media Processor 15. Motion Estimator
;;;;;

B = rd(cr82); /* Read the minimum value */
B = rd(cr83); /* Read the XY position */

Mnemonics of the Motion Estimator

motion_estimator_load;
motion_estimator_load (coefficients, load_data)
motion_estimator_calc;
motion_estimator_calc (calc_data);
motion_estimator_calc (repeat);

Program Example:

motion_estimator_load (16,15);
A = rd (ri++), V = input;
A = rd (ri++), V = input;
.
A = rd (ri++), V = input;
A = rd (ri++);

motion_estimator_calc (33);
A = rd (ri++), V = input;
A = rd (ri++), V = input;
A = rd (ri++), V = input;
.
A = rd (ri++), V = input;

User’s Manual 10/2/2008 page 160

cr81: MES_SumOfDiff (Sub)-Total Output (read only)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

cr80: MES_Control: Control register of the Motion Estimator (read / write)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Soft Count Parameters Row Enables
[3:0]

cr83: MES_Position: Position of the Minimum Sum of Differences found (read only)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

'0000' X position of the Minimum
[11:0]

cr82: MES_Minimum: Minimum Sum of Differences found (read only)

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

'00000000'

'0000' Y position of the Minimum
[11:0]

Minimum Sum of Differences found
[23:0]

'00000000' (Sub)-Total Output
[23:0]

AS
en

MTe
n

NR
en

NS
en

Column Enables
[15:0]

Imagine 2 Multi Media Processor 24 Video Timing Generators

Chapter

24. VIDEO TIMING GENERATORS

The Video Timing Generators execute timing instructions from their own Timing
instruction RAM and are capable op generating arbitrary video timing signals up
to a resolution of 4096 by 4096 pixels, including CCIR601, NTSC and PAL-M
formats. There are 2 timing generators, one for output and one for input.

The video output timing generator sends its timing signals to the video output unit.
It can be to the external Vreset* pin or to the CCIR 656 video input. It can choose
between the clock from the internal dot clock generator, the CCIR 656 video input
clock divided by 1, 2 or 4 or the Imagine clock for testing. The video output unit
operates on the same clock as the video output timing generator.

The video input timing generator can be synchronised to the CCIR 656 video input.
It runs on the CCIR 656 video input clock divided by 1, 2 or 4 or the Imagine clock
for testing. The CCIR 656 video input unit operates on the same clock as the video
input timing generator.

User’s Manual 10/2/2008 page 161

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.1 The I/O signals of the Video Timing Generator

24.1.1 schematic overview

24.1.2 signal definitions

IPB_MASTER input See : “The protocol of the Internal Peripheral Bus”
IPB_REQUEST input
IPB_I_READY input
IPB_SPACE [6:0] input
IPB_ADDRESS [15:2] input
IPB_BE [3:0] input
IPB_WRDATA [31:0] input
RESET input
IM_CLK input
IPB_T_READY output
IPB_RDDATA output

DOT_CLK input External DOT clock. (May not be present)
H_RESET_EXT input External horizontal sync signal (Only for SLAVE mode)
V_RESET_EXT input External vertical sync signal (Only for SLAVE mode)
TIMING_SIGNALS
[7:0]

output 8 timing signals progammed as low 8 bits in the program
memory. Bit definitions are :
7 Vsync
6 Hsync
5 Blank
4 reserved
3 reserved
2 reserved
1 Vertical interrupt (VInt)
0 Horozontal interrupt (Hint)

User’s Manual 10/2/2008 page 162

IPB_MASTER
IPB_REQUEST
IPB_RW
IPB_I_READY
IPB_SPACE [6:0]
IPB_ADDRESS [15:2]
IPB_BE [3:0]
IPB_WRDATA [31:0]
RESET
IM_CLK

IPB_T_READY
IPB_RDDATA [31:0]

DOT_CLK
H_RESET_EXT
V_RESET_EXT

TIMING_SIGNALS

32

32
4

7
14

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.2 Module overview of the Video Timing Generator (VTG)

The Video Timing Generator consists of seven modules.

1. IPB-interface.
2. Horizontal counter (12-bit).
3. Vertical counter (12-bit).
4. Decoder (Contains the EOB and EOS state flip flops).
5. Program Counter (PC).
6. Instruction RAM.
7. Read multiplexer.

24.2.1 The IPB_interface
The IPB-interface connects the VTG to the Internal Peripheral Bus. It decodes the IPB request and determines
the appropriate action for the request. All accesses through the IPB to this unit require multiple cycles because
the VTG can operate asynchronously to the IMAGINE on the DOT_CLK.

24.2.2 The counters
There are two 12-bit counters (Horizontal and Vertical) to allow for a 4096x4096 pixel display. The 6-bit
program counter (PC) points to the current instruction address in the VTG instruction RAM, allowing for 64
instruction addresses.

24.2.3 The Decoder
The decoder controls the functioning of the VTG. The current mode (RESET, HOLD, MASTER/SLAVE) and
current state of the counters are used to determine the control of the other units (all except the IPB-interface).

24.2.4 The Instruction RAM
The Instruction RAM is a three port RAM with two read ports and one write port. The one read port is used
exclusively for the decoder. The other tow ports are used exclusively for the IPB interface. The RAM contains 64
words of 32-bits.

The 32-bit instruction word contains four fields
• The instruction (2-bits, 2-reserved).
• The 12-bit compare value for both horizontal and vertical compares, depending on the instruction.
• The address field for loading the program counter. This is only used for instruction 1 (only if EOB and EOS

are false). For all the other instructions the address field is don’t care.
• The video timing signals (8-bits). The timing signals include horizontal sync, vertical sync, blank and

interrupts. Importantly the current instruction always specifies the value of the output timing signals. Care
should therefore be taken in programming the video timing generator to achieve the desired output signals.
On start-up the program memory is uninitialized and should always be programmed before enabling the unit.

User’s Manual 10/2/2008 page 163

Timing Command 12-bit compare value Address field (only lowest 6 bits used) Timing signals

Vsync Hsync Blank Vblank
k

reserve
d

VIntreserve
d

HInt

31 28 27 16 15 8 7 0

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.2.5 The Read multiplexer
The read multiplexer selects the required read data from the IPB request. Read requests can always be done from
the IPB even if the unit is functioning on the DOT_CLK.

Block diagram of the Video Timing Generator

User’s Manual 10/2/2008 page 164

DECODER

 RESET_VER
 LOAD_VER
 INC_VER

 RESET_HOR
 LOAD_HOR
 INC_HOR

 RESET_PC
 LOAD_PC IM_CLK
 INC_PC
 DOT_CLK

PROGRAM
COUNTER

 CLK

 PC_VALUE

INSTRUCTION RAM
RR_64X32_RRW

(Three port : Two read one write)
(Outputs are always enabled)

 DOA (Data out A_bus)
 AADR (From PC)

CONTROL REG

IPB
Interface

WR_COUNT
WR_CTRL
WR_RAM

RD_COUNT
RD_CTRL
RD_RAM

RD_DATA

WRDATA
RAM_ADDR

READ_MUX

{
{
{

{
{

IM_CLKHOR_COUNTER
12-bit

VER_COUNTER
12-bit

CLK

The CLK signal may be either the IM_CLK or the DOT_CLK
depending on the value of USE_IM_CLK in the Control Reg.

IPB signals

TIMING
SIGNALS

DOT_CLK
H_RESET
V_RESET

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.3 Functional description of the Video Timing Generator
The VTG executes the timing instructions in the Instruction RAM and is capable op generating arbitrary timing
signals upto a resolution of 4096 by 4096 pixels, including CCIR601, NTSC and PAL-M formats.

The VTG has two main modes of operation. The first mode is used to control the unit from the IPB. In this mode
the unit can be tested and the instruction RAM programmed for the required video display format. On
initialisation the instruction RAM contains random values and has to be programmed before activation.

The second mode of operation is used to generate the timing signals for the display format. Usually the VTG runs
asynchronously to the IMAGINE clock from the externally applied DOT clock. It can however be programmed
to run on the IMAGINE clock if for instance the DOT clock is not available. The VTG has only four instructions,
but this is sufficient for an arbitrary complex display format.

24.3.1 Video Timing Generator instruction description
The four allowed instructions are as follows:

Instruction 0 : Wait for line segment end.
This instruction is repeated until the horizontal counter is equal to the compare value given in the
instruction. The address counter is incremented to the next instruction in this case. (The address load
value is don’t care for this instruction).

Instruction 1 : Wait for line end.
This instruction is repeated until the horizontal counter is equal to the instruction compare value. It the
values are equal :
• If EOB and EOS are both false (End of screen, End of band), load the address counter with the value

given in the instruction. This is intended for repeating the same line.
• If EOB is true and EOS is false, increment the address counter to the next instruction. This is

intended to start the next screen band.
• If EOS is true, reset the address register and all registers and flags.

In all three cases reset the horizontal counter and EOB and EOS flags.

Instruction 2 : Test if the current line is the is the last of a Band of the screen.
Set the EOB flag if the vertical counter is equal to the compare value of the instruction, else reset EOB.
Always reset EOS. Always increment the program counter and horizontal counter. (The address load
value is don’t care for this instruction).

Instruction 3 : Test if the current line is the last of the screen.
Set the EOS flag if the vertical counter is equal to the compare value of the instruction, else reset EOS.
Always reset EOB. Always increment the program counter and horizontal counter. EOS indicates the
end of the entire frame in case of an interlaced format.

User’s Manual 10/2/2008 page 165

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.4 Sample program for the Video Timing Generator
The following is an example format of 14 lines by 18 pixels. The visible display area is 6 lines by 9 pixels (lines
5-10, pixels 6-14). Each pixel shows by which instruction it is generated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 0 0 0 1 1 1 2 3 3 3 3 3 3 3 3 4 4 4
1 0 0 0 1 1 1 2 3 3 3 3 3 3 3 3 4 4 4
2 5 5 5 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9
3 5 5 5 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9
4 5 5 5 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9
5 10 10 10 11 11 11 12 13 13 13 13 13 13 13 13 14 14 14
6 10 10 10 11 11 11 12 13 13 13 13 13 13 13 13 14 14 14
7 10 10 10 11 11 11 12 13 13 13 13 13 13 13 13 14 14 14
8 10 10 10 11 11 11 12 13 13 13 13 13 13 13 13 14 14 14
9 10 10 10 11 11 11 12 13 13 13 13 13 13 13 13 14 14 14
10 10 10 10 11 11 11 12 13 13 13 13 13 13 13 13 14 14 14
11 15 15 15 16 16 16 17 18 18 18 18 18 18 18 18 19 19 19
12 15 15 15 16 16 16 17 18 18 18 18 18 18 18 18 19 19 19
13 15 15 15 16 16 16 17 18 18 18 18 18 18 18 18 19 19 19

The screen format above is generated with the following program:

Addr. video timing command compare value load. address video timing signals

0 Wait for segment end comp=2 addr=x hsync=0, vsync=0, blank=0
1 Wait for segment end comp=5 addr=x hsync=1, vsync=0, blank=0
2 Test if line=end of band comp=1 addr=x hsync=1, vsync=0, blank=0
3 Wait for segment comp=14 addr=x hsync=1, vsync=0, blank=0
4 Wait for line end comp=17 addr=0 hsync=1, vsync=0, blank=0

5 Wait for segment end comp=2 addr=x hsync=0, vsync=1, blank=0
6 Wait for segment end comp=5 addr=x hsync=1, vsync=1, blank=0
7 Test if line=end of band comp=4 addr=x hsync=1, vsync=1, blank=0
8 Wait for segment end comp=14 addr=x hsync=1, vsync=1, blank=0
9 Wait for line end comp=17 addr=5 hsync=1, vsync=1, blank=0

10 Wait for segment end comp=2 addr=x hsync=0, vsync=1, blank=0
11 Wait for segment end comp=5 addr=x hsync=1, vsync=1, blank=0
12 Test if line=end of band comp=10 addr=x hsync=1, vsync=1, blank=1
13 Wait for segment end comp=14 addr=x hsync=1, vsync=1, blank=1
14 Wait for line end comp=17 addr=10 hsync=1, vsync=1, blank=0

15 Wait for segment end comp=2 addr=x hsync=0, vsync=1, blank=0
16 Wait for segment end comp=5 addr=x hsync=1, vsync=1, blank=0
17 Test if line=end of screen comp=13 addr=x hsync=1, vsync=1, blank=0
18 Wait for segment end comp=14 addr=x hsync=1, vsync=1, blank=0
19 Wait for line end comp=17 addr=15 hsync=1, vsync=1, blank=0

User’s Manual 10/2/2008 page 166

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.5 Function Table of the Video Timing Generator

R
e
s

H
o
l
d

M/S V_
res

H_
res

I
n
s
t
r

M
a
t
c
h

E
O
S

E
O
B

PC VER
cntr

HOR
cntr

EOS EOB

RESET 1 x x x x x x x x Res Res Res Res Res
HOLD 0 1 x x x x x x x Hold Hold Hold Hold Hold
V_RESET_EXT 0 0 S 1 x x x x x Res Res Res Res Res
H_RESET_EXT 0 0 S 0 1 x x 0 0 Load Incr Res Res Res

S 0 1 x x 0 1 Incr Incr Res Res Res
S 0 1 x x 1 x Res Res Res Res Res

Instr type 0 0 0 M/S x/0 x/0 0 0 x x Hold Hold Incr Hold Hold
 Segment end M/S x/0 x/0 0 1 x x Incr Hold Incr Hold Hold
Instr type 1 0 0 M/S x/0 x/0 1 0 x x Hold Hold Incr Hold Hold
 Line end M/S x/0 x/0 1 1 0 0 Load Incr Res Res Res

M/S x/0 x/0 1 1 0 1 Incr Incr Res Res Res
M/S x/0 x/0 1 1 1 x Res Res Res Res Res

Instr type 2 0 0 M/S x/0 x/0 2 0 x x Incr Hold Incr Res Res
 Test EOB M/S x/0 x/0 2 1 x x Incr Hold Incr Res Set
Instr type 3 0 0 M/S x/0 x/0 3 0 x x Incr Hold Incr Res Res
 Test EOS M/S x/0 x/0 3 1 x x Incr Hold Incr Set Res

User’s Manual 10/2/2008 page 167

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.6 Interfacing with the Video Timing Generator through the IP
All read and write accesses to and from the Video Timing Generator require multiple cycles for completion
because the VTG operates asynchronously to the IMAGINE during normal operation. There are basically three
different accesses depending on the selected address (IPB_ADDRESS).

1. Control register (VTG_BASE + 128)
2. Counter register (Horizontal and Vertical) (VTG_BASE + 129)
3. Instruction RAM (VTG_BASE -> VTG_BASE + 63)

Read accesses can always be performed to any of these areas, even if the VTG is using the DOT_CLK. This
allows for determining the state of the VTG while it is operational (generating timing signals). Writing to the
counter register and part of the control register (PC bits 15-8) can only be done while the VTG is in HOLD mode
(Hold bit in control register = 1). This avoids interference with the functioning of the unit during normal
operation.

24.6.1 The Control register
The control register has the following fields :

The control register (lowest 8 bits) determines the general state of the VTG. Although the EOS and EOB bits
form part of the control register from a programmers perspective, they are actually state flip-flops within the
decoder and usually function asynchronously to the IMAGINE on the DOT clock. The lower 6 bits are however
always synchronous to the IMAGINE to allow control of the unit without the DOT clock. The low 6- bits can
therefore always be accessed from the IPB, but the EOS and EOB can only be changed if the unit is in a HOLD
mode (Hold bit set). This avoids interference with the unit during normal operation. The same applies to the
Program counter which can also only be change while in a Hold mode.

User’s Manual 10/2/2008 page 168

Decoder signals
(read only)

Program counter (PC)
(8-bit, 2 bits unused) Unit control register

EOS EOB Master/Slave DCD1 DCD0 HoldIM clk Reset

‘0000000’
(7-bits unused)

31 25 24 16 15 8 7 0

HOR_res VER_res PC_res HOR_load VER_load HOR_incPC_load VER_inc PC_inc

Decoder signals
(read only)

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.6.1.1 The Unit control register

Reset This is a reset bit for the VTG without the IPB interface. This bit is intended to be used just before
starting normal operation of the VTG after testing and programming of the instruction RAM. If this bit is set, the
VTG will reset its internal state. All counters will be zeroed (Horizontal pixel counter, Vertical pixel counter and
Program counter) as well as the EOB and EOS flags.

Hold This bit is intended to place the VTG in a hold mode for general access from the IPB. In this mode all
registers are accessible for reading and writing. The value of the IM_clk bit may also be changed, but for general
access it should be set to ‘1’ (use IMAGINE clock) and only be cleared after all testing and programming is
complete.

IM_clk If this bit is set the unit will operate using the IMAGINE clock instead of the DOT clock.

DCD1, DCD0 These bits determine the clock pre-scale value. During testing they should be cleared.
00 Divide clock by 1
01 Divide clock by 2
10 Divide clock by 4
11 Divide clock by 8

Master/Slave The VTG can function in a Master or a slave mode. In Master mode the external signals
HOR_RESET_EXT and VER_RESET_EXT are ignored and the VTG will just execute the timing program as
defined in the instruction RAM. The Slave mode is intended to synchronise the unit to an external source. In
Slave mode the unit will function normally while HOR_RESET_EXT and VER_RESET_EXT are low (‘0’) and
is only affected if one or both of them are high (‘1’). If the VER_RESET_EXT is high (HOR_RESET_EXT
ignored), the internal state will be reset (synchronous to the clock) to start a new screen (Pixel counters, PC, EOB
and EOS all reset). If the HOR_RESET_EXT is high a horizontal reset will be executed (synchronous to the
clock). The exact operation depends on the current state of the VTG but corresponds to reaching a line end
during normal operation (executing Instruction type 1 with the Horizontal counter equal to the 12-bit compare
value of the instruction) (See section 3.1 Instruction type 1 when the Horizontal counter equals the compare
value).

24.6.1.2 The Program counter
The program counter can only be changed while in the Hold mode. Eight bits are defined although only 6 are
implemented (2^6 = 64). The two remaining bits will return ‘00’ when read.

24.6.1.3 The Decoder signals
These signals are read only and writing to them has no effect. They reflect most of the current decoder control
signals to facilitate testing or possible state determination during normal operation. These values will rarely be
required.

24.6.2 The Counter register
The counter register has the following fields. Writing from the IPB can only be performed while the unit is in a
Hold mode. Byte enables are also used during writing to allow 8-bit accesses.

User’s Manual 10/2/2008 page 169

Horizontal pixel counter
(12-bit)

Vertical pixel counter
(12-bit)

‘0000’
(4-bits unused)

‘0000’
(4-bits unused)

31 28 27 16 15 12 11 0

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.6.3 The Instruction RAM
Any 32-bit value can be written to the instruction RAM, but in general the values should conform to the
instruction specification as described in section 3.1. Due to the fact that a three port RAM is used, reading and
writing to the instruction RAM can always be done, even while the unit is operational (generating timing signals).
This allows for on the fly changing of the VTG program by accessing areas which are not currently required by
the unit. This creates a possibility to extend the capabilities of the VTG if the 64 word RAM is not sufficient.
Extreme caution should however be taken not to write to the same area of RAM currently being accessed by the
unit, as this will probably result in indeterminate operation. On the fly alteration of the VTG instruction RAM is
possible, but will very rarely be required as the current 64 word address space is sufficient for all the standard
display formats.

24.7 Programmers Notes
The following should be kept in mind with regards to the VTG

• The IPB RESET signal overrides all other signals. When this signal is active, no operation or access is
possible.

• When writing to the internal state registers (Horizontal and Vertical counters, Program counter, EOS and
EOB flags) can only be done when in a Hold mode.

• When the unit is in a Hold mode, the IM_clk bit should be set (use IMAGINE clock) and DCD1 and DCD0
should be cleared to avoid problems.

• In Slave mode the unit functions normally if the external reset signals are low (‘0’). If these signals never
become active, there is no change between Master and Slave mode. This means that a valid program is still
required. Importantly a program induced horizontal or vertical reset will be executed if the program reaches
that state before the externally applied signals. This would probably not be the required “slave” operation. In
order to avoid this, the horizontal compare value for the “Wait for line end” instructions (Instruction type 1)
should be increased (even set to 4095) to insure that the external reset signals be acknowledged.

• Care should be taken to supply the unit with a valid program. In general the compare values in the
instructions should always be greater than or equal to the relevant Horizontal or Vertical counter. If the
instruction compare value is less than the current counter value, the counter will have to overflow through
zero before the reaching the compare value.

• Various programs may produce the same results. Instruction types 2 and 3 usually have different placement
possibilities.

User’s Manual 10/2/2008 page 170

Imagine 2 Multi Media Processor 24 Video Timing Generators

Chapter

25. VIDEO OUTPUT UNIT

The Video Output Unit receives video timing information from the video output
timing generator and pixel data from the video output fifo. It translates 32 bit, 16 bit
hi-color or 8 bit pseudo color pixel information into 32 bit alpha, red, green, blue
information. The three color components go to the video DAC and the alpha value
can be re-directed to the 8 bits of the digital video port. A 32x32x2 bit VGA
compatible hardware cursor is also provided. 3x256x8 bit color look up tables can
be used for pseudo color to true color conversion or to used for true color matching
as required by the PC98 standart

User’s Manual 10/2/2008 page 171

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.1 The Input / Output Signals of RAMDAC (digital circuit)

25.1.1 Input/ Output signals definitions

Fifo Interface signals

PixIn [63:0] input 64 bit pixel data from FIFO. Data formats are:
1) 8bit x 8 words (pseudo color)
2) 16 bit x 4 words (direct color)
3) 32 bit x 2 words (direct color)

ReadNext output Data read request to FIFO (active high)

CtrlReg [23:16] output FIFO control register outputs.
 bit 16: Fifo Enable
 bit 17: Almost Empty Interrupt Enable
 bit 19, 18: Reserved (reset to ‘0’)
 bit 23..20: Watermark of Almost Empty Interrupt

User’s Manual 10/2/2008 page 172

8

64

32

4

14

Hsync_In_n

CtrlReg [23:16]

ReadNext
AlphaPixIn [63:0]

Hsync_n_In
Vsync_n_In

Blank_n_In

Odd/Even_n_O

IPB_Master

Odd/Even_n_In

DotClk

8

Red 8

Green 8

Blank_n_O
VSync_n_O
HSync_n_O

Sync_on_Green

Blue 8

BlankLV

IPB_Request
IPB_RW
IPB_I_Ready
IPB_Space0
IPB_Address[15:2]
IPB_BE[3:0]
IPB_WrData[31:0]

Reset

CP (Imagine Clock)

IPB_T_Ready

IPB_RdData[31:0]
32

from
Video
Timing
Generator Video

Timing
Outputs

to
DACs

FIFO
interface

from
Internal
Peripheral
Bus

to
Internal
Peripheral
Bus

Imagine 2 Multi Media Processor 24 Video Timing Generators

Video Timing signals (from Video Timing Generator)

HSync_n_In input Horizontal sync input from Video Timing Generator (active
low) . This signal is synchronized with DotClk.

Vsync_n_In input Vertical sync input from Video Timing Generator (active
low). This signal is synchronized with DotClk.

Blank_n_In input Blank input from Video Timing Generator (active low).
This signal is synchronized with DotClk.

Odd_Even_n_In input Odd or even field input from Video Timing Generator.
Odd_Even_n_In indicates odd or even field during interlaced
display. When Odd/Even polarity register (Cursor Control
Register bit 13) set to 1, a low signal indicates the even field
and a high signal indicates the odd field. The polarity can be
inverted by value of Odd/Even polarity register. This signal is
synchronized with DotClk.

DotClk input Pixel clock input.

Color output signals (To DACs)

Alpha [7:0] output DotClk synchronized alpha color outputs. These signals are
connected to digital input bus of DAC cell.

Red [7:0] output DotClk synchronized red color outputs. These signals are
connected to digital input bus of DAC cell.

Green [7:0] output DotClk synchronized green color outputs. These signals are
connected to digital input bus of DAC cell.

Blue [7:0] output DotClk synchronized blue color outputs. These signals are
connected to digital input bus of DAC cell.

Sync_on_Green output When this signal is high, sync signal is added to Green
Analog Output of DAC cell.

BlankLV output Blank level select signal. When set to high, blank signal is
added to analog outputs of DAC cell (black level > blank
level). When set to zero, black level equals to blank level..

Video Timing output signals

HSync_n_O output Pipeline delayed HSync_n_In signal (active low). This signal
is synchronized with DotClk.

Vsync_n_O output Pipeline delayed Vsync_n_In signal (active low). This signal
is synchronized with DotClk.

Blank_n_O output Pipeline delayed Blank_n_In signal (active low). This signal
is synchronized with DotClk.

Odd_Even_n_O output Pipeline delayed Odd_Even_n_In signal. Value of Odd_Even
Polarity register (Cursor Control Register bit 13) is no effect
to this signal. This signal is synchronized with DotClk.

User’s Manual 10/2/2008 page 173

Imagine 2 Multi Media Processor 24 Video Timing Generators

Internal Peripheral Bus I/F signals

CP (Imagine Clock) input See document “The Protocol of the INTERNAL
PERIPHERAL BUS”

Reset input

IPB_Master input

IPB_Request input

IPB_RW input

IPB_T_Ready output

IPB_I_Ready input

IPB_Space0 input

IPB_Address[15:2] input

IPB_BE [3:0] input

IPB_RdData [31:0] output

IPB_WrData [31:0] input

User’s Manual 10/2/2008 page 174

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.2 RAMDAC module overview
RAMDAC module has two blocks. One is pixel data streams which is pipelined and DotClk synchronized. There
are 7 stages to convert each pixels and to operate cursors.

1) Read 64 bit Pixels from FIFO
2) Select one Pixel (8-bit, 16-bit or 32-bit) from 64-bit pixels and 16- bit to 32 bit color expansion
3, 4) Pseudo color read from Color Look Up RAM (8-bit data only)
5, 6) Cursor operations
7) Output to DAC cells (select color on/ off)

Video timing signals from Video Timing Generator are pipeline delayed same as pixel data.
Another is control block. It has some control registers and interface logic connected to Internal Peripheral Bus.
This block is synchronized with Imagine Clock.

User’s Manual 10/2/2008 page 175

Stage 5, 6
Generate Cursor
 (cur_gen.v)

Stage 7 :
aRGB 32-bit Data out
 (colorout.v)

PixNum [2:0]

PixIn CtrlRegReadNext

64DotClk

IPB
signals

CP (Imagine Clk)

Color On/Off

Alpha Red Green Blue

8 8 88 32 aRGB checksum

aRGB
color

32

RGB
color24

aRGB
color32

Pseudo
color832 aRGB

color

Color Ctrl

64

Cursor Area?

FIFO Ctrl

Test Ctrl

Cursor Ctrl

Stage 3, 4 :
Read Color Look Up Table
 (c_tbl.v)

Stage 2 :
Select pixel / Color expansion
 (divpix.v)

Stage 1 :
Read FIFO (fifoctrl.v)

Horizontal
& Vertical
Counter

Cursor
Position
Register

Cursor Color
Registers

32x32x2
Cursor RAM

256x8 Color
Look Up

Table RAM

Control
Register

Compare

Internal
Peripheral Bus

Interface

HSync_n_In, Vsync_n_In,
Blank_n_In and
Odd_Even_n_In

HSync_n_O, Vsync_n_O,
Blank_n_O and
Odd_Even_n_O

Horizontal counter is
synchronized with DotClk.
Vertical counter is
synchronized with Imagine

clock.

3rd 8 pixels2nd 8 pixels1st 8 pixels

131211109876543210

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.3 Read FIFO (fifoctrl.v)
 This block is first stage of pipelines. While Blank_n_In signal is high, this block generates ReadNext signal to
FIFO, Read 64-bit pixel data from FIFO. The cycle of ReadNext is depend on the value of Pixel Size Register
(Color Control Register bit 3, 2). This register selects incoming data size.

25.3.1 The timing of read from FIFO and ReadNext signal

User’s Manual 10/2/2008 page 176

Case 1: Select 8 bit pixels

DotClk

PixIn[63:0]

Blank_n_In

ReadNext

H_cnt[11:0]

4th 4 pixels2nd 4 pixels 3rd 4 pixels1st 4 pixels

131211109876543210

Case 2: Select 16 bit pixels

DotClk

PixIn[63:0]

Blank_n_In

ReadNext

H_cnt[11:0]

7th 2 pixels6th 2 pixels2nd 2 pixels3rd 2 pixels 5th 2 pixels4th 2 pixels1st 2 pixels

131211109876543210

Case 3: Select 32 bit pixels

DotClk

PixIn[63:0]

Blank_n_In

ReadNext

H_cnt[11:0]

48 47 32 31 1516 063

24

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.3.2 Input Data Format

25.3.3 Block diagrams

User’s Manual 10/2/2008 page 177

Pixel 3 [15:0] Pixel 2 [15:0] Pixel 1 [15:0] Pixel 0 [15:0]

48 394047 32 2331 781516 0555663
Pixel 6 [7:0]Pixel 7 [7:0] Pixel 4 [7:0]Pixel 5 [7:0] Pixel 2 [7:0]Pixel 3 [7:0] Pixel 0 [7:0]Pixel 1 [7:0]

32 31 063
Pixel 1 [31:0] Pixel 0 [31:0]

8 bit Pixels

16 bit Pixels

32 bit Pixels

D_out
(to divpix)

PixIn
(from FIFO)

pixnum
(to divpix)

pixsize

ReadNext
(to FIFO)

 DC

64

En

Read
Next?

2

 DC DC

64

3

Blank_n_In

Count X [2:0]
3

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.4 Pixel select and 16 bit to 32 bit color expansion (divpix.v)
 This block select one 32-bit, 16-bit or 8-bit pixel from 64-bit pixels. Pixel size is defined by Pixel Size register
(Color Control Register bit 3, 2). Pixel select signal (pixnum[2:0]) is generated from Fifoctrl block. In case of
16-bit pixels, 16-bit pixels are expanded to 32-bit direct color data. Data format for 16-bit pixels is given by
Format 16 register (Color Control Register bit 5, 4). See subsection 2.2.2 16-bit to 32-bit color expansion, for
more details. One dot clock cycle is needed to select pixel and color expansion. The block diagram of this
module is as follows.

25.4.1 Block diagrams

25.4.2 16-bit to 32-bit color expansion

User’s Manual 10/2/2008 page 178

R
0

R
1

R
2

R
3

R
4

A
0

A
0

A
0

A
0

A
0

A
0

A
0

A
0

28293031 24252627 20212223 16171819

R
2

R
3

R
4

B
0

B
1

B
2

B
3

B
4

G
2

G
3

G
4

G
0

G
1

G
2

G
3

G
4

12131415 891011 4567 0123

B
2

B
3

B
4

B
3

B
4

G
0

G
1

G
2

G
3

G
4

R
0

R
1

R
2

R
3

R
4

A
0

12131415 891011 4567 0123
B
0

B
1

B
2

1555 -> 8888

R
0

R
1

R
2

R
3

R
4

1111111
1

28293031 24252627 20212223 16171819

R
2

R
3

R
4

B
0

B
1

B
2

B
3

B
4

G
4

G
5

G
0

G
1

G
2

G
3

G
4

G
5

12131415 891011 4567 0123

B
2

B
3

B
4

B
3

B
4

G
0

G
1

G
2

G
3

G
4

G
5

R
0

R
1

R
2

R
3

R
4

12131415 891011 4567 0123
B
0

B
1

B
2

565 -> 8888

Data_32
(to c_tbl)

Data_8
(to c_tbl)

3

88

3232

32

32

16

2

64

bit 0

bit 1:0

bit 2:0
 DC

 DC

2:1
 Mux

16-bit
->32-bit
 color

expansion

4:1
 Mux

2:1
 Mux

8:1
 Mux

pixsize[1]

Format16

pixnum

D_in
(from fifoctrl)

R
3

R
0

R
1

R
2

R
3

A
0

A
1

A
2

A
3

A
0

A
1

A
2

A
3

28293031 24252627 20212223 16171819

R
0

R
1

R
2

B
3

B
0

B
1

B
2

B
3

G
0

G
1

G
2

G
3

G
0

G
1

G
2

G
3

12131415 891011 4567 0123

B
0

B
1

B
2

B
3

G
0

G
1

G
2

G
3

R
0

R
1

R
2

R
3

A
0

A
1

A
2

A
3

12131415 891011 4567 0123
B
0

B
1

B
2

4444 -> 8888

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.5 Read Look-up Table RAM (c_tbl.v)
In pseudo color mode, 8-bit pixel data is used as address the color look-up table RAM. Color look-up table RAM
consists of 256x24 bit 2-port asynchronous RAM. 2 dot clock cycles is needed to read color look-up table. In
case of 32-bit pixels, data is only 2 clock pipelined. Color look-up table RAM is not initialized and may be
written or read from IPB at any time. When read color table by IPB bus, first hold output register of pipeline
with valid data (current data), then switch multiplexer to IPB_Address. Output register is held 2 imagine clock
cycles. The block diagram of this block is as follows.

User’s Manual 10/2/2008 page 179

2

24

8
8
8

24 8
8
8

8
8

8
8

8

8

8

8

Data_32
(aRGB color)

Data_8
(pseudo color/
gray scale) DC

Wr
pulse
Gen.

 CP

Color Look-up Table /
Gamma Correction RAM

(256x8 RAM x3)

Dout_mem
(RGB color)

RdData
(to IPB Bus)

R_Adr[7:0]

Hold

R_Data[7:0]

W_Adr[7:0]

W_Data[7:0]

WE[7:0]

8

 CP

24

 CP

243

 CP

BWE

RE

Address

Pix_size

Dotclk_detect

WrDatafrom
IPB Bus

 DC

 CP

24

24

OR

 DC

32

 DC

Dout_thru
(aRGB color)

 DC

32

CP: Imagine Clock
DC: Dot Clock

Mux

8
8

24

Sel

Sel

32

24

 if pixsize == 0,
 {8'hff, {3{data_8}}},
else, data_32

 if pixsize == 0,
 {3{data_8}}},
else, data_32[23:0]

 RGB only

 if no dotclk,
set direct

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.6 Cursor Generation (cur_gen.v)
 This block generate two color 32x32 pixel cursor. Two dot clock cycles is needed to generate cursor. XGA
cursor and X-Windows cursor modes are available. Cursor mode is defined by Cursor Type register(Cursor
Control Register bit 9). The cursor operates in both non-interlaced and interlaced modes. It is defined by Cursor
interlace register(Cursor Control Register bit 12). When Cursor interlace register set to 1, polarity of
Even_Odd_n_In can be changed by Cursor Polarity register(Cursor Control Register bit 13).
 The pattern for the 32x32 cursor is provided by the cursor RAM, which may be access from IPB at any time.
Cursor positioning is performed using the Cursor_x, Cursor_y registers. Positions x and y are defined increasing
from left to right and from top to bottom.
Block diagram of this blocks is as follows.

25.6.1 Block diagrams (cur_gen.v)

25.6.2 Cursor modes definitions
 The 32x32x2 cursor RAM provides two bits of cursor information on every dot clock during the 32x32 cursor
window. Cursor Type register (Cursor Control Register bit 9) specify XGA mode or X-Window mode. When
Cursor On register(Cursor Control Register bit 8) is 0, the cursor is disabled. The two bits of cursor pixel data
determine the cursor appearance as follows.

RAM COLOR SELECTION
PLANE1 PLANE0 XGA mode X-Window mode

0 0 Cursor color 0 Transparent
0 1 Cursor color 1 Transparent

1 0 Transparent Cursor color 0

1 1 Complement Cursor color 1

User’s Manual 10/2/2008 page 180

32

32

Sel

Cursor
plane 1

2

24

24

24

24

24

Cursor_color0

24

12

32

Alpha

Alpha

RGB

RGB

RGB

8

Cursor
plane 064Read Data

from Cursor
RAM

Cursor_On,
Cursor_type
(from cursor ctrl reg.)

Cursor_On,
Cursor_type
(from cursor ctrl reg.)

32bit
shift
reg.

4:1
Mux

Cursor
type?

Cursor
area?

32bit
shift
reg.

Mux

24

0xff

Din_mem

Din_thru

Gamma_on

D_out

Cursor_color1

Cursor_en
Count_X

Cursor_X

24

12
All F/Fs are synchronized with DotClk

 Select:
 Cursor Color 0
 Cursor Color 1
 Transparent
 Invert

Mux8

8

 optional Alpha output is 2 clocks
earlier than
 RGB data (to output pin).

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.6.3 Cursor RAM
 The 32x32x2 cursor RAM defines the pixel pattern within the 32x32 pixel cursor window. It is not initialized
and may be written or read from Internal Peripheral Bus (offset 0x100 to 0x1ff) at any time.
 The cursor plane 0 bits for the entire cursor array are stored in the first 128 bytes of the RAM, and the cursor
plane 1 bits are stored in the last 128 bytes of the RAM. Information for eight cursor pixels is stored in each byte.
Each four bytes of pixels makes one line of the cursor. This 32 bit x 2 plane data is read from cursor generation
block each vertical lines and stored to shift register while value of vertical counter in cursor window. Then
while value of horizontal counter is in cursor window, the shift register is shift to left every dot clock.

User’s Manual 10/2/2008 page 181

5

5

5 32

32

12

5

5

64

Count_y

Cursor_y

Odd_Even,
Cur_interlace,
Cur_polarity

 CP

Mux

Mux

Wr
pulse
Gen.

 CP

32x32x2 Cursor RAM
(32x64 RAM)

Cursor_area_y
(to Cur_Gen)

Cursor_out
(to Cur_Gen)

RdData
(to IPB Bus)

R_Adr[4:0]

R_Data[63:0]

W_Adr[4:0]

W_Data[63:32]

W_Data[31:0]

WE[7:0]

6

 CP

3232

 CP

EnSelect
bit 63:32/
bit 31:0

84

MSB

 CP

BWE

RE

Address

WrData

from
IPB Bus

 CP

 CP

64

32

CP: Imagine Clock

12

Cursor
area?

3232

 CP

 CP

 CP

Imagine 2 Multi Media Processor 24 Video Timing Generators

User’s Manual 10/2/2008 page 182

8 pixels

8 pixels

32
pixels

D4D5D6D7 D0D1D2D3

‚b‚t‚q‚r‚n‚q ‚o‚k‚`‚m‚d 1

Upper Left Corner of Cursor
 as Displayed on Screen

Byte 83 Byte 82 Byte 81 Byte 80

Byte 87 Byte 86 Byte 85 Byte 84

.

.

.

.

.

Byte ff Byte fe Byte fd Byte fc

32
pixels

First Displayed Pixel
 (Leftmost)

32
pixels

D4D5D6D7 D0D1D2D3

‚b‚t‚q‚r‚n‚q ‚o‚k‚`‚m‚d ‚O

Upper Left Corner of Cursor
 as Displayed on Screen

Byte 03 Byte 02 Byte 01 Byte 00

Byte 07 Byte 06 Byte 05 Byte 04

.

.

.

.

.

Byte 7f Byte 7e Byte 7d Byte 7c

32
pixels

First Displayed Pixel
 (Leftmost)

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.6.4 Cursor positioning
 The cursor position x, y registers position the 32x32 cursor on the display screen. The cursor position x, y
registers specify the location of the cursor top left corner on the display screen relative to the end of the
Blank_n_In signal. Figure shows the orientation of the x, y coordinates for positioning the cursor.
 The values written to the cursor position registers represent the position of the top left corner of the cursor.
When value X is written to the cursor position x or value Y is written to cursor position y registers, the cursor is
off the screen. When the cursor position x, y is (X - 1, Y - 1), only a single pixel of the cursor is displayed and it
appears at the lower right corner of the screen.

User’s Manual 10/2/2008 page 183

x

yScreen(0, 0)

Screen(X, Y)

Cursor(x, y)

Cursor position (x + 31, y +
31)

Active Display Area

32x32
Cursor Area

Blank_n
Blank_n

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.7 Color Data out (colorout.v)
 This block has the 32-bit alpha RGB registers for the digital color outputs and checksum registers for each 8-bit
color. When Color On register(Color Control Register bit 0) is 1, color outputs are disabled (all ‘0’). The
checksum registers is connected to 32-bit color output registers (at the end of the pipeline) and checksum values
are calculated each 8-bit colors. When Test Control Register bit 24 set to 1, checksum registers are enabled
(calculate checksum). When set to 0, checksum registers are held its values. These values are synchronized with
Imagine clock using two 32-bit registers. It can be read from Internal Peripheral Bus (offset 0x008). While
calculate checksum read values are all ‘0’. When bit 25 of Test Control Register set to 1, checksum registers
reset to ‘0’.The block diagram of this module is as follows.

User’s Manual 10/2/2008 page 184

+

bit 31:24
bit 23:16
bit 15:8
bit 7:0

32

 DC

AndAnd
Mux

 DC CP CP

Alpha
Red
Green

Din

Blue
a_chksum
r_chksum
g_chksum

enb_chksum b_chksum
rst_chksum

8

+

8

8

Alpha

Red

Green

Blue

to
DACs

to IPB

CP: Imagine clock
DC: Dot Clock

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.8 Internal Peripheral Bus I/F
 RAMDAC module has Internal Peripheral Bus(IPB) interface giving direct access to the registers and memories
of this module. These are mapped on IPB address space 0 (IPB_Space0). 2048 byte ranges are needed. These
registers and memories are addressed directly by IPB_Address[10:2] from IPB and can be written or read at any
time. When write access, write transfer always successfully terminate at first try. IPB_Address[10:2] and
IPB_WrData[31:0] are stored, then write to registers and memories at next cycle. In case of read access, it takes
two cycles to read from registers and four cycles to read from memories (color look-up table or cursor RAM).

User’s Manual 10/2/2008 page 185

32

32

32

32

4

32

 CP

32

Select Read Data

Access? Ctrl Regs

Cursor
Position

x, y

Read
Enable
Gen..

Byte Write
Enable
Gen.. Cursor

Color
0, 1

IPB_RW

IPB_Space0

IPB_RdData

IPB_T_Ready

IPB_BE

Addr

WrData

IPB_Master

IPB_I_Ready

IPB_WrData

lut_ram_re
(to color LUT RAM)

cur_ram_re
(to cursor RAM)

IPB_Address bit 15:11

4

Req

Retry

Req

bit 10:2

 CP

4

4

3

4

3

IPB_Request

Cursor RAM Data 32

9

hvcnt_bwe
(to counters)
lut_ram_bwe
(to color LUT RAM)
cur_ram_bwe
(to cursor RAM)

read enable for
ctrlregs, checksums, cusor_x, y
and cursor color 0, 1

C_LUT Data 24
Count x, Count y 32
Checksum reg

32

hvcnt_re
(to counters)

BLUE Checksum[7:0]
[read only]

‘0’

Reserved

Alpha Checksum [7:0]
[read only]

Reserved
 4

8

12
16

GREEN Checksum [7:0]
[read only]

RED Checksum [7:0]
[read only]

00
Test Control

Register
FIFO Control

Register
Cursor Control

Register
Color Control

Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Cursor Position X [11:0] ‘0’ Cursor Position Y[11:0]

‘0’
20

Horizontal Count [11:0] ‘0’ Vertical Count [11:0]

Cursor Color 0
BLUE [7:0]

‘0’
24

Cursor Color 0
GREEN [7:0]

Cursor Color 0
RED [7:0]

Cursor Color 1
BLUE [7:0]

‘0’
28

Cursor Color 1
GREEN [7:0]

Cursor Color 1
RED [7:0]

Reserved
32

‘0’
 0 0 0 1 0 RAMDAC Register Space

12131415 891011 4567 0123

Cursor Plane 0 Line 0
256

Cursor Plane 0 Line 31
380

Cursor Plane 1 Line 0
384

Cursor Plane 1 Line 31
508

Reserved
512

Color Look Up Table RAM Entry 0
(R[7:0] G[7:0] B[7:0])1024

‘0’

Color Look Up Table RAM Entry 255
(R[7:0] G[7:0] B[7:0])2024

‘0’

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.8.1 RAMDAC base address

IPB_Address

25.8.2 RAMDAC registers memory map

User’s Manual 10/2/2008 page 186

Color Control
Register

Test Control
Register

FIFO Control
Register

Cursor Control
Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.9 Control Registers

25.9.1 Color Control Registers
 This registers controls input data selections and color output signals. Input data types are selected from 16-, 32-
bit direct color and 8-bit pseudo color mode. In 16-bit direct color mode, 1555 format, 565 format and 4444
format can be selected.
 Bit7:6 controls analog output levels. When bit 6 is set to ‘1’, 442.5 LSBs of current are added to the Green
output. When bit 7 is set to ‘1’, 83.5 LSBs of current are added to the outputs.
 When Bit 0 is set to ‘1’, color outputs, sync, blank and fields signals is inactive. When IPB Reset is asserted to
‘1’, this bit is set to ‘1’.
 This registers can be write or read from Internal Peripheral Bus. It is not initialized except bit 0.

User’s Manual 10/2/2008 page 187

 Input Pixel Size
 bit 3,2: 00 = 8 bit Pixels 01 = 16 bit Pixels
 1x = 32 bit Pixels

 16 bit Data Format
 bit 5,4: 00 = Reserved 01 = 1555 format
 10 = 565 format 11 = 4444 format

 DAC output level specifications
 bit 6: 1 = Sync on Green output
 bit 7: 0 = Black Level == Blank Level
 1 = Black Level > Blank Level

bit 0: 1 = Enable Color outputs, sync, blank and field signals
 0 = Disable Color outputs, sync, blank and field signals

 Direct Color/ Lookup Table selection
bit 1: 0 = direct color (16-bit,32-bit pixels) / gray scale
 (8-bit pixels)
 1 = enable gamma correction (16-bit, 32-bit pixels) /
 enable lookup table RAM (8-bit pixels)

Color Control
Register

Test Control
Register

FIFO Control
Register

Cursor Control
Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

 Odd/Even Polarity
 bit 13: 0 = odd -> 1, 3, 5..... even -> 0, 2, 4.....
 1 = odd -> 0, 2, 4..... even -> 1, 3, 5.....

 bit 8: 0 = no cursor 1 = show cursor

 bit 9: 0 = XGA cursor 1 = X-Windows cursor

 bit 11, 10: Reserved

 bit 12: 0 = non-interlaced cursor 1 = interlaced cursor

 bit 14: Reserved

 bit 15: 0 = disable alpha out 1 = enable alpha out

Color Control
Register

Test Control
Register

FIFO Control
Register

Cursor Control
Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

 bit 16: 0 = disable FIFO (reset FIFO) 1 = enable FIFO

 bit 17: 0 = disable Almost Empty Interrupt
 1 = enable Almost Empty Interrupt

 bit 19, 18: Reserved

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.9.2 Cursor Control Register
This register controls 32x32 pixel cursor. X-windows and XGA modes are available(bit 9). The cursor operates
in both non-interlaced and interlaced modes (bit 12). In non-interlaced mode, bit 7 of this register allows the
polarity of Odd/Even_n signal to be inverted when set to ‘1’(It has no influence to Odd/Even_n_Out signal). Bit
8 of this register controls display cursor or not.

This registers is not initialized and can be write or read from Internal Peripheral Bus at any time.

25.9.3 FIFO Control Register
This registers controls the FIFO module. The outputs of this registers are directly connected with the FIFO
module. Bit 16 of this register controls the FIFO operation. When set to ‘0’, disable FIFO operation (FIFO read
address counter reset to ‘0’). Bit 17 of this register enables FIFO Almost Empty
Interrupt. Bit 23..20 is watermark for FIFO Almost Empty Interrupt. When the data stored in FIFO is lower than
values of bit 23..20 times 8 words, FIFO Almost Empty Interrupt is generated.
This registers is not initialized and can be write or read from Internal Peripheral Bus at any time.

User’s Manual 10/2/2008 page 188

Watermark
 0: 0 words 8: 64 words
 1: 8 words 9: 72 words
 2: 16 words 10: 80 words
 3: 24 words 11: 88 words
 4: 32 words 12: 96 words
 5: 40 words 13: 104 words
 6: 48 words 14: 112 words
 7: 56 words 15: 120 words

Color Control
Register

Test Control
Register

FIFO Control
Register

Cursor Control
Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

 bit 24: 0 = Hold Checksum register 1 = Enable Checksum register

 bit 25: 1 = reset Checksum register

 bit 27: Reserved

 bit 26: 0 = not dot clock detected 1 = dot clock detected [read
only]

 bit 28: Odd/Even_n signal (from Video Timing Generator) [read
only]

 bit 29: Blank_n signal (from Video Timing Generator) [read
only]

 bit 31: Hsync_n signal (from Video Timing Generator) read only [read
only]

 bit 30: Vsync_n signal (from Video Timing Generator) [read
only]

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.9.4 Test Control Register
 This registers is used for test of RAMDAC module. Bit 25, 24 is controls the color out checksum registers
operations. When bit 24 is ‘1’, checksum registers are enabled. While enabled, read values of checksum registers
are always ‘0’. When bit 24 is ‘0’, checksum registers are held, these values can be read. When bit 25 set to ‘1’,
checksum registers reset to ‘0’. Bit 25, 24 of this registers is not initialized and can be write or read from Internal
Peripheral Bus at any time.
Bit 26 is used for dot clock detection. If set to ‘0’, it means “no dot clock detection”.
Bit 31..28 is monitoring registers of timing signals generated by Video Timing Generator. These signals are
synchronized to Imagine clock. Bit 31..28 and 26 can be read from Internal Peripheral Bus.

25.9.5 Test Registers
 This registers are checksum of color output data. This registers can be only read from Internal Peripheral Bus at
any time. See subsection 2.5 Color Data out, for more details.

25.9.6 Cursor Position x, y Registers
 This registers indicates the location of the cursor top left corner on the display screen. This registers can be
write or read from Internal Peripheral Bus at any time. See subsection 2.4.4 Cursor positioning, for more
details.

User’s Manual 10/2/2008 page 189

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.9.7 Count x, Count y Registers
 These registers are output of the 12-bit horizontal and vertical counters to display pixels. Horizontal counter
count up on every dot clock cycle during Blank_n_In signal is inactive (asserted to 1). When Blank_n_In is 0,
horizontal counter reset to 0.
 Vertical counter is synchronized by Imagine clock. Vertical counter count up when Blank_n_In signal
falls to 0. When Vsync_n_In falls to 0, vertical counter reset to 0. Blank_n_In and Vsync_n_In are synchronized
by Imagine clock, then used. The values of these registers can be load from IPB for the purpose of test. When
read access from IPB, the values of horizontal counter is connected with IPB via Imagine clock synchronized
registers. The outputs of vertical counter is directly connected with IPB.

25.9.8 Cursor Color 0, 1 Registers
 These registers store the 24-bit RGB color data for 2 color 32x32 cursor window. This registers can be write or
read from Internal Peripheral Bus at any time See subsection 2.4.2 Cursor modes definitions, for more details.

25.9.9 Cursor Plane 0, 1 entries
These are the entries to the 32x32x2 cursor RAM defines the pixel pattern within the 32x32 pixel cursor window.
It is not initialized and may be written or read from Internal Peripheral Bus (offset 0x100 to 0x1fc) at any time.
See subsection 2.4.3 Cursor RAM, for more details.

25.9.10 Color Look-up Table RAM entries
 These are the entries to the 256x24 bit color look-up table RAM for pseudo color mode. Color look-up table
RAM is not initialized and may be written or read from Internal Peripheral Bus (offset 0x400 to 0x7fc) at any
time. See subsection 2.3 Read Look-up Table RAM, for more details.

User’s Manual 10/2/2008 page 190

Imagine 2 Multi Media Processor 26 Video Input Unit

Chapter

26. VIDEO INPUT UNIT

The Video Input Unit can load digital video data from the 8 bit video input bus.
This bus xecute timing instructions from their own Timing instruction RAM and are
capable op generating arbitrary video timing signals up to a resolution of 4096 by
4096 pixels, including CCIR601, NTSC and PAL-M formats. The Video output
timing generator sends its timing signals to the video output unit. Both video input
and output timing generators can be independently synchronised to the CCIR 656
video input or to the external Vreset* pin. Both can independently choose between
the clock from the internal dot clock generator or the CCIR 656 video input clock.

User’s Manual 10/2/2008 page 191

Imagine 2 Multi Media Processor 26 Video Input Unit

26.1 The Input/Output Signals of the Video Input Unit

26.1.1 Signal definitions

IPB_MASTER input See : “The protocol of the Internal Peripheral Bus”
IPB_REQUEST input
IPB_I_READY input
IPB_SPACE [6:0] input
IPB_ADDRESS [15:2] input
IPB_BE [3:0] input
IPB_WRDATA [31:0] input
RESET input
CP input
IPB_T_READY output
IPB_RDDATA output

DOT_CLK input External DOT clock. (May not be present)
IN_BYTE input 8-bit digital input data. (Usually YUV data as per CCIR

recomendation)
ALMOST_FULL output FIFO almost full flag. Signals Imagine that a FIFO read is

required to avoid data loss. The FIFO should never be
allowed to get completely full and it cannot stall the input.

H_RESET0 output Horizontal reset pulse for Video Timing Generator 0
V_RESET0 output Vertical reset pulse for Video Timing Generator 0
H_RESET1 output Horizontal reset pulse for Video Timing Generator 1
V_RESET1 output Vertical reset pulse for Video Timing Generator 1

User’s Manual 10/2/2008 page 192

IPB_MASTER
IPB_REQUEST
IPB_RW
IPB_I_READY
IPB_SPACE [6:0]
IPB_ADDRESS [15:2]
IPB_BE [3:0]
IPB_WRDATA [31:0]
RESET
CP

IPB_T_READY
IPB_RDDATA [31:0]

DOT_CLK
IN_BYTE

ALMOST_FULL
H_RESET0
V_RESET0
H_RESET1
V_RESET1

32

32
4

7
14

8

Imagine 2 Multi Media Processor 26 Video Input Unit

26.2 Module overview of the Video Input Unit (VIN)

The Video Input Unit consists of six modules.

1. IPB-interface.
2. Stage0 (Input stage).
3. Stage1 (optional 4:2:2 to Alpha:4:4:4 conversion with possible downsampling).
4. Stage2 (optional downsampling).
5. Stage3 (optional colour conversion YUV -> RGB).
6. FIFO.

26.2.1 The IPB_interface
The IPB-interface connects the VIN to the Internal Peripheral Bus. It decodes the IPB request and determines the
appropriate action for the request. All accesses through the IPB to this unit require multiple cycles, except
reading from the FIFO which is completed within a single cycle. This allows a fast burst read when the FIFO is
almost full. This unit also contains the control registers for the rest of the unit.

26.2.2 Stage0 (Input stage)
The input stage is the most complex of all the stages. It has to detect global synchronisation of the input data
stream, proper word grouping (4-bytes), horizontal and vertical sync signals, line and/or field skipping,
synchronisation errors etc. This stage basically determines which data to pass to the next stage. Once the input
stage outputs data to the next stage, the data passes through the other stages and into the FIFO.

26.2.3 Stage1 (4:2:2 to A:4:4:4 conversion)
This stage optionally converts a 4:2:2 input word into a A:4:4:4 value with A taken from a programmable
register. This stage has three modes:

0 : pass through (X3, X2, X1, X0)  (X3, X2, X1, X0)
1 : 4:2:2 to A:4:4:4 with downsampling (Y1, V0, Y0, U0)  (A, V0, (Y1+Y0)/2, U0)
2 : 4:2:2 to A:4:4:4 (Y1, V0, Y0, U0)  (A, V0, Y0, U0) (A, V0, Y1, U0)
3 : RESERVED

Mode 1 achieves a 2:1 horizontal downsampling of the input data. With mode 2 a single input word creates two
output words which effectively upsamples the input data. When digital line blank data or field blank data is
received, then no conversion is performed, irrespective of the mode.

26.3.4 Stage2 (Down sampling)
This stages does optional 2:1 downsampling of the input. It has four modes of operation.

0 : pass through (X3, X2, X1, X0)  (X3, X2, X1, X0)
1 : A:4:4:4 downsampling (A0, V0,Y0, U0),(A1, V1,Y1, U1)  ((A1+A0)/2, (V1+V0)/2, (Y1+Y0)/2, (U1+U0)/2)
2 : 4:2:2 downsampling (Y1, V0, Y0, U0) (Y3, V1, Y2, U1)  ((Y3+Y2)/2, (V1+V0)/2, (Y1+Y0)/2, (U1+U0)/2)
3 : 8-bit downsampling (X7, X6, X5, X4) (X3, X2, X1, X0)  ((X7+X6)/2, (X5+X4)/2, (X3+X2)/2, (X1+X0)/2)

Mode 1 together with mode 1 of stage 1 achieves a 4:1 horizontal downsampling of the input data stream. As
with the previous stage no transformation is performed on digital blanking data. Note that modes 1 to 3 require
two input words from the previous stage before generating an output. If a pre-amble is detected while this stage is
still waiting for the second input word, the saved word is discarded for this would indicate an error condition.

26.3.5 Stage3 (Colour conversion)
This stage does the optional A:4:4:4 to ARGB conversion. The coefficients in the conversion matrix are
programmable to allow for fine tuning of individual requirements and for various other applications. It has two
modes.

0 : pass through (X3, X2, X1, X0)  (X3, X2, X1, X0)
1 : A:4:4:4 to ARGB (A, V, Y, U)  (A, R, G, B)

User’s Manual 10/2/2008 page 193

Imagine 2 Multi Media Processor 26 Video Input Unit

The standard YUV to RGB conversion matrix for CCIR656 data is as follows:

R 1 0 1.371 Y
G = 1 -0.336 -0.698 U
B 1 1.732 0 V

The coefficients are however programmable via control registers 4, 5 and 6. The coefficients have a sign bit and
an eight bit value in the 1.7 format (1 bit before the decimal comma and 7 after). They can therefore vary from
-1.9921875 to +1.9921875 (+- 1.1111111). This allows for fine tuning the colour conversion matrix.

R a b c Y
G = d e f U
B g h i V

26.3.6 FIFO (128 deep by 32-bit wide)
The FIFO stores the data coming from stage 3. It has a programmable watermark to determine the ALMOST
FULL state. As it is not possible to stall the input data stream, it should NEVER be allowed to become
completely full. The almost full flag generates an interrupt to the processor to indicate that data is available.

User’s Manual 10/2/2008 page 194

Imagine 2 Multi Media Processor 26 Video Input Unit

26.4 Functional description of the Video Input Unit
The VIN is mainly intended for accepting digital input data as per the CCIR 656 recommendation. All the
programmable options do however allow for other user defined applications. It is for instance possible to accept
any incoming data and pass it through to the processor where any software manipulation can be performed. The
VIN contains downsampling and colour conversion circuitry to reduce the burden on the processor, especially for
applications which do not require the full resolution.

The operation of the VIN will now be described with an assumed CCIR656 input data stream.

Block diagram of the Video Input Unit

User’s Manual 10/2/2008 page 195

IPB
Interface

CONTROL
REGISTERS

ALMOST
FULL

DATA

{ CP

IPB signals

Stage 0

DATA CONTROL

Stage 1

DATA CONTROL

Stage 2

DATA CONTROL

Stage 3

DATA CONTROL

FIFO

The CLK signal may be either the DOT_CLK or a clock pulse from the
IPB interface (synchronous to the Imagine clock CP)

CLK

32

32

32

32

32

Imagine 2 Multi Media Processor 26 Video Input Unit

26.4.1 Stage0 (Input stage)
This stage is the most complex of the four stages. It’s main function is to determine what data to pass into the rest
of the pipeline. After a reset the first task this unit has to perform is to synchronise on the incoming data stream
(if synchronisation is enabled). After a reset the incoming data could be at an arbitrary position in the video
frame. In order to determine synchronisation, the unit uses the bits 16 to 23 in control register 2 to detect a valid
FVH combination, which forms part or the byte after a received pre-amble (the pre-amble is defined as hex FF
00 00 in CCIR656).

The exact method used to determine a valid FVH combination needs some elaboration as it is also used in
detecting the Horizontal and Vertical reset pulses from the input data stream.
• Firstly there are the three compare values for F, V and H. (Refer to control register 2 bit definition) These bits

determine what the values of F, V and H should be in the input for a valid detection. They only apply
however if the corresponding enable bit is logic ‘1’.

• The three enable bits determine which of the three values (F, V and H) should be used in the comparison. If
the enable bit is logic ‘0’, the corresponding value is NOT used in the comparison and the compare value is
then a don’t care.

• The transition detect is used to determine a transition in the state of F and/or V. This means that not only
should the current F and/or V value be correct, but it/they should have changed from the previously received
F and V. This allows for an unambiguous placement of the selected signal be it the global sync, horizontal or
vertical reset pulse. There is no transition check for H because according to the CCIR specification, the H
values changes with every received pre-amble.

To clarify the method, a few examples will be given.
• The required values for a “normal” horizontal reset pulse at the end of the active video line (start of H_sync)

would be FVH_enable=(001), FVH_compare=(xx1), FV_trans=(00). Only the H value is used in the
comparison and no transition detection is required. The pulse will therefore be generated every time the
received H is a logic ‘1’. If the H compare value is set to ‘0’, the pulse will be generated at the start of the
active video (end of H_sync).

• The required values for a vertical reset pulse would be FVH_enable=(010), FVH_compare=(x1x) and
FV_trans=(01). Only the V value is used and it should change TO a ‘1’ to create the pulse. This will create
two reset pulses at the start of the V_sync during the first and second fields (interlaced). If it is required only
for the second field, then the values should be FVH_enable=(110), FVH_compare=(11x) and FV_trans=(01).

• For global synchronisation a logical position would be at the start of the first field. The required values for
this are FVH_enable=(100), FVH_compare=(0xx) and FV_trans=(10).

It is important to note that various other values could be used, but they would not be useful with CCIR656 input
data. For instance checking for a transition in BOTH F and V would not work because in CCIR656 data these
two values never have transitions SIMULTANEOUSLY. This might however not be applicable in other
applications.

The vertical reset pulse is also used to reset the line counter within stage 0. This counter holds the current input
line number and is increased by the horizontal reset pulse. Because these pulses are however programmable, the
line number does not correspond to the same line number as defined in the CCIR656 specification. This line
number is further used to ignore certain lines (if required. See bits 0-7 of control reg 3). Ignoring lines allows for
elementary vertical downsampling of the input stream.

In general a single frame consists of three distinct data areas.
• Normal line data (YUV pixel data in groups of four received as Cb, Y0, Cr, Y1)
• Digital line blank data (H=1)
• Digital field blank data (V=1)

By setting the required bits (bits0-11 of control register 3) the application program can determine exactly what
data to send to the next stage. Note that the exact line numbers do not correspond to the CCIR656 specification,
but depend on the user placement of the horizontal and vertical synchronisation pulses. When accepting pre-
ambles, the EAV (end of active video) is part of the normal line data and the SAV (start of active video) is part
of the line blank data.

User’s Manual 10/2/2008 page 196

Imagine 2 Multi Media Processor 26 Video Input Unit

26.5 The control registers
The video input unit has six control registers. The first control register is mainly a status register and is intended
for testing. The other five control registers determine all the modes of operation for the different stages, the FIFO
watermark etc. The complete bit definitions are as follows

Control Register 1

0 RESET
1 HOLD
2 FIFO empty
3 FIFO almost full
4 Input Synchronized
5 Synchronization error
6 H_reset
7 V_reset
19:8 Line counter
20 Stage 0 data valid
21 Stage 1 data valid
22 Stage 2 data valid
23 Stage 3 data valid
31:24 Input byte

Control Register 2

Horizontal reset pulse control
0,1,2 H,V,F compare value
3,4,5 H,V,F compare enable
6,7 V,F transition check enable

Vertical reset pulse control
8,9,10 H,V,F compare value
11,12,13 H,V,F compare enable
14,15 V,F transition check enable

Start synchronisation control
16,17,18 H,V,F compare value
19,20,21 H,V,F compare enable
22,23 V,F transition check enable

General control
24 Enable Horizontal reset 0
25 Enable Vertical reset 0
26 Enable Horizontal reset 1
27 Enable Vertical reset 1
28 Enable start synchronisation
29 Enable re-sync on error
30 Enable Hamming error correction
31 Reserved

User’s Manual 10/2/2008 page 197

Imagine 2 Multi Media Processor 26 Video Input Unit

Control Register 3

0 Enable sampling in even field lines xx00
1 Enable sampling in even field lines xx01
2 Enable sampling in even field lines xx10
3 Enable sampling in even field lines xx11
4 Enable sampling in odd field lines xx00
5 Enable sampling in odd field lines xx01
6 Enable sampling in odd field lines xx10
7 Enable sampling in odd field lines xx11
8 Accept field blank data
9 Accept line blank data
10 Accept normal data
11 Accept pre-ambles
13:12 Mode stage 1
15:14 Mode stage 2
16 Mode stage 3
24:17 Alpha
31:25 Watermark

Control Register 4
31:24 a
23:16 b
15:8 c
7:0 d

Control Register 5
31:24 e
23:16 f
15:8 g
7:0 h

Control Register 6
31:24 i
23:9 Reserved
8:0 9 sign bits (a-i) 0=poitive 1=negative

User’s Manual 10/2/2008 page 198

Imagine 2 Multi Media Processor 26 Video Input Unit

26.6 Interfacing with the Video Input Unit through the IPB
All read and write accesses to and from the Video Input Unit require multiple cycles, except reading from the
FIFO which completes within one cycle. There are seven different accesses depending on the selected address
(IPB_ADDRESS).

1. FIFO address (VIN_BASE + 0)
2. Control register 1 (VIN_BASE + 1)
3. Control register 2 (VIN_BASE + 2)
4. Control register 3 (VIN_BASE + 3)
5. Control register 4 (VIN_BASE + 4)
6. Control register 5 (VIN_BASE + 5)
7. Control register 6 (VIN_BASE + 6)

I. The FIFO address can only be read and completes within a single cycle. This allows the FIFO to be
emptied with a burst read when it signals that it is almost full. Control register 1 is a status register and
is intended mainly for testing purposes. Most of the bits are read only. If the unit is in the hold mode, the
dot clock is replaced by a test pulse to facilitate testing. Every WRITE to control register 1 generates
another test pulse. During hold mode the top byte (bits 31:24) of control register 1 is also used as the
input byte instead of the actual byte received. Hereby a program can simulate any possible input byte
stream in a controlled manner for testing purposes.

User’s Manual 10/2/2008 page 199

Imagine 2 Multi Media Processor 29 The I2S audio interface

Chapter

29. THE I2S AUDIO INTERFACE

The I2S audio interface has four different serial audio channels which can be
individually programmed for input and output. Almost all serial formats are
supported including the Sony S format. The polarity of the Left / Right indicator is
programmable as well as the number of bits per audio sample. An on chip RAM of
128 words of 32 bit can be used as a fifo(s) for one to four channels with
progammable fifo size. The fifo(s) can generate interrupts to the Imagine core
processor based on programmable watermarks.

User’s Manual 10/2/2008 page 200

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.1 The Input/Output Signals of I2S Interface Unit

User’s Manual 10/2/2008 page 201

4

32

4

7

14

INT_W

SCKCNT

INT_R

IPB_Master

SDI0
SDI0

WS_in0
WS_out0

IPB_Request
IPB_RW
IPB_I_Ready
IPB_Space0
IPB_Address[15:2]
IPB_BE[3:0]
IPB_WrData[31:0]

Reset

CP (Imagine Clock)

IPB_T_Ready

IPB_RdData[31:0]
32

I2S I/F
signals

Interrupt
signals

For debugging

from
Internal
Peripheral
Bus

to
Internal
Peripheral
Bus

SDI1
SDO1

WS_in1
WS_out1

SDI2
SDO2

WS_in2
WS_out2

SDI3
SDO3

WS_in3
WS_out3

MASTER

4
P_IOn for I/O

direction
Ctrl

SCK

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.1.1 Input/ Output signals definitions

I2S Bus Interface signals

SCK input Serial data clock for every I2S Port

SDI0 input Serial two time-multiplexed data input for I2S Port 0.
 Input data is synchronized with SCK. When P_Ion[0] is set to
1, SDI0 is used as I2S input data port.

SDO1 output Serial two time-multiplexed data output for I2S Port 0. When
P_Ion[0] is set to 0, SDO0 is used as I2S output data port. The
data is synchronized with CP (Imagine clock).

WS_in0 input Word Select signal for I2S Port generated by external I2S
master device.
 When MASTER is logic 0, it is used as word select signal. It
is synchronized with SCK.
 If JPMODE[0] (Main Control register, bit 12) is set to 0 (I2S
input format), “WS_in0 = 0” indicates the left channel data and
“WS_in0 = 1” indicates the right channel data.
In case of “JPMODE[0] = 1” (Japanese input format),
“WS_in0 = 0” indicates the right channel data and “WS_in0 =
1” indicates the left channel data.

WS_out0 output Word select signal for I2S Port 0. When MASTER[0] is set to
1, it is used as word select signal. This signal is generated by
Serial Timing Generator in this unit.
This signal is synchronized with CP (Imagine clock).

SDI1..3 input Serial two time-multiplexed data input for I2S Port 1..3.
(same as SDI0).

SDO1..3 output serial two time-multiplexed data output for I2S Port 1..3 (same
as SDO0).

WS_in1..3 input Word Select signal input for I2S Port 1..3 (same as WS_in0).

WS_out1..3 input Word Select signal ouput for I2S Port 1..3 (same as
WS_out0).

I2S Bus Interface signals (bidirectional control for I/O buffers)

P_Ion[3:0] output This is a register output (Main Control register, bit23..20) and
can be written or read from Internal Peripheral Bus.
These signals are used as the DIR control signal of
bidirectional SDI/SDO I/O buffer.

MASTER [3:0] output This is a register output (Main Control register, bit 11:8) and
can be written or read from Internal Peripheral Bus.
 These signals are used as the DIR control signal of
bidirectional MASTER I/O buffer.

Interrupt signals (to Interrupt Vector Generator)

INT_R output Read interrupt flag.

INT_W output Write interrupt flag.

User’s Manual 10/2/2008 page 202

Imagine 2 Multi Media Processor 29 The I2S audio interface

Internal Peripheral Bus Interface

CP (Imagine Clock) input See document “The Protocol of the INTERNAL
PERIPHERAL BUS, revision 0.9a”

Reset input

IPB_Master input

IPB_Request input

IPB_RW input

IPB_T_Ready output

IPB_I_Ready input

IPB_Space0 input

IPB_Address[15:2] input

IPB_BE [3:0] input

IPB_RdData [31:0] output

IPB_WrData [31:0] input

User’s Manual 10/2/2008 page 203

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.2 I2S Bus Interface Unit overview
 I2S Bus Interface Unit has three interfaces, four port I2S Interfaces, Internal Peripheral Bus, and two interrupt
output signals. Four port I2S (inter-IC sound) bus interfaces are used for communication with the external digital
audio devices. Each ports can be used as input port or output port. These ports are independent (except SCK)
and can be set to master or slave. This interface is based on “I2S bus specification” and also supports
Japanese(SONY) input/output format.
 Internal Peripheral Bus is connected with some internal control registers and I/O registers. These registers are
on IPB_Space0, 64 bytes address area. Internal Peripheral Bus communicates with I2S input or output ports via
internal 128 word x 32 bit FIFO. This FIFO is separated to four areas, and each areas have a independent I/O
registers and Read/Write pointers.
 The two interrupt lines (INT_R, INT_W) are connected to the Interrupt Vector Generator via the Interrupt
Router. When input or output FIFO almost full/empty occurs, this module generates interrupt pulse. All flip-flops
and FIFO are synchronized with Imagine Clock.

User’s Manual 10/2/2008 page 204

MASTER

INT_R

INT_W
ID

SE

SE

SE

I2S_EN

FIFO
status

MASTER, JPMODE, P_IOn

I2S_EN, P_EN

FIFO Control

PRE

PWE

Serial Trans. End

Parallel In

Parallel Out

Frame Size

FIFO Status
Port I/O Status

Port I/O Status

En

RE

Port 0 In
Lch & Rch

(In Reg)

Serial In

Serial Out

Port 0 I/O Interface

WE

Internal
Peripheral

Bus I/F

Port I/O
Status

register

Port 0 Out
Lch & Rch
(Out Reg)

Timing
Gen.
Port 0

Interrupt
Ctrl

Register

Interrupt
Gen.

Main Ctrl
Register

IPB
signals

SDO0

SCK

WS_in0

WS_out0

32 x 128 word
synchronous FIFO

(including FIFO ctrl registers
 & status registers)

SDI0

P_IOn0

Frame Size
Register

 Port 0..3 is consist of the same
circuits.

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.3 Serial Timing Generator (I2S_TGEN.v)
 This block generates serial word select signal (WS) and serial data enable (SE), and serial transfer end signal
(SEND). This block samples SCK by Imagine Clock (CP), detects leading edge of SCK. The SCK counter
(SCKCNT) counts up the leading edge of SCK, generates WS signal (If MASTER is asserted with 1, this block
uses this signal for WS output signal) and serial input/output timing.
 This block also generates I2S serial data write or read enables. The read enables are used for separating each
audio data from multiple serial input (SDATA_IN). The separated audio data are store to 32-bit FIFO input
registers. The write enables are used for making of multiple serial output (SDATA_OUT) from 32-bit FIFO
output registers. All enables are synchronized with Imagine Clock and based on the value of SCKCNT.
 I2S Bus Interface Unit has four Timing Generators for each I2S I/O Ports and separately programmable.

29.3.1 Block Diagram (for I2S I/O Port 0)

User’s Manual 10/2/2008 page 205

7

4

SEL

SENDL

SER

SENDR

SCK_rise

I2S_EN

WSI_edge

WSJ_edge

RST2

RST1

EN

MASTER

JPMODE

WS_in

SCK

IOSts[3:0]
P_IOn
P_EN

FSIZ

DD

D D

Edge
Detector

SCK
Counter

WS_out
Generator

WS_out

2:1
MUX

Serial EN &
Serial End

Signal
Generator

Enable ?

 Enable Conditions
 if P_IOn = 1 (I2S Read),
 P_EN & !IOSts[3] & !IOSts[2].

 else (I2S Write),
 P_EN & IOSts[1] & IOSts[0]

 Frame Size is used only in
Japanese format.

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.3.2 Serial Timing (Slave, I2S format)

29.3.3 Serial Timing (Slave, Japanese format)

User’s Manual 10/2/2008 page 206

SCKCNT = 15
& SCK_riseSCKCNT = 0 & 2d-

WS & Previous
 SEL was set to 1

WSI_edge & SCK_rise ,
Reset SCKCNT

SDO sampling point
(by Master)

SDI sampling point

CP

SCK

Rch bit0
(LSB)

SCK_rise

bit1

01514

WS_in

2d_WS_in

WS_in_1d

WSI_edge

SDO

SDI

SEL

2d-SDI

SCKCNT

SENDL

Lch bit15
(MSB)

Lch bit14

Rch bit0 (LSB)Rch bit1

Lch bit15

Lch bit15 (MSB)

bit1

bit1

bit1

bit1
4

bit14

SER

SENDR

IOSts[3]

IOSts[2]

15141

Lch bit0
(LSB)

Rch bit15(MSB)

Lch bit0
(LSB)

Lch bit0
(LSB)

Rch bit15(MSB)

Rch bit15(MSB)

0

Rch bit0 (LSB)bit1

IOSts[1]

IOSts[0]

Input Port Register Full
(In case of In Port)

Output Port Register Empty
(In case of Out Port)

SCKCNT = 0 & !2d-WS & P_EN
& ! IOSts[1] & ! IOSts[0]
(if Out Port, IOSts[3] & IOSts[2])

SCKCNT = 15
& SCK_rise

Rch bit15(MSB)

Rch bit15(MSB)

SCKCNT = 0 & !2d-
WS & Previous
 SEL was set to 1

WSJ_edge = 0 ,
Reset SCKCNT

SCKCNT = 15
& SCK_rise

SDO sampling point
(by Master)

CP

SCK

Rch bit0 (LSB)

SCK_rise

bit1

01514

WS_in

2d_WS_in

3d-WS_in

WSJ_edge

SDO

SDI

SEL

2d-SDI

SCKCNT

SENDL

Lch bit15 (MSB) Lch bit14

Rch bit0
(LSB)

Rch bit1

Lch bit15

Lch bit15
(MSB)

bit1

bit1

bit1

bit14

bit14

SER

SENDR

IOSts[3]

IOSts[2]

15141

Lch bit0 (LSB) Rch bit15(MSB)

Lch bit0 (LSB)

Lch bit0 (LSB)

0

Rch bit0
(LSB)

bit1

IOSts[1]

IOSts[0]

Input Port Register Full
(In case of In Port)

Output Port Register Empty
(In case of Out Port)

SCKCNT = 0 & 2d-WS & P_EN
& ! IOSts[1] & ! IOSts[0]
(if Out Port, IOSts[3] & IOSts[2])

SCKCNT = 15 &
SCK_rise

SDI sampling point

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.3.4 Serial Timing (Master, I2S format)

29.3.5 Serial Timing (Master, Japanese format)

User’s Manual 10/2/2008 page 207

SCKCNT = 0 & !2d-
WS & Previous
 SEL was set to 1

SCKCNT = 15
& SCK_rise

SCKCNT = 15 & SCK_rise ,
Reset SCKCNT

SCKCNT = 14 & SCK_rise ,
toggle WS_out

CP

SCK

Rch bit0
(LSB)

SCK_rise

bit1

01514

WS_out

SDO

SDI

SEL

2d-SDI

SCKCNT

SENDL

Lch bit15 (MSB) Lch bit14

Rch bit0
(LSB)

Rch
bit1

Lch bit15

Lch bit15
(MSB)

bit1

bit1

bit1

bit14

bit14

SER

SENDR

IOSts[3]

IOSts[2]

15141

Lch bit0
(LSB)

Rch bit15(MSB)

Lch bit0 (LSB)

Lch bit0
(LSB)

Rch bit15(MSB)

Rch bit15(MSB)

0

Rch bit0 (LSB)bit1

IOSts[1]

IOSts[0]
Input Port Register Full
(In case of In Port)

Output Port Register Empty
(In case of Out Port)

SCKCNT = 0 & !WS_out &
P_EN & ! IOSts[1] & ! IOSts[0]
(if Out Port, IOSts[3] & IOSts[2])

SCKCNT = 15 &
SCK_rise

SDO sampling point
(by Slave)

SDI sampling point

Input Port Register Full
(In case of In Port) Output Port Register Empty

(In case of Out Port)

CP

SCK

Rch bit0 (LSB)

SCK_rise

bit1

SCKCNT = 15
& SCK_rise

0

SCKCNT = 15 &
SCK_rise , toggle
WS_out

15

SCKCNT = 0 & !WS_out &
P_EN & ! IOSts[1] & ! IOSts[0]
(if Out Port, IOSts[3] & IOSts[2])

14

SCKCNT = 15 &
SCK_rise

WS_in

SDO

SDI

SEL
SCKCNT = 0 &
WS_out & Previous
 SEL was set to 1

2d-SDI

SCKCNT

SENDL

SDO sampling point
(by Slave)

SDI sampling point

Lch bit15 (MSB) Lch bit14

Rch bit0 (LSB)Rch bit1

Lch bit15

Lch bit15 (MSB)

bit1

bit1

bit1

bit14

bit14

SER

SENDR

IOSts[3]

IOSts[2]

15141

Lch bit0 (LSB) Rch bit15(MSB)

Lch bit0 (LSB)

Lch bit0 (LSB)

Rch bit15(MSB)

Rch bit15(MSB)

0

Rch bit0 (LSB)bit1

IOSts[1]

IOSts[0]

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.3.6 Serial Data Format
 This unit supports both I2S format and Japanese format. The Word length is fixed to dual 16-bit. In slave mode,
when the incoming serial data length is grater than 16-bit, the trailing invalid bits are ignored. In case of output
ports, the position of invalid bits are filled with 0’s.

User’s Manual 10/2/2008 page 208

LSBLSB

Right Left

MSBMSB

I 2 S format (Data Length 16-bit)

SCK

SD

WS

 16bit 16bit

LSBLSB

Right Left

MSBMSB

Japanese format (Data Length 16-bit)

SCK

SD

WS

 16bit 16bit

LSBLSB

Right Left

MSBMSB

I 2 S format (Data Length > 16-bit)

SCK

SD

WS

 16bit 16bit Nbit

In case of In Port, this
Unit ignores trailing N-bits.
In case of Out Port, this

unit stuffs trailing N-bits
with ‘0’.

 Nbit

LSBLSB

Right Left

MSBMSB

Japanese format (Data Length > 16-bit)

SCK

SD

WS

 16bit 16bit Nbit Nbit

In case of In Port, this Unit
ignores leading N-bits.
In case of Out Port, this unit

stuffs leading N-bits with ‘0’.

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.4 FIFO Input/Output Registers (I2S_FR.v)
 This block has eight 32-bit registers. Internal Peripheral Bus communicates with I2S ports by using these
registers. It is placed between Internal Peripheral Bus and FIFO or I2S ports and FIFO.
 FIFO Input Registers are used in two ways. If the I2S port is set to output, Internal Peripheral Bus writes data to
this register. The data must be written to the register, 32-bit simultaneously. Byte write is not supported. If FIFO
is not full and this register contains 32-bit data, the data is written to FIFO. On the other hand, if the I2S port is
set to input, it’s used for I2S port input registers. This registers is 32-bit shift register with serial input and
parallel outputs. Serial input is connected with serial data in of I2S Input Port (SDI). After the serial transfer, if
FIFO is not full, the data is written to FIFO, 32-bit simultaneously.
 FIFO Output Registers are also used for two ways. One is FIFO to IPB registers. Internal Peripheral Bus read
data from this register, 32-bit simultaneously. After the read by Internal Peripheral Bus, if FIFO is not empty,
FIFO writes 32-bit data to the register. Another one is FIFO to I2S output ports registers. This registers is 32-bit
shift register with 32-bit parallel inputs and a serial output. Serial output is connected to serial output of I2S
output ports (SDO). After the serial data transfer, if FIFO is not empty, the FIFO writes 32-bit data to register
using parallel inputs.

29.4.1 Block Diagram (FIFO Input Registers)

29.4.2 Block Diagram (FIFO Output Registers)

User’s Manual 10/2/2008 page 209

serial in en

Port 0
Lch Data

Port 0
Rch Data

serial in en

[31:16]32IPB_WrData

to FIFO
Input

we

SDI[0]

SCK_rise

WE_P[0]

P0_i

 Serial/Parallel In-Parallel Out
16-bit Shift Register.
LSB <= Serial Input.

SEL[0]

Pout
Pen

Pin

Sin

Sen

RE

[15:0]

we
Pout

Pen

Pin

Sin

Sen
SER[0]

PRE[0]

[31:16] 32

[15:0]

Ex: Port #0 FIFO input Registers

RE

32

bit15

Ex: Port #0 FIFO output Registers

we

[31:16][31:16]

[15:0][15:0]

SO[0]

P0_o

 FRD
(from FIFO out)

32 bit31

SCK_rise

SEL[0]

 Port #0 Lch
serial out

Port #0 Rch
serial out

to Serial
Output.

to IPB_RdData

 PWE[0]

 RE_P[0]

serial out en

serial out en

D

 Parallel In-Parallel/Serial Out
16-bit Shift Register.
Serial Out = MSB.

Din Dout

WE

Sen

RE

Din Dout

WE

Sen

RE

SER[0]

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.5 128 x 32 bit FIFO (F_I2S.v)
 This block has 128 x 32 bit user configurable FIFO. The FIFO has one write port and one read port,
independently. The FIFO is divided to four parts for I2S Port 0..3. Each part has individually FIFO start address,
end address, watermark, write pointer, and read pointer. Start address, end address, and watermark are able to be
written or read from Internal Peripheral Bus. These values are stored to registers. The write pointer and read
pointer are able to be only read from Internal Peripheral Bus. These registers are automatically increment when
write to FIFO or read from FIFO.
Each part has four flags, FF, FE, FH, and FI. FF and FE respectively indicates FIFO full and empty conditions.

FH indicates half full condition (while a selected number of words is stored in memory.
 In case of FIFO which is written by Internal Peripheral Bus (when I2S Port is set to output), FI is asserted to 1
only one Imagine clock cycle, when a number of stored data is less than selected number (watermark). In case of
FIFO which is read from Internal Peripheral Bus (when I2S Port is set to input), FI is asserted to 1 only one
Imagine clock cycle, when a number of stored data is greater than selected number (watermark). FI flags are used
for Interrupt Generator to generate interrupt signals. These flags are read from Internal Peripheral Bus at any
time.
 When accesses from Internal Peripheral Bus and I2S ports simultaneously, the I2S’s access has priority. In case
of write access is the same.
 This block is completely synchronized with Imagine clock (not including delay cell or etc. to generate write
pulse).

29.5.1 Block Diagram 1/2 (FIFO block)

User’s Manual 10/2/2008 page 210

we

Write
Address Sel.

sel

WP_P0 7

WP_P1 7

WP_P2 7

WP_P3 7

Write Enables 4

Read
Address Sel.

sel

RP_P0 7

RP_P1 7

RP_P2 7

CP

RP_P3 7

Read Enables 4

Write Data
Sel.

sel

 FRD
(FIFO Read
Data, to FIFO
Output
Registers)

P0_i 32

P1_i
32
2

P2_i 32

P3_i 32

32 x 128 words
2-port synchronous

RAM

OR

OR

32

7

7

doadib

badr

web

aadr

clkb
clka

enb

ena

32
FIFO Write
Data (from
FIFO Input
Registers)

D

G

D

G

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.5.2 Block Diagram 1/2 (Controller & Arbiter block)

User’s Manual 10/2/2008 page 211

 FIFO Start Address,
 FIFO End Address,
 and FIFO Watermark

RST_FIFO

RST_FIFO

RST_FIFO

RST_FIFO
7

WP_P3

RP_P3

WP_P2

RP_P2

WP_P1

RP_P1

7

7

PWE[0]

PRE[0]

FF, FE, FH, FISA_P0, EA_P0,
WM_P0

FIFO
Arbiter

(R/W enable
generator)

FIFO
Controller
(Port 0)

Read Enables

Write Enables

FIFOSts[15:0]

RP_P0

WP_P0

I2S_EN
P_EN 4

4

16IOSts[15:0]

7

7

PWE[1]

PRE[1]

FF, FE, FH, FISA_P1, EA_P1,
WM_P1

FIFO
Controller
(Port 1)

7

7

PWE[2]

PRE[2]

FF, FE, FH, FISA_P2, EA_P2,
WM_P2

FIFO
Controller
(Port 2)

7

PWE[3]

PRE[3]

FF, FE, FH, FISA_P3, EA_P3,
WM_P3

FIFO
Controller
(Port 3)

4

4

H_edge

H_edge

H_edge

H_edge

 Read and Write
 Pointers

P_IOn

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.5.3 FIFO Arbiter (I2SFABT.v)
 This block arbitrates write and read accesses from FIFO input/output registers and generates write and read
enable signals. The write enable signals are used for FIFO write access and clears I/O status registers’ IH, IL bits.
The read enable signals are user for FIFO read access and set I/O status registers’ OH, OL bits.
 When accesses from Internal Peripheral Bus and from I2S ports simultaneously, the I2S’s access has priority. In
case of write access is the same.
 If IH and IL bit (I/O status register) is 1 and FF flag (FIFO status register) is 0, the arbiter asserts write enable to
1. Besides, if OH and OL bit (I/O status register) is both 0 and FE flag (FIFO status register) is 0, the arbiter
asserts read enable to 1.

User’s Manual 10/2/2008 page 212

FIFO full
flags

4

16

Write Ready?

I2S_EN
P_EN

4
FF_P0
FF_P1
FF_P2
FF_P3

PWE

Ready Signals

WE Gen.
(with

arbitration)

IOSsts

Example:
Wrdy_i2s[0] = I2S_EN & P_EN[0]

& !FF_P0 & !IOSts[1] & !IOSts[0] &
P_IOn[0]

Write Enables

FIFO empty
flags Read Ready?

4
FE_P0
FE_P1
FE_P2
FE_P3

Ready Signals

PRERE Gen.
(with

arbitration)

 Priority:
 Port 0 (from I2S) highest
 Port 1 (from I2S)
 Port 2 (from I2S)
 Port 3 (from I2S)
 Port 0 (from IPB)
 Port 1 (from IPB)
 Port 2 (from IPB)
 Port 3 (from IPB) lowest

Read Enables

 Priority:
 Port 0 (to I2S) highest
 Port 1 (to I2S)
 Port 2 (to I2S)
 Port 3 (to I2S)
 Port 0 (to IPB)
 Port 1 (to IPB)
 Port 2 (to IPB)
 Port 3 (to IPB) lowest

4
P_IOn

4

4

4

4

WRdy_i2s

WRdy_ipb

RRdy_i2s

RRdy_ipb

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.5.4 FIFO Controller (I2SFCTRL.v)
 This block two 7-bit up counters and one 8-bit up-down counter. Two 7-bit up counters are used for FIFO write
pointer (memory write address) and FIFO read pointer (memory read address). One 8-bit up-down counter counts
a number of data which written into FIFO. Start and end address (higher 4 bit) are defined by FIFO control
registers. Lower 3 bit of start address are filled with ‘0’. Lower 3 bit of end address are filled with ‘1’. The block
diagram of this module is as follows.

29.6 Interrupt Generator (I2S_IGEN.v)
 This module generates two interrupt lines (INT_R, INT_W). The interrupt lines are connected to the Interrupt
Vector Generator via the Interrupt Router. When output FIFO half empty states occurs, this module asserts
INT_W to 1 while one Imagine clock cycle.
When input FIFO full empty states occurs, this module asserts INT_R to 1 while one Imagine clock cycle.
 When some bit of Interrupt Enable Register (Interrupt Control register, bit 11:8) is set to 0, interrupts
corresponding to the bit are disabled.
 Interrupt conditions is assign to Interrupt Identify Register (Interrupt Control register, bit 3:0). This register is
able to be read from Internal Peripheral Bus.

 Conditions which INT_W is asserted to 1 are:
1. One or more I2S Port is set to Output (Main Control registers, bit 23..20). and
2. FIFO half full flag for the I2S Port turns to 0 (FIFO status registers, bit 13, 9, 5, 1). and
3. Interrupt enable for the I2S Port is set to 1 (Interrupt registers, bit 11..8).

 EX: P_IOn[0] & !FIFOSts[1] & INT_EN[0]

Conditions which INT_R is asserted to 1 are:
1. One or more I2S Port is set to Input (Main Control registers, bit 23..20). and
2. FIFO half full flag for the I2S Port turns to 1 (FIFO status registers, bit 13, 9, 5, 1). and
3. Interrupt enable for the I2S Port is set to 1 (Interrupt registers, bit 11..8).

 EX: !P_IOn[0] & FIFOSts[1] & INT_EN[0]

User’s Manual 10/2/2008 page 213

PWE

A

B

EAdr
SAdr7

7

88-bit up-down
counter

up
down

q

reset

7-bit counter
endadr
en

q

reset

startadr

7-bit counter
endadr
en

q

reset

startadr

{b0, WM, b000}
{SA, b000}
{EA, b111}

PRE

RST

= 0?

= EAdr -
SAdr + 1 ?

>= WMark?

2:1 SEL.

FF

FE

WMark

FH

FI

W_Point

R_Point
H_edge

D

7

7

 In case of IPB to
FIFO write ports,
select A input.
If FIFO to IPB read
 ports, select B input.

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.7 Internal Peripheral Bus I/F (I2SIPBIO.v)
 This module has Internal Peripheral Bus(IPB) interface giving direct access to the registers (include some FIFO
Input/ Output registers) of this module. These are mapped on IPB address space 0 (IPB_Space0). 64 byte ranges
are needed. These registers are addressed directly by IPB_Address[15:2] from IPB and can be written or read at
any time, except some FIFO data ports. In any case, write or read transfer to control registers always successfully
terminate at first try. In case of accesses to FIFO data write ports, if this register is empty, only 1 Imagine clock
cycle is needed to this transfer. If this register contains data, the Initiator must wait until this register is empty. In
case of accesses to FIFO data read ports, if this register contains data, only 1 Imagine clock cycle is needed to
this transfer. If this register is empty, the Initiator must wait until this register contains data. When Initiator writes
to read only registers (e.g. I2S Port is set to input), this module only set IPB_T_Ready to 1, vice versa..

User’s Manual 10/2/2008 page 214

 RE_P
 (to I2S Port 0..3 FIFO out reg)

4
from FIFO
Output

 WE_P
(to I2S Port 0..3 FIFO input Regs.)

4

4

4

16

RREQ

WREQ

 MCR
(from Main Ctrl Regs.)

32

Read Enable Generator &
Read Data Selector

 P0_o
(I2S Port 0 FIFO out reg)

32

 P1_o
(I2S Port 1 FIFO out reg)

32

 P2_o
(I2S Port 2 FIFO out reg)

32

 P3_o
(I2S Port 3 FIFO out reg)

32

 FS
(from Frame Size Regs)

32

 IR
(from Int. Ctrl Regs.)

16

 FIFOSts
(FIFO Status flags)

16

 IOSts
(FIFO I/O Regs status)

16

FC_P0 32

FC_P1
32

FC_P2 32

FC_P3
32

IPB_Address

IPB_Request

5:2

15:6
Access?

IPB_RW

IPB_BE

IPB_I_Ready
IPB_Space0

Write Enable
Generator

5:2

IPB_T_Ready

WE_MC
(to Main Ctrl Regs.)
WE_IR1
(to Interrupt Ctrl Regs.)

2 WE_FC_P0
(to I2S Port 0 FIFO Ctrl Regs.)

2 WE_FC_P1
(to I2S Port 1 FIFO Ctrl Regs.)

2 WE_FC_P2
(to I2S Port 2 FIFO Ctrl Regs.)

2 WE_FC_P3
(to I2S Port 3 FIFO Ctrl Regs.)

4
 WE_FS
(to Frame Size Regs.)

to FIFO
Ctrl regs.

from FIFO
Ctrl Regs.

P_IOn

 Comes from Main Crtl
Regs, bit 23..20

4

I2S BASE

 (10b0000000110)

I2S
 register

space
45 2389 671213 10111415

0

I2S Frame Size
Register

Reserved (0x00000000)

Reserved (0x00000000)

I2S Input/Output Port 0
(Left channel)

I2S Input/Output Port 2
(Left channel)

I2S Input/Output Port 2
(Right channel)

I2S Input/Output Port 0
(Right channel)

1

2

3
4

0
I2S Main Control

Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

5

6

7

8

Reserved (0x00000000)

I2S Input/Output Port 3
(Right channel)

I2S Input/Output Port 3
(Left channel)

I2S FIFO Input / Output Port
Status Register

I2S Input/ Output FIFO
Status Register

9

10
11

12

13

14

15

I2S Port 3 FIFO
Control / Status Register

I2S Port 2 FIFO
Control / Status Register

I2S Port 1 FIFO
Control / Status Register

I2S Port 0 FIFO
Control / Status Register

I2S Input/Output Port 1
(Left channel)

I2S Input/Output Port 1
(Right channel)

I2S Interrupt Control
Register

Imagine 2 Multi Media Processor 29 The I2S audio interface
29.8 I2S Registers

29.8.1 I2S Controller base address

IPB_Address

29.8.2 I2S Controller registers memory map

User’s Manual 10/2/2008 page 215

 IPB_Address[5:2]

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.8.3 I2S Main Control Registers
 This registers totally controls I2S Controller.
Bit 0 is master enable bit of the I2S controller (this module). When this bit is set to 0, all functions in this module
are disabled, and all FIFO pointers are zero clear. When IPB_RESET, this bit is reset to 0.
Bit 29:26 are Port Enables. controls each ports of I2S input/output data streams. These registers enables or disable
each ports of FIFO inputs/outputs.
Bit 23:20 are used as the DIR control signal of bidirectional SDI/SDO I/O buffers. When this bit is set to 1, SDI/
SDO port is set to input.
Bit 11:8 are used as the DIR control signal of bidirectional MASTER I/O buffers. When this bit is set to 1, WS
signal is set to output, and this module uses the internal timing signal.
 This registers can be write or read from Internal Peripheral Bus. Register values are not initialized except bit 0.

User’s Manual 10/2/2008 page 216

"0000000" I2S
En

"00" Master
/Slave

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

bit 11: I2S Port 3 Word Secect signal
 1 = Master/ 0 = Slave

bit 10: I2S Port 2 Word Secect signal
 1 = Master/ 0 = Slave

bit 9: I2S Port 1 Word Secect signal
 1 = Master/ 0 = Slave

bit 8: I2S Port 0 Word Secect signal
 1 = Master/ 0 = Slave

bit 0: I2S master enable
 1 = enable/ 0 = disable
 (When IPB Reset, this bit is reset to 0.)

"00" Format
I2S/JP

"00" Port I/O
Select

"00" I2S Port
Enable

bit 17: I2S Port 3 Data Format 1 = Japanese/ 0 = I2S

bit 16: I2S Port 2 Data Format 1 = Japanese/ 0 = I2S

bit 15: I2S Port 1 Data Format 1 = Japanese/ 0 = I2S

bit 14: I2S Port 0 Data Format 1 = Japanese / 0 = I2S

bit 23: I2S Port 3 Direction Control 1 = Input/ 0 = Output

bit 22: I2S Port 2 Direction Control 1 = Input/ 0 = Output

bit 21: I2S Port 1 Direction Control 1 = Input/ 0 = Output

bit 20: I2S Port 0 Direction Control 1 = Input / 0 = Output

bit 29: I2S Port 3 Enable 1 = enable / 0 = disable

bit 28: I2S Port 2 Enable 1 = enable / 0 = disable

bit 27: I2S Port 1 Enable 1 = enable / 0 = disable

bit 26: I2S Port 0 Enable 1 = enable / 0 = disable

 “0000” Interrupt
Identify Reg

"00000000" ‘00000
000’"00000000" “0000” Interrupt

Enable Reg

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

 bit 8: I2S Port 0 FIFO half full/empty interrupt enable
 1 = enable / 0 = disable

 bit 9: I2S Port 1 FIFO half full/empty interrupt enable
 1 = enable / 0 = disable

 bit 10: I2S Port 2 FIFO half full/empty interrupt enable
 1 = enable / 0 = disable

 bit 11: I2S Port 3 FIFO half full/empty interrupt enable
 1 = enable / 0 = disable

 bit 2: 1 = I2S Port 2 FIFO half full interrupt occurs (if Port 2 is set to Input)
 or half empty interrupt occurs (if Port 2 is set to Output) [read only]

 bit 3: 1 = I2S Port 3 FIFO half full interrupt occurs (if Port 3 is set to Input)
 or half empty interrupt occurs (if Port 3 is set to Output) [read only]

 bit 0: 1 = I2S Port 0 FIFO half full interrupt occurs (if Port 0 is set to Input)
 or half empty interrupt occurs (if Port 0 is set to Output) [read only]

 bit 1: 1 = I2S Port 1 FIFO half full interrupt occurs (if Port 1 is set to Input)
 or half empty interrupt occurs (if Port 1 is set to Output) [read only]

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.8.4 Interrupt Control Register
 This register controls two interrupt lines, INT_R and INT_W. When each parts of FIFO half empty/full state
occurs, this module generates interrupt.
 Bit 11:8 are interrupt enables for each FIFO input / output ports (including command write/read ports, which
does not use the FIFO). If some bit of this enables are set to 0, the corresponding FIFO full or empty interrupts
are disabled. These bit are not initialized. This register is able to be written or read from Internal Peripheral Bus
at any time.
 Bit 3:0 are interrupt identify registers for checking the interrupt status. This register indicates which port is in the
interrupt state. These bit are able to be only read from Internal Peripheral Bus.

User’s Manual 10/2/2008 page 217

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.8.5 Input/Output FIFO Status Register
This registers contains FIFO status. The FIFOs which is separated to four independent blocks have each four
status flags, FIFO empty (FE), FIFO full (FF), FIFO half empty or full (FH), and FIFO interrupt (FI). Every FI
bit are used for generating interrupts. This registers are able to be only read from Internal Peripheral Bus at any
time. See subsection 2.4 FIFO Input/ Output Registers, for more details.

29.8.6 FIFO Input/Output Port Status Register
 This registers contains input/output port (FIFO Input/Output register) status. The four FIFO input or output ports
have each four status flags, higher 16-bit of FIFO input register has data (IH), lower 16-bit of FIFO input register
has data (IL), higher 16-bit of FIFO output register has data (OH), and lower 16-bit of FIFO output register has
data (OL). These registers� � � � �able to be only read from Internal Peripheral Bus at any time. See subsection 2.4
Interrupt Generator, for more details.

User’s Manual 10/2/2008 page 218

I2S Port 0
Port Status

I2S Port 1
Port Status

Reserved
"00000000"

Reserved
"00000000"

I2S Port 2
 Port Status

I2S Port 3
 Port Status

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

I2S Port 0 FIFO Port register Status
bit 3: 1 = input register (high) has data
bit 2: 1 = input register (low) has data
bit 1: 1 = output register (high) has data
bit 0: 1 = output register (low) has data

I2S Port 3 FIFO Port register Status
bit 15: 1 = input register (high) has data
bit 14: 1 = input register (low) has data
bit 13: 1 = output register (high) has data
bit 12: 1 = output register (low) has data

I2S Port 1 FIFO Port register Status
bit 7: 1 = input register (high) has data
bit 6: 1 = input register (low) has data
bit 5: 1 = output register (high) has data
bit 4: 1 = output register (low) has data

I2S Port 2 FIFO Port register Status
bit 11: 1 = input register (high) has data
bit 10: 1 = input register (low) has data
bit 9: 1 = output register (high) has data
bit 8: 1 = output register (low) has data

I2S Port 2 FIFO Status
bit 11: 1 = FIFO empty
bit 10: 1 = FIFO full
bit 9: 1 = FIFO half full
bit 8: 1 = FIFO interrupt (pulse)

I2S Port 1 FIFO Status
bit 7: 1 = FIFO empty
bit 6: 1 = FIFO full
bit 5: 1 = FIFO half full
bit 4: 1 = FIFO interrupt (pulse)

I2S Port 0 FIFO Status
bit 3: 1 = FIFO empty
bit 2: 1 = FIFO full
bit 1: 1 = FIFO half full
bit 0: 1 = FIFO interrupt (pulse)

I2S Port 3 FIFO Status
bit 15: 1 = FIFO empty
bit 14: 1 = FIFO full
bit 13: 1 = FIFO half full
bit 12: 1 = FIFO interrupt (pulse)

I2S Port 0
FIFO Status

I2S Port 1
FIFO Status"00000000" "00000000"

I2S Port 3
FIFO Status

28293031 24252627 20212223 16171819 12131415 891011 4567 012328293031 24252627 20212223 16171819 12131415 891011 4567 0123

I2S Port 2
 FIFO Status

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.8.7 FIFO Control/Status Registers
 This registers are used for definitions of the FIFO. This registers contains FIFO start address, FIFO end address,
and FIFO watermark. Each FIFO block has one FIFO Control /Status Registers, amount to five registers. These
values are able to be written or read from Internal Peripheral Bus at any time. Bit 30:24 are FIFO read pointer,
Bit 22:16 are FIFO write pointer. These registers are able to be only read from Internal Peripheral Bus. See
subsection 2.3.4 FIFO Controller, for more details.

29.8.8 Frame Size registers
This registers are used for definitions of the frame size of the data streams. The value plus 1 is define to Word
Select (WS) signal’s period of the left channel and right channel. This values are used only in Japanese format
(when in I2S mode, this values are not referenced). The frame sizes are programmable for each ports individually.
These registers are able to be written or read from Internal Peripheral Bus at any time.

User’s Manual 10/2/2008 page 219

I2S Port 0
Frame Size - 1

I2S Port 3
Frame Size - 1

'0' '0' I2S Port 2
Frame Size - 1

'0'
I2S Port 1

Frame Size - 1
'0'

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

 I2S Port 0 Frame size -1
 = WS0 high period
 = WS0 low period

 I2S Port 1 Frame size -1
 = WS1 high period
 = WS1 low period

 I2S Port 2 Frame size -1
 = WS2 high period
 = WS2 low period

 I2S Port 3 Frame size -1
 = WS3 high period
 = WS3 low period

FIFO End
Address x 8FIFO Read Pointer'0' '0' FIFO Write Pointer '0''0'

FIFO Water Mark
x 4

'0'

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

FIFO End Address [6:3]
 (FIFO End Address [2:0]
 are “111”.)

FIFO Start Address [6:3]
 (FIFO Start Address [2:0]
 are “000”.)

FIFO Water Mark [6:2]
 (FIFO Water Mark [1:0]
 are “00”.)

FIFO Write Pointer
(indicates 7-bit write address
of synchronous RAM)

FIFO Read Pointer
(indicates 7-bit read address
 of synchronous RAM)

FIFO Start
Address x 8

Imagine 2 Multi Media Processor 29 The I2S audio interface

29.9 I2S Data Access Ports
 In order to communicate with I2S digital interface, eight 32-bit registers are prepared. Each registers are
connected via internal FIFO. These registers are read only or write only registers. The status of registers are able
to read the FIFO port status registers.

29.9.1 I2S FIFO input port registers
 If I2S data port is set to output, this registers is connected to Internal Peripheral Bus. This register is always
connected to FIFO Input. Bit 31:16 are 16-bit left channel data, and bit 15:0 are right channel data. This value is
used for I2S serial output data. This registers are write only registers, and must be written 32-bit simultaneously.
 If I2S data port is set to input, this registers is disconnected to Internal Peripheral Bus, and used for I2S serial
data input.

29.9.2 I2S FIFO output port registers
 If I2S data port is set to input, this registers is connected to Internal Peripheral Bus. This register is always
connected to FIFO Output. Bit 31:16 are 16-bit left channel data, and bit 15:0 are right channel data. This values
comes from I2S serial input port. This registers are read only registers, and must be read 32-bit simultaneously.
 If I2S data port is set to output, this registers is disconnected to Internal Peripheral Bus, and used for I2S serial
data output.

User’s Manual 10/2/2008 page 220

Imagine 2 Multi Media Processor 30 The AC97 audio codec

Chapter

30. THE AC97 AUDIO CODEC

The AC97 audio codec transmits and receives audio data via a 5 line serial
interface connected to an external AC97 codec which includes AD and DA
converters plus a mixer. This external codec can be controlled via this interface. An
on chip 128 by 32 bit word RAM can be programmed as one or more fifo(s) for all
the defined audio and modem I/O channels: Playback output, Record input, Modem
input and Modem output and Microphone input. The sizes of the individual fifos are
programmable as well as the watermarks which can generate interrupts for the
Imagine 2 core processor on almost full / almost empty detection.

User’s Manual 10/2/2008 page 221

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.1 The Input/Output Signals of AC’97 Controller

30.1.1 Input/ Output signals definitions

AC’97 Interface signals

BIT_CLK input 12.288 MHz serial data clock

AC97RST_N output AC’97 Master H/W Reset signal.
When C_RST (Main Control register, bit 0) is set to 1, this
signal is asserted to 0 (activate).

SYNC output 48 KHz fixed rate sample sync.
 This signal is synchronized with Imagine Clock.

SDATA_IN input Serial, time division multiplexed, AC’97 input stream.
 This signal is synchronized with Imagine Clock.

SDATA_OUT output Serial, time division multiplexed, AC’97 output stream.
 This signal is synchronized with Imagine Clock.

User’s Manual 10/2/2008 page 222

32

4

14

8

INT_W
INT_R

SDATA_OUT

IPB_Master

SYNC

AC97RST_N

SDATA_IN

BIT_CLK

IPB_Request
IPB_RW

BitCnt

IPB_I_Ready
IPB_Space0
IPB_Address[15:2]
IPB_BE[3:0]
IPB_WrData[31:0]

Reset
CP (Imagine Clock)

IPB_T_Ready

IPB_RdData[31:0] 32

AC'97
Digital I/F
signals

Interrupt
signals

for
debugging

from
Internal
Peripheral
Bus

to
Internal
Peripheral
Bus

 omit the RAMBIST signals.

Imagine 2 Multi Media Processor 30 The AC97 audio codec

Interrupt signals (to Interrupt Vector Generator)

INT_R output Read interrupt flag.

INT_W output Write interrupt flag.

Internal Peripheral Bus I/F signals

CP (Imagine Clock) input See document “The Protocol of the INTERNAL
PERIPHERAL BUS, revision 0.9a”

Reset input

IPB_Master input

IPB_Request input

IPB_RW input

IPB_T_Ready output

IPB_I_Ready input

IPB_Space0 input

IPB_Address[15:2] input

IPB_BE [3:0] input

IPB_RdData [31:0] output

IPB_WrData [31:0] input

User’s Manual 10/2/2008 page 223

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.2 AC’97 controller module overview
 AC’97 controller has three interfaces, AC-Link, Internal Peripheral Bus, and two interrupt output signals. AC-
link (Audio Codec ’97 controller digital serial link) is used to communicate with AC’97 chips. This interface is
based on “Audio Codec ’97 Component Specification, Revision 1.03”.
 Internal Peripheral Bus is connected with some internal control registers and I/O registers. These registers are on
IPB_Space0, 64 bytes address area. Internal Peripheral Bus communicates with AC-link via internal 128 word x
32 bit FIFO. This FIFO is separated to five areas, and each areas have a independent I/O registers and
Read/Write pointers. The two interrupt lines (INT_R, INT_W) are connected to the Interrupt Vector Generator
via the Interrupt Router. When input or output FIFO almost full/empty occurs, this module generates interrupt
pulse. All flip-flops and FIFO are synchronized with Imagine Clock.

User’s Manual 10/2/2008 page 224

BIT_CLK

Itag &
Codec ready

SDATA_IN

I/O status

W/R enables

INT_WINT_R

AC97_EN, P_EN

EN

ID

WE

FIFO Status
AC97RST_N

SYNC

SDATA_OUT

BC_rise

BC_rise
BC_fall

AC97_EN

OTag

WE

WE

C_rst
W_rst

BitCnt

WE

WE

RE

WERE

RE

RERE

WE

RE

RE
RE

WE

RE
WE

SE

SE

RE

RE

IPB
signals

Internal
Peripheral

Bus I/F

AC’97
Playback
Lch & Rch

(In)

Main Ctrl
Regs.

AC’97
Modem
 Output

Sample1, 2
(In)

AC’97
MIC in

Sample1,2
(Out)

AC'97
Record

Lch & Rch
(Out)

AC'97
Modem
Input

Sample1, 2
(Out)

I/O status registers

128 x 32 bit
synchronous FIFO

(including
 FIFO ctrl registers
 & status registers)

Timing
Gen Serial Enable

Gen.

FIFO status

Shift Enables

W/R enables

W/R enables

AC’97
Playback

Lch & Rch
(Out)

AC’97
Ctrl reg.

Write Port.

AC’97
Modem
Output

 Sample1,2
(Out)

AC’97
MIC in

Sample1,2
(In)

AC’97
Record

Lch & Rch
(In)

AC’97
Modem
Input

Sample1, 2
(In)

AC’97
ITag

AC’97
Ctrl reg

Read Port

SE

SE

SE

SE

SE

SO
Gen

Interrupt
Ctrl Regs.

Interrupt
Gen.

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.3 AC’97 Serial Timing Generator (T_GEN.v)
 This block generates 48 kHz fixed rate serial sync signal (SYNC). This block samples BIT_CLK by Imagine
Clock (CP), detects rising and falling edge of BIT_CLK. The BIT_CLK counter counts up the rising edge of
BIT_CLK, generates SYNC signal and serial input/output timing.
 When C_RST (Main Control register, bit 0) is set to 1, BIT_CLK counter is reset to 0. When W_RST (Main
Control register, bit 1) is set to 1, BIT_CLK counter is reset to 0, and SYNC signal is asserted to 1 for Warm
AC’97 reset state.

30.3.1 The timing of Serial Timing Generator

30.3.2 Block Diagram

User’s Manual 10/2/2008 page 225

17161100255255

CP

C_RST

BIT_CLK

BC_rise

BitCnt[7:0]

BC_fall

SYNC

SYNC set =
(0 == BitCnt)

& BC_rise

SYNC reset =
(16 == BitCnt)

& BC_rise

BitCnt

SYNC

BC_fall

Set to 0xffW_RST
Set

Reset

8

yes

en

C_RST

AC97_EN

BC_rise

BIT_CLK

8bit
Counter

= 0x00 ?

= 0x10 ?

D

D
D

yes

 Warm Reset

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.4 AC’97 Serial Data Enable Generator (SE_GEN.v)
 This block generates AC’97 serial data write and read enables. The read enables are used to separate each audio
data from multiple serial input (SDATA_IN). The separated audio data are store to 32-bit FIFO input registers.
The write enables are used for making of multiple serial output (SDATA_OUT) from 32-bit FIFO output
registers. All enables are synchronized with Imagine Clock and based on the value of BitCnt.

30.4.1 Block diagram
 Serial Enable Generator (SE_GEN.v) has eleven sub modules names SE_GEN1 for serial enable signals
generation. BitCnt, RST (= C_RST | W_RST), and CP are connected to each SE_GEN1s as common inputs.
Each modules has different inputs and outputs for the other signals.
 The example of this block is as follows.

.

User’s Manual 10/2/2008 page 226

Internal Timing of SE_GEN1

CP

RST

EN

BitCnt

SEN

SEND

Start - 1 Start End - 1 Start + NEnd

 if BitCnt = Start & EN = 1,
SEN set to 1 When RST = 1,

This signal has no
effect to I/O status
registers

while RST = 1,
SEN reset to 0 This signal is used as

set or reset signal for I/
O status registers if BitCnt = End & EN = 1,

SEN reset to 0

8
8

8
SE_GEN1

BitCnt

SENSTART

SEND

END

EN

RST

Example: Generate Playback Lch

PBL_sen
BitCnt
0x3a
0x4a

PBL_s_endOtag[2]
RST

 START and END is a fixed values. PBL_sen is used as serial enable signal of
Playback FIFO output register (Lch). PBL_s_en is used as reset signal of IOSts
bit 5 (I/O status register Playback out OH).

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.4.2 Set/Reset Conditions of Serial enables

Data name Serial
enable

Serial enable
end

Enable condition (EN) START END

Command
Address

AD_sen AD_s_end OTag[0] 0x12 0x1a

Command
Write Data

WD_sen WD_s_end OTag[1] 0x26 0x36

Playback Lch
FIFO output

PBL_sen PBL_s_end OTag[2] 0x3a 0x4a

Playback Rch
FIFO output

PBR_sen PBR_s_end OTag[3] 0x4e 0x5e

Modem Out
FIFO output

MO_sen MO_s_end OTag[4] 0x62 0x72

Command
Echo Address

EAD_sen EAD_s_end R_EN & !IOSts[3] & ITag[0] 0x13 0x1a

Command
Read Data

RD_sen RD_s_end R_EN & !IOSts[2] & ITag[1] 0x26 0x36

Record Lch
FIFO input

RL_sen RL_s_end R_EN & P_EN[1] & !IOSts[11] & ITag[2] 0x3a 0x4a

Record Rch
FIFO input

RR_sen RR_s_end R_EN & P_EN[1] & !IOSts[10] & ITag[3] 0x4e 0x5e

Modem In
FIFO input

MI_sen MI_s_end R_EN & P_EN[3] & !IOSts[19] & ITag[4] 0x62 0x72

MIC In FIFO
input

MIC_sen MIC_s_end R_EN & P_EN[4] & !IOSts[23] & ITag[5] 0x76 0x86

NOTE: R_EN = C_RDY & AC97_EN.
 START and END are the BitCnt values.

30.5 AC’97 Serial Output Generator (SO_GEN.v)
 This block generates AC’97 serial output data. The serial data output (SDATA_OUT) is directly connected to
AC’97 chip and send digital audio streams to AC’97 chip. The MSBs of each FIFO output registers, Write
command address, Write data are used for serial output data. The MSB of command address (AD_s), MSB of
command write data (WD_s), MSB of 2channel composite PCM output stream (PBL_s and PBR_s) , and MSB
of Modem Line Codec DAC input stream (MO_s) are multiplexed according to the Internal Serial Timing
Generator (T_GEN.v).
 Each outgoing streams has 20-bit sample resolution. However, this module supports only 16-bit output
resolution, this block always stuffs all trailing non-valid bit positions (last 4 bit positions) with 0’s.

User’s Manual 10/2/2008 page 227

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.5.1 Block Diagram

User’s Manual 10/2/2008 page 228

5

0

24

yes8

1

0

BitCnt

IOSts

BC_rise

C_RDY
AC97_EN enIOSts[1]

D

= 0?

en D

5
0

en D

4
0

en D

13
2

en D

5P_EN

AD_s

1

2

3

4

Serial Data Sel.
WD_s

PBL_s

PBR_s

OTag

Y SDATA_OUT

Serial
Data

Serial
enables

MO_s

AD_s

WD_s

PBL_s

PBR_s

MO_s

D

 Select Conditions

 BitCnt = 2: Y = OR-ed OTag[4:0]
 BitCnt = 3: Y = Otag[0]
 BitCnt = 4: Y = Otag[1]
 BitCnt = 5: Y = Otag[2]
 BitCnt = 6: Y = Otag[3]
 BitCnt = 7: Y = Otag[4]
 Others:
 AD_sen = 1: Y = AD_s
 WD_sen = 1: Y = WD_s
 PBL_sen = 1: Y = PBL_s
 PBR_sen = 1: Y =PBR_s
 MO_sen = 1: Y = MO_s

 When Bitcnt = 0 and BC_rise = 1,
Output Tag data is latched to OTag F/Fs.
 During the Audio Frame period, OTag
doesn’t change.

Output Tag
bit 0: Command Address
bit 1: Command Write Data
bit 2: Playback Out Lch
bit 3: Playback Out Rch
bit 4: Modem Out

 if when each bit is set to 1,
 the audio output stream has
 valid data.

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.6 FIFO Input/Output Registers (F_REGS.v)
 This block has fourteen 32-bit registers. Internal Peripheral Bus communicates with AC-link by using these
registers. It is placed between Internal Peripheral Bus and FIFO or AC-link and FIFO, except some registers.
 FIFO Input Registers are classified into two types. One is IPB to FIFO registers. Internal Peripheral Bus writes
data to this register. The data must be written to the register, 32-bit simultaneously. Byte write is not supported. If
FIFO is not full and this register contains 32-bit data, the data is written to FIFO. Another one is FIFO to AC-link
registers. This registers is 32-bit shift register with serial input and parallel outputs. Serial input is connected with
serial input of AC-link (SDATA_IN). After the serial transfer, if FIFO is not full, the data is written to FIFO, 32-
bit simultaneously.
 FIFO Output Registers are classified into two types. One is FIFO to IPB registers. Internal Peripheral Bus read
data from this register, 32-bit simultaneously. After the read by Internal Peripheral Bus, if FIFO is not empty,
FIFO writes 32-bit data to the register. Another one is FIFO to AC-link registers. This registers is 32-bit shift
register with 32-bit parallel inputs and a serial output. Serial output is connected to serial output of AC-link
(SDATA_OUT) via Serial Output Generator. After the serial data transfer, if FIFO is not empty, the FIFO writes
32-bit data to register using parallel inputs.
 AC’97 command register, write data register, command echo register, and read data register are including FIFO
Input/Output Registers for convenience' sake, however, these registers are directly connected with Internal
Peripheral Bus and AC-link, not using FIFO.

30.6.1 Block Diagram (AC’97 Commend R/W Registers)

User’s Manual 10/2/2008 page 229

we

32

MSB

MSB

31

31:24

D

IPB_WrData

AD_sen

BC_rise

IPB_WE_PB
COM_RW
(to Interrupt Gen.)

Command Address
(with R/W bit) serial out

Command Read Data
parallel out

Command Echo
Address parallel out

Command Write Data
serial out

D AD_s

WD_sD

serial out en

EADD

serial out en

7

to Serial Output
Gen.

we

we

SDTA_IN

WD_sen

AD_sen

BC_fall serial in en

RDD
16

RD_sen
serial in en

to IPB I/F
(IPB_RdData)

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.6.2 Block Diagram (FIFO Input Registers)

User’s Manual 10/2/2008 page 230

Record Lch parallel
out(AC-link to FIFO)

32

32

31:16

IPB_WrData

Playback Lch, Rch data
(IPB to FIFO)

Modem Out Sample 1, 2
data (IPB to FIFO)

D PB_i

MO_iD
32

si

serial in en

16

to FIFO
Input

we

SDATA_IN

BC_fall

RL_sen

IPB_WE_PB

32

we
IPB_WE_MO

15:0

MIC Input sample 1, 2
parallel out (AC-link to
FIFO)

Modem Input sample 1, 2
 parallel out (AC-link to
FIFO)

Record Rch parallel
out (AC-link to FIFO)

MI_i

REC_i

si

serial in en

16

RR_sen

32si

serial in en
MI_sen

MIC_i32si

serial in en
MIC_sen

 Serial In-Parallel Out
32-bit Shift Register.
LSB <= Serial Input.

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.6.3 Block Diagram (FIFO Output Registers)

User’s Manual 10/2/2008 page 231

 FRD
(from FIFO out)

we

32

MSB

MSB

MSB

31:16

15:0

D

PBL_sen

BC_rise

Playback Lch
serial out

Playback Rch
serial out

Modem Out
serial out

D

PBL_s

PBR_s

MO_sD

to Serial
Output Gen.

we

Ren_Rec_i

 REn_Play_o

we

we

MIC Input sample 1, 2
out

Modem Input sample 1, 2
out

Record Lch & Rch out

MI_o

REC_oD
32

32D

MIC_o32D

serial out en

D

serial out en

MO_sen

PBR_sen

serial out en

 REn_Mod_o D

Ren_Mod_i we

Ren_Mic_i we

to IPB I/F
(IPB_RdData)

 Parallel In-Serial Out
32-bit Shift Register.
Serial Out <- MSB.

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.7 Read Input Tags (R_TAG.v)
 This block reads Codec Ready bit and 6-bit Input Tag bit from AC’97 Serial Data Input (SDATA_IN).
While SYNC is asserted to 1, this block read tag bits. Codec Ready bit (stored in C_RDY register) indicates
whether AC’97 is in the “Codec Ready” state or not. While it is 0, Serial Enable Generator is disabled. Input Tag
bit (stored in ITag[5:0]) means each input audio slot contains valid data or not.

30.8 128 x 32 bit FIFO (F_AC97.v)
 This block has 132 x 32 bit user configurable FIFO. The FIFO has one write port and one read port,
independently. The FIFO is divided to 5 parts for Playback Out, Record In, Modem Out, Modem In, and MIC In.
Each part has individually FIFO start address, end address, watermark, write pointer, and read pointer. Start
address, end address, and watermark are able to be written or read from Internal Peripheral Bus. These values are
stored to registers. The write pointer and read pointer are able to be only read from Internal Peripheral Bus.
These registers are automatically increment when write to FIFO or read from FIFO.
Each part has four flags, FF, FE, FH, and FI. FF and FE respectively indicates FIFO full and empty conditions.

FH indicates half full condition (while a selected number of words is stored in memory.
In case of FIFO which is written by Internal Peripheral Bus, FI is asserted to 1 only one Imagine clock cycle,
when a number of stored data is less than selected number (watermark). Playback Out and Modem Out fall under
this type. In case of FIFO which is read from Internal Peripheral Bus, FI is asserted to 1 only one Imagine clock
cycle, when a number of stored data is greater than selected number (watermark). Record In, Modem In, and
MIC In are this type. FI flags are used for Interrupt Generator to generate interrupt signals. These flags are read
from Internal Peripheral Bus at any time.
 When accesses from Internal Peripheral Bus and AC-link simultaneously, the AC-link’s access has priority. In
case of write access is the same.
 This block is completely synchronized with Imagine clock (not including delay cell or etc. to generate write
pulse).

User’s Manual 10/2/2008 page 232

6

8 BitCnt
= 2 ?

D C_RDY
RST

ITag

en

yes

SDATA_IN

BC_fall
BitCnt

2 <
BitCnt
< 9 ?

D
en

6
yes

BC_fall

 bit 0: Command Echo Address
 bit 1: Command Read Data
 bit 2: Record Lch
 bit 3: Record Rch
 bit 4: Modem Input
 bit 5: MIC Input

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.8.1 Block Diagram 1/2 (Controller & Arbiter block)

User’s Manual 10/2/2008 page 233

7
WP_MI
O

RP_MI

WP_MO

RP_MO

WP_REC

RP_REC

7

7

WEn_Play_o

‘0’

REn_Play_o

FF, FE, FH, FISA_PB, EA_PB,
WM_PB

FIFO
Arbiter

(R/W enable
generator)

FIFO
Controller
(Playback)

Read Enables

Write Enables

FIFOSts[23:4]

RP_PB

WP_PB

AC97_EN
P_EN 5

20IOSts[23:4]

7

7

WEn_Rec_i

REn_Rec_i

FF, FE, FH, FISA_REC, EA_REC,
WM_REC

FIFO
Controller
(Record)

7

7

WEn_Mod_o

REn_Mod_o

FF, FE, FH, FISA_MO, EA_MO,
WM_MO

FIFO
Controller

(Modem Out)

7

WEn_Mod_i

REn_Mod_i

FF, FE, FH, FISA_MI, EA_MI,
WM_MI

FIFO
Controller

(Modem In)

7

7

WEn_Mic_i

REn_Mic_i

FF, FE, FH, FI

RST_FIFO
(= C_RST | W_RST)

SA_MIC, EA_MIC,
WM_MIC

FIFO
Controller
(MIC In)

RP_MIC

WP_MIC

5

5

H_edge

‘1’ H_edge

‘0’ H_edge

‘1’ H_edge

‘1’ H_edge

 FIFO Start Address,
 FIFO End Address,
 and FIFO Watermark

 Read and Write
Pointers

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.8.2 Block Diagram 2/2 (FIFO block)

User’s Manual 10/2/2008 page 234

we

Write
Address Sel.

sel

WP_PB 7

WP_REC 7

WP_MO 7

WP_MI 7

WP_MIC 7

Write Enables 5

Read
Address Sel.

sel

RP_PB 7

RP_REC 7

RP_MO 7

RP_MI 7

RP_MIC 7

reRead Enables 5

Write Data
Sel.

sel

 FRD
(FIFO Read
Data, to FIFO
Output
Registers)

PB_i 32

REC_i
32
2

MO_i 32

MI_i 32

MIC_i 32

32 x 128 words
2-port synchronous

RAM

OR

OR

32

7

7

doadib

badr

enb

aadr

clkb
clka

ena

32FIFO Write
Data (from
FIFO Input
Registers)

 clka and clkb are
connected to CP.
web (bit write enables) are
connected to logic 1.

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.8.3 FIFO Arbiter (F_ABT.v)
 This block arbitrates write or read accesses from FIFO input/output registers and generates write and read enable
signals. The write enable signals are used for FIFO write access and clears I/O status registers’ IH, IL bits. The
read enable signals are user for FIFO read access and set I/O status registers’ OH, OL bits.
 When accesses from Internal Peripheral Bus and AC-link simultaneously, the AC-link’s access has priority. In
case of write access is the same.
 If IH and IL bit (I/O status register) is 1 and FF flag (FIFO status register) is 0, the arbiter asserts write enable to
1. Besides, if OH and OL bit (I/O status register) is both 0 and FE flag (FIFO status register) is 0, the arbiter
asserts read enable to 1.

30.8.4 FIFO Controller (F_CTRL.v)
 This block two 7-bit up counters and one 8-bit up-down counter. Two 7-bit up counters are used for FIFO write
pointer (memory write address) and FIFO read pointer (memory read address). One 8-bit up-down counter counts
a number of data which written into FIFO. Start and end address (higher 4 bit) are defined by FIFO control
registers. Lower 3 bit of start address are filled with ‘0’. Lower 3 bit of end address are filled with ‘1’. The block
diagram of this module is as follows.

User’s Manual 10/2/2008 page 235

FIFO full
flags

5

24

Write Ready?

AC97_EN
P_EN

5
FF_Play_o
FF_Rec_i
FF_Mod_o
FF_Mod_i

WEn_Play_o
Ready Signals WEn_Rec_i

WEn_Mod_o
WEn_Mod_i
WEn_Mic_i

FF_Mic_o

WE Gen.
(with

arbitration)

IOSsts

Example:
Wrdy_Play_o = AC97_EN

& P_EN[0] & !FF_Play_o
& IOSts[7] & IOSts[6]

Write
Enables

FIFO empty
flags Read Ready?

5
FE_Play_o
FE_Rec_i
FE_Mod_o
FE_Mod_i

REn_Play_o
Ready Signals REn_Rec_i

REn_Mod_o
REn_Mod_i
REn_Mic_i

FE_Mic_o

RE Gen.
(with

arbitration)

 Priority:
 Modem out highest
 Playback

 MIC in
 Modem out
 Record lowest

Example:
Rrdy_Play_o = AC97_EN &

 P_EN[0] & !FE_Play_o & !
IOSts[5] & !IOSts[4]

Read
Enables

 Priority:
 MIC in highest
 Modem in
 Record

 Modem out
 Playback lowest

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.9 Interrupt Generator (INT_GEN.v)
 This module generates two interrupt lines (INT_R, INT_W). The interrupt lines are connected to the Interrupt
Vector Generator via the Interrupt Router. When output FIFO half empty states (or AC’97 Control Write register
empty) occurs, this module asserts INT_W to 1 while one Imagine clock cycle.
When input FIFO full empty states (or AC’97 Control Read register full) occurs, this module asserts INT_R to 1
while one Imagine clock cycle.
 When some bit of Interrupt Enable Register (Interrupt Control register, bit 13:8) is set to 0, interrupts
corresponding to the bit are disabled.
 Interrupt conditions is assign to Interrupt Identify Register (Interrupt Control register, bit 5:0). This register is
able to be read from Internal Peripheral Bus.

 Conditions which INT_W is asserted to 1 are:
1. Command Write data empty and enable interrupt for this port (FIFOSts[0] & INT_EN[0])
2. Playback FIFO half empty and enable interrupt for this port (FIFOSts[4] & INT_EN[1])
3. Modem Out FIFO half empty and enable interrupt for this port (FIFOSts[12] & INT_EN[3])

Conditions which INT_R is asserted to 1 are:
1. Command Read data full and enable interrupt for this port (FIFOSts[2] & INT_EN[0])
2. Record FIFO half full and enable interrupt for this port (FIFOSts[8] & INT_EN[2])
3. Modem In FIFO half full and enable interrupt for this port (FIFOSts[16]& INT_EN[4])
4. MIC In FIFO half full and enable interrupt for this port (FIFOSts[20] & INT_EN[5])

30.10 Internal Peripheral Bus I/F (ACIPBIO.v)
 This module has Internal Peripheral Bus(IPB) interface giving direct access to the registers (include some FIFO
Input/ Output registers) of this module. These are mapped on IPB address space 0 (IPB_Space0). 64 byte ranges
are needed.
 These registers are addressed directly by IPB_Address[10:2] from IPB and can be written or read at any time,
except some FIFO data ports. In any case, write or read transfer to control registers always
successfully terminate at first try. In case of accesses to FIFO data write ports, if this register is empty, only 1
Imagine clock cycle is needed to this transfer. If this register contains data, the Initiator must wait until this
register is empty. In case of accesses to FIFO data read ports, if this register contains data, only 1 Imagine clock
cycle is needed to this transfer. If this register is empty, the Initiator must wait until this register contains data.
When Initiator writes to read only registers (e.g. Record FIFO port register), this module only set IPB_T_Ready
to 1, vice versa..

User’s Manual 10/2/2008 page 236

W_En

A

B

EAdr
SAdr7

7 yes
r

yes
r

8
yes
r

8-bit up-down
counter

up
down

q

reset

7-bit counter
endadr
en

q

reset

startadr

7-bit counter
endadr
en

q

reset

startadr

{b0, WM, b000}
{SA, b000}
{EA, b111}

R_En

RST

= 0?

= EAdr -
SAdr + 1 ?

>= WMark?

2:1 SEL.

FF

FE

WMark

FH

FI

W_Point

R_Point
H_edge

D

7

7

 In case of IPB to
FIFO write ports, select
A input.
If FIFO to IPB read
 ports, select B input.

Imagine 2 Multi Media Processor 30 The AC97 audio codec

 Internal Peripheral Bus Interface

User’s Manual 10/2/2008 page 237

to FIFO
Output

from FIFO
Output IPB_RE_EAD

(to Command Echo Address & Read Data Regs.)

 IPB_WE_AD
(to Command Write Address & Data Regs.)

3

4

16

RREQ

WREQ

 RD_MCR
(from Main Ctrl Regs.)

32

Read Enable Generator &
Read Data Selector

 EAD
(Command Echo Addr)

 7

 RD
(Command Read Data)

16

 REC_o
(Record FIFO out Regs.)

32

 MI_o
(Modem In FIFO out Regs.)

32

 MIC_o
(MIC In FIFO out Regs.)

32

 RD_IR
(from Int. Ctrl Regs.)

32

 FIFOSts
(FIFO Status flags)

24

 IOSts
(FIFO I/O Regs. Status)

24

RD_FCR_PB 32

RD_FCR_REC 32

RD_FCR_MO 32

RD_FCR_MI 32

RD_FCR_MIC

IPB_Address

IPB_Request

32

5:2

15:6

Access?
IPB_RW

IPB_BE

IPB_I_Ready
IPB_Space0

Write Enable
Generator

5:2

IPB_T_Ready

IPB_WE_MC
(to Main Ctrl Regs.)

2 IPB_WE_IR
(to Interrupt Ctrl Regs.)

 IPB_WE_PB
(to Playback Lch & Rch Regs.)
 IPB_WE_MO
(to Modem Out. Sample 1,2 Regs.)2 IPB_WE_FCR_PB
(to Playback FIFO Ctrl Regs.)

2 IPB_WE_FCR_REC
(to Recrod FIFO Ctrl Regs.)

2 IPB_WE_FCR_MO
(to Modem Out FIFO Ctrl Regs.)

2 IPB_WE_FCR_MI
(to Modem In FIFO Ctrl Regs.)

2 IPB_WE_FCR_MIC
(to MIC FIFO Ctrl Regs.)

to FIFO
Input

to FIFO
Ctrl regs.

 IPB_RE_REC
(to Record Lch & Rch Regs.)

 IPB_RE_MI
(to Modem In Sample 1,2 Regs.)

 IPB_RE_MIC
(to MIC Sample 1,2 Regs.)

from FIFO
Ctrl Regs.

AC’97 BASE

(10b0000000101)

AC’97
register
space
45 2389 671213 10111415

AC’97 Microphone Input FIFO
Control / Status Register

“00000000”

“00000000”

AC’97 Playback Left channel
Output Port

AC’97 Playback Right channel
Output Port

Command Write Data

Command Write Address

R
W

AC’97 Command Control Register Access Port
 1

2

3
4

00
AC’97 Main Control

Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

5

6

7

8

AC’97 Microphone
Input Port, Sample 2

AC’97 Microphone
Input Port, Sample 1

AC’97 Modem Line
Input Port, Sample 2

AC’97 Modem Line
Input Port, Sample 1

AC’97 Modem Line
Output Port, Sample 1

AC’97 Modem Line
Output Port, Sample 2

AC’97 Record Right channel
Input Port

AC’97 Record Left channel
Input Port

AC’97 FIFO Input / Output Port
Status Register

AC’97 Input/ Output FIFO
Status Register

9

10
11

12

13

14

15

AC’97 Modem Input FIFO
Control / Status Register

AC’97 Modem Output FIFO
Control / Status Register

AC’97 Record Input FIFO
Control / Status Register

AC’97 Playback Output FIFO
Control / Status Register

Command Address Echo

‘0’

Command Read Data

AC’97 Command Control Register Read Return Port

AC’97 Interrupt Control
Register

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11 AC’97 Registers

30.11.1 AC’97 Controller base address

IPB_Address

* AC'97 Controller registers are on IPB_Space0.

30.11.2 AC’97 Controller registers memory map

User’s Manual 10/2/2008 page 238

 IPB_Address[5:2]

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11.3 AC’97 Main Control Registers
 This registers totally controls Audio Codec ’97 Controller.
Bit 7 is master enable bit of the AC’97 controller (this module). When this bit is set to 0, all functions in this
module are disabled.
Bit 22:18 are Port Enables. controls each ports of audio input/output streams. These registers enables or disable
each ports of FIFO inputs/outputs.
 Bit1:0 are reset control bit of the AC’97 analog chip. When bit 1 is 1, AC’97 controller generates a warm AC’97
reset state. When bit 0 is 1, AC’97 controller generates a Cold AC’97 reset state. If Internal Peripheral Bus
asserts (IPB) RESET to 1, this bit is set to 1 (Cold Reset). The reset state is kept until clear the bit.
 This registers can be write or read from Internal Peripheral Bus. Bit 22:18 are not initialized.

User’s Manual 10/2/2008 page 239

“00000” C
rst

W
rst

AC’
97e
n

“00”‘0’“00000000” AC’97 port
 enables

“00000000”

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

bit 22: Microphone Port enable
 1 = enable / 0 = disable

bit 21: Modem Input Port enable
 1 = enable / 0 = disable

bit 20: Modem Output Port enable
 1 = enable / 0 = disable

bit 19: Record Port enable
 1 = enable / 0 = disable

bit 18: Playback Port enable
 1 = enable / 0 = disable

bit 0: 1 = Cold
 AC’97 reset
 (When IPB Reset,
 this bit is set to 1.)

bit 1: 1 = Warm
 AC’97 reset
 (When IPB Reset,
 this bit is reset to 0.)

bit 7: AC’97 master enable
 1 = enable / 0 = disable
(When IPB Reset, this bit is reset to 0.)

Interrupt Identify
Register

“00000000” “00”“00”‘00000
000’

“00000000” Interrupt Enable
Register

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

 bit 12: Modem Input FIFO half full interrupt enable
 1 = enable / 0 = disable

 bit 13: Microphone FIFO half full interrupt enable
 1 = enable / 0 = disable

 bit 8: Command Write Address and Data register empty
 or Command Echo Address and Read Data full
interrupt enable
 1 = enable / 0 = disable

 bit 9: Playback FIFO half empty interrupt enable
 1 = enable / 0 = disable

 bit 10: Record FIFO half full interrupt enable
 1 = enable / 0 = disable

 bit 11: Modem Output FIFO half empty interrupt enable
 1 = enable / 0 = disable

 bit 4: 1 = Modem Input FIFO half full interrupt occurs (read only)

 bit 5: 1 = Microphone FIFO half full interrupt occurs (read only)

 bit 0: Command Write register empty
 or Command Read register full interrupt occurs (read only)

 bit 1: Playback FIFO half empty interrupt occurs (read only)

 bit 2: Record FIFO half full interrupt occurs (read only)

 bit 3: 1 = Modem Output FIFO half empty interrupt occurs (read
only)

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11.4 Interrupt Control Register
This register controls two interrupt lines, INT_R and INT_W. When each parts of FIFO half empty/full state
occurs, this module generates interrupt.
 Bit 13:8 are interrupt enables for each FIFO input / output ports (including command write/read ports, which
does not use the FIFO). If some bit of this enables are set to 0, the corresponding FIFO full or empty interrupts
are disabled. These bit are not initialized. This register is able to be written or read from Internal Peripheral Bus
at any time. In case of ports which is written by Internal Peripheral Bus, a change of bit has a effect after the next
AC-link audio output frame. On the other hand, the ports which is read from Internal Peripheral Bus, it has a
effect immediately. Bit 5:0 are interrupt identify registers for checking the interrupt status. This register indicates
which port is in the interrupt state. These bit are able to be only read from Internal Peripheral Bus.

User’s Manual 10/2/2008 page 240

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11.5 Input/Output FIFO Status Register
This registers contains FIFO status. The FIFOs which is separated to five independent blocks have each four
status flags, FIFO empty (FE), FIFO full (FF), FIFO half empty or full (FH), and FIFO interrupt (FI). Bit 2 is
used for Command Read registers full interrupt (II). Bit 0 is used for Command Write registers empty interrupt
(OI). Every FI bit and II, and OI are used for generating interrupts. This registers are able to be only read from
Internal Peripheral Bus at any time. See subsection 2.4 FIFO Input/ Output Registers, for more details.

30.11.6 FIFO Input/Output Port Status Register
 This registers contains input/output port (FIFO Input/Output register) status. The five FIFO input or output ports
have each four status flags, higher 16-bit of FIFO input register has data (IH), lower 16-bit of FIFO input register
has data (IL), higher 16-bit of FIFO output register has data (OH), and lower 16-bit of FIFO output register has
data (OL). Command registers’ status indicates the Input Output register has new data or not. These registers are
directly connected with Internal Peripheral Bus and AC-link, not using FIFO. These registers� � � � �able to be only
read from Internal Peripheral Bus at any time. See subsection 2.7 Interrupt Generator, for more details.

User’s Manual 10/2/2008 page 241

Command
Port Status

Playback
Port Status‘00000000’ Microphone

Port Status
Modem Input

Port Status
Record

 Port Status
Modem Out
Port Status

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Command Register Port Status
bit 3: input register (high) has data
bit 2: input register (low) has data
bit 1: output register (high) has data
bit 0: 1 = output register (low) has data

Modem Output FIFO Port Status
bit 15: 1 = input register (high) has data
bit 14: 1 = input register (low) has data
bit 13: 1 = output register (high) has data
bit 12: 1 = output register (low) has data

Modem Input FIFO Port Status
bit 19: 1 = input register (high) has data
bit 18: 1 = input register (low) has data
bit 17: 1 = output register (high) has data
bit 16: 1 = output register (low) has data

Microphone FIFO Port Status
bit 23: 1 = input register (high) has data
bit 22: 1 = input register (low) has data
bit 21: 1 = output register (high) has data
bit 20: 1 = output register (low) has data

Playback FIFO Port Status
bit 7: 1 = input register (high) has data
bit 6: 1 = input register (low) has data
bit 5: 1 = output register (high) has data
bit 4: 1 = output register (low) has data

Record FIFO Port Status
bit 11: 1 = input register (high) has data
bit 10: 1 = input register (low) has data
bit 9: 1 = output register (high) has data
bit 8: 1 = output register (low) has data

Command
register Status

Playback FIFO
Status‘00000000’ Modem Input

FIFO Status
Modem Out
FIFO Status

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

Command Register Status
bit 3: reserved ‘0’
bit 2: 1 = read register full interrupt
bit 1: reserved ‘0’
bit 0: 1 = write register empty interrupt

Modem Output FIFO Status
bit 15: 1 = FIFO empty
bit 14: 1 = FIFO full
bit 13: 1 = FIFO half empty
bit 12: 1 = FIFO half empty interrupt

Modem Input FIFO Status
bit 19: 1 = FIFO empty
bit 18: 1 = FIFO full
bit 17: 1 = FIFO half full
bit 16: 1 = FIFO half full interrupt

Microphone FIFO Status
bit 23: 1 = FIFO empty
bit 22: 1 = FIFO full
bit 21: 1 = FIFO half full
bit 20: 1 = FIFO half full interrupt

Playback FIFO Status
bit 7: 1 = FIFO empty
bit 6: 1 = FIFO full
bit 5: 1 = FIFO half empty
bit 4: 1 = FIFO half empty

interrupt

Record FIFO Status
bit 11: 1 = FIFO empty
bit 10: 1 = FIFO full
bit 9: 1 = FIFO half full
bit 8: 1 = FIFO half full interrupt

Record
 FIFO Status

Microphone
FIFO Status

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11.7 FIFO Control/Status Registers
This registers are used for definitions of the FIFO. This registers contains FIFO start address, FIFO end address,
and FIFO watermark. Each FIFO block has one FIFO Control /Status Registers, amount to five registers. These
values are able to be written or read from Internal Peripheral Bus at any time. Bit 30:24 are FIFO read pointer,
Bit 22:16 are FIFO write pointer. These registers are able to be only read from Internal Peripheral Bus. See
subsection 2.6.4 FIFO Controller, for more details.

30.12 AC’97 Data Access Ports
 In order to communicate with AC’97 digital interface, seven 32-bit registers are prepared. The command
write/read registers are directly connected with Internal Peripheral Bus and with AC-link.
 The others are connected via internal FIFO. These registers are read only or write only registers. The status of
registers are able to read the FIFO port status registers.

30.12.1 AC’97 Control register access port
 This registers is command write register, from Internal Peripheral Bus to AC-link. It is directly connected with
Internal Peripheral Bus and AC-link. Bit 31 is R/W command bit. This value is used for Audio Output Frame
Slot 1, bit 19. Bit 30:24 are 7-bit Command Control Address. This value is used for Audio Output Frame Slot 1,
bit 18:12 (Control Register Index). Bit 15:0 are 16-bit command write data. When bit 31 is set to 1 (Read), bit
15:0 must be stuffed with 0’s. The value is used for Audio Output Frame Slot 2, bit 19:4 (Control Register Write
Data). This registers is write only registers, and must be written 32-bit simultaneously.

30.12.2 AC’97 Control register read return port
 This registers is command read register, from AC-link to Internal Peripheral Bus. It is directly connected with
Internal Peripheral Bus and AC-link. Bit 30:24 are 7-bit Command Address echo from AC-link. This value is
read from Audio Input Frame Slot 1, bit 18:12 (Control Register Index). Bit 15:0 are 16-bit command read data.
The value is read from Audio Input Frame Slot 2, bit 19:4 (Control Register Read Data). This registers is read
only registers, and must be read 32-bit simultaneously.

30.12.3 AC’97 Playback output port
 This registers are PCM Playback write register, from Internal Peripheral Bus to AC-link. This register is
connected to FIFO Input. Bit 31:16 are 16-bit PCM Playback left channel data. This value is used for Audio
Output Frame Slot 3, bit 19:4. Bit 15:0 are 16-bit PCM Playback right channel data. This value is used for Audio
Output Frame Slot 4, bit 19:4. This registers are write only registers, and must be written 32-bit simultaneously.

User’s Manual 10/2/2008 page 242

FIFO End
Address x 8FIFO Read Pointer‘0’ ‘0’ FIFO Write Pointer ‘0’‘0’

FIFO Water Mark
x 4‘0’

28293031 24252627 20212223 16171819 12131415 891011 4567 0123

FIFO End Address [6:3]
 (FIFO End Address [2:0]
 are ‘111’.)

FIFO Start Address [6:3]
 (FIFO Start Address [2:0]
 are ‘000’.)

FIFO Water Mark [6:2]
 (FIFO Water Mark [1:0]
 are ‘00’.)

FIFO Write Pointer
(indicates 7-bit write address
of synchronous RAM)

FIFO Read Pointer
(indicates 7-bit read address
 of synchronous RAM)

FIFO Start
Address x 8

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.12.4 AC’97 Record input port
 This registers are PCM Record read registers, from AC-link to Internal Peripheral Bus. This register is
connected to FIFO output. Bit 31:16 are 16-bit PCM Record left channel data. This value is read from Audio
Input Frame Slot 3, bit 19:4. Bit 15:0 are 16-bit PCM Record right channel data. This value is read from Audio
Input Frame Slot 4, bit 19:4. This registers are read only registers, and must be read 32-bit simultaneously.

30.12.5 AC’97 Modem Line output port
 This registers are Modem Line codec output write registers, from Internal Peripheral Bus to AC-link. This
registers are connected to FIFO input. Bit 31:16 are 16-bit data (sample 1). Bit 15:0 are 16-bit data sample2.
These values are used for Audio Output Frame Slot 5, bit 19:4. First, sample 1 is send to AC-link, after sample 2
is send in next Audio Output Frame. This registers are write only registers, and must be written 32-bit
simultaneously.

30.12.6 AC’97 Modem Line input port
 This registers are Modem Line codec input read registers, from AC-link to Internal Peripheral Bus. This
registers are connected to FIFO output. Bit 31:16 are 16-bit data (sample 1). Bit 15:0 are 16-bit data sample2.
These values are read from Audio Input Frame Slot 5, bit 19:4. First, sample 1 is read from AC-link, after sample
2 is read from next Audio Output Frame. This registers are read only registers, and must be read 32-bit
simultaneously.

30.12.7 AC’97 Microphone input port
 This registers are Microphone input read registers, from AC-link to Internal Peripheral Bus. This registers are
connected to FIFO output. Bit 31:16 are 16-bit data (sample 1). Bit 15:0 are 16-bit data sample2. These values
are read from Audio Input Frame Slot 6, bit 19:4. First, sample 1 is read from AC-link, after sample 2 is read
from next Audio Output Frame. This registers are read only registers and must be read 32-bit simultaneously.

User’s Manual 10/2/2008 page 243

Imagine 2 Multi Media Processor 30 The AC97 audio codec

User’s Manual 10/2/2008 page 244

	4. THE REGISTER FILE
	4.1 introduction
	4.1.1 the control registers
	4.1.2 the vector index generators
	4.1.3 the access modes

	4.2 The control registers
	4.2 Register plus register to register mode:
	4.2.1 accesses to general purpose and control registers
	4.2.2 vector register accesses
	4.2.3 The extended-indexed-accesses

	4.3 Immediate plus register to register mode
	4.4 The 16 bit constant load.
	4.5 The 32 bit constant load / merge.
	4.6 Vector index generators.
	4.6.1 results of the index generators
	4.6.2 control input for the Index generators
	4.6.3 data input for the Index generators
	4.6.4 Index generator calculations
	4.6.5 select the data bus used for the offset data
	4.6.6 select the status for conditional index generation and byte write enables	
	4.6.7 select between the use of the current or delayed status	
	4.6.8 generation of the byte write enables
	4.6.9 generation of the byte presets and byte resets

	4.7 The extended functions.
	4.7.1 byte write enables
	4.7.2 On the fly write Functions
	4.7.3 application of the byte presets and byte resets
	4.7.4 run time programmable data sizes
	4.7.5 preserved for compatibility only

	4.8 The 7 independent sub units of the register file
	4.8.1 read port A span of control
	4.8.2 read port B span of control
	4.8.3 write port C span of control
	4.8.4 read port A index generator span of control
	4.8.5 read port B index generator span of control
	4.8.6 write port C index generator span of control
	4.8.7 write Select Unit span of control

	4.9 Instruction fields for each of the 7 sub-units of the register file
	4.9.1 default values of instruction code fields

	4.10 Events which modify the Register File’s control registers
	4.10.1 events which modify REG_Control
	4.10.2 events which modify REG_Monitor
	4.10.3 events which modify REG_Vector
	4.10.4 events which modify REG_A_Indices
	4.10.5 events which modify REG_B_Indices
	4.10.6 events which modify REG_C_Indices
	4.10.7 events which modify REG_C_Flags

	4.11 Examples of vector operations with the register file
	4.11.1 Example 1: Vectored 3 operand ROP with an 8x8 pattern
	4.11.2 Example 2: Vectored parallel min/ max function
	4.11.3 Example 3: Vectored parallel table look up function
	4.11.4 Example 4: Vectored parallel histogram function
	4.11.5 Example 5: Vectored parallel add / subtract with saturate functions
	4.11.6 Example 6: Vectored parallel run length encoder

	4.12 Interrupt processing:

	5. BARREL SHIFT/ROTATE UNIT
	5.1 operations
	5.1.1 Operand select
	5.1.2 Barrel shift functions
	5.1.3 Shift direction
	5.1.4 The result register of the Barrel Shifter
	5.1.4 The extended function of the Barrel Shifter

	6. ARITHMETIC & LOGIC UNIT
	6.1 Operand Source select:
	6.2 ALU function:
	6.3 ALU instruction set
	6.4 Three port parametrised logic functions
	6.5 ALU control register: logic_function
	6.6 The ALU status register
	6.7 Conditional Control Flow Processing:
	6.8 using status for conditional register access
	6.9 using status for the range mask:
	6.10 direct control register access to the F bus register:

	7. MULTIPLIER / ACCUMULATOR.
	7.1 Multiplier / Accumulator
	7.1.1 The multiplier accumulator
	7.1.2 The pipeline
	7.1.3 multiplier operand select

	7.2 The basic set of multiplier operations
	7.2.1 The Basic Multiply options
	7.2.2 Multiplications defined in the basic set
	7.2.3 The multiplier operand types
	7.2.4 Internal and output formats
	7.2.5 The Graphics data format

	7.3 The extended multiplier functions
	7.4 Description of the multiplier operations
	7.4.1 Operands for the multiplier
	7.4.2 Basic operations
	7.4.3 8 bit Matrix functions: Quad Inproduct
	7.4.4 8 bit Matrix functions: 8 bit Matrix Vector multiplication
	7.4.5 8 bit Matrix functions: 8 bit Blend function
	7.4.6 Data Pipeline initialisation:
	7.4.7 Accumulator file access
	7.4.8 Reading data from the accumulator file
	7.4.9 Writing data to the accumulator file
	7.4.10 Incremental Functions
	7.4.11 The MAC functions: multiply accumulate (scalar)
	7.4.12 The MAC functions: multiply accumulate (block)
	7.4.13 16 bit vector product
	7.4.14 16 bit complex product

	7.5 Multiplier / accumulator operand formats.
	7.5.1 Multiplier input and output format definitions.
	7.5.2 Internal format definitions

	7.6 The range clip unit
	7.6.1 Operation
	7.6.2 Range clip activation
	7.6.3 Data size and data Type
	7.6.4 Range clip output
	7.6.5 The status word: ALU_RC_Status (=cr15)
	7.6.6 The range mask generator
	7.6.7 Balanced signed compares

	7.7 Overview of the multiplier control registers
	7.8 Multiplier accumulator control register 1
	7.8.1 The vector ram read / write control
	7.8.2 The operand Data Size field
	7.8.3 The Data Type control field.
	7.8.4 The Accumulator input selection
	7.8.5 Output shift factor
	7.8.6 The Range clip unit activation flag .
	7.8.7 The pipeline control field
	7.8.8 Transposer operation

	7.9 Multiplier accumulator control register 2
	7.9.1 blend coefficient selection
	7.9.2 range unit: 32 or 64 bit compares
	7.9.3 range unit:
	 Balanced signed compare:
	7.9.4 range unit:
	 Dynamic Limits
	7.9.5 range unit:
	 Range Mask selection
	7.9.6 range unit:
	 Output clipping

	7.10 Multiplier accumulator pointer control register
	7.10.1 Vector register ram read and write pointers
	7.10.2 Coefficient read and write pointers
	7.10.3 The data type and signs used for macs()

	7.11 Multiplier accumulator coefficient register entry
	7.12 Multiplier accumulator 8 bit data pipeline output
	7.13 The state save and restore register

	8. UNARY FUNCTION UNIT
	8.1 UNARY FUNCTION UNIT
	8.1.1 The result register of the UFU
	8.1.2 The instructions of the UFU

	8.2 The basic unary functions
	8.2.1 Binary to Unary conversion: U = unary(A)
	8.2.2 Unary to Binary conversion: U = binary(A) (priority encoder)
	8.2.3
	Absolute value: U = abs(A), U = abs(F)
	8.2.4 Sign function: U = sign(A), U = sign(F)
	8.2.5 Not zero function: U = notzero(A), U = notzero(F)
	8.2.6 Swap bits function: U = swap(A), U = swap(F)

	8.3 IEEE 754 floating point operations
	8.3.1 Handling of floating point numbers:
	8.3.2 IEEE 754 32 bit floating point definition
	8.3.3 IEEE 754 32 bit floating point macro functions

	8.4 IEEE 754 floating point operation support register cr33
	8.4.1 Float To Fix offset. cr33 [7:0]
	8.4.2 Fix To Float offset. cr33 [15:8]
	8.4.3 The H exponent. cr33 [23:16]
	8.4.4 EL: exponent offset usage in U = fixed() (see the Float to Fix offset)
	8.4.5 EX: exponent offset usage in U = floatFd() (see the Fix to Float offset)
	8.4.6
	UH: Use H exponent
	8.4.7 MUL: Use H exponent for add or multiply
	8.4.8 NAN: Not a Number error flag
	8.4.9 UNF: Underflow error flag
	8.4.10 OVF: Overflow error flag
	8.4.11 ERR: Floating point error flag
	8.5 IEEE-754 floating point conversions
	8.5.1 The pass instruction
	8.5.2 The IEEE 754 conversion instructions
	8.5.3 IEEE 32 bit floating point to integer
	8.5.4
	IEEE 32 bit floating point to fixed
	8.5.5 Integer to IEEE 32 bit floating point
	8.5.6 Fixed to IEEE 32 bit floating point
	8.5.7 Some examples of floating point to integer conversions

	9. DATA I/O UNIT
	9.1 general
	9.1.1 Data memory organisation
	9.1.2 Data memory address types
	9.1.3 Internal data representation

	9.2 Data Access function
	9.2.1 The use of the 3D graphics pipeline

	9.3 The Data transport function
	9.3.1 The data store functions
	9.3.2 The data load functions
	9.3.3 The internal zero and sign extend functions

	9.4 Data I/O control registers
	9.4.1 The D bus register
	9.4.2 The DIO_Control register
	9.4.3 The DIO_Address register
	9.4.4 The DIO_offset register

	9.5 Data access unit: detailed operation description
	9.5.1 Selected Address
	9.5.2 Higher dimensional addressing via the cache
	9.5.3 The use of the 3D graphics pipeline with the extended function
	9.5.4 Vector accesses with the extended function
	9.5.5 Scratch pad accesses

	10. VECTOR I/O UNIT
	10.1 Image I/O function select
	10.2 Output operation
	10.2.1 Output source selection
	10.2.2
	Byte selection
	10.2.3 True color to 16 bit error diffusion:
	10.2.4 True color to 16 bit color conversion:
	10.2.5 True color to 8 bit pseudo color
	10.2.6 True color to 8 bit dithering
	10.2.7 True color to 8 bit dither matrix
	10.2.8 True color to 8 bit error correction
	10.2.9 Alpha Compare Test
	10.2.10 Alpha Dithering
	10.2.11 Write Disable
	10.2.10 Transparency color

	10.3 Input instruction.
	10.3.1 16 bit input c
	olor conversion:
	10.3.2 8 bit input color conversion
	10.3.3 Alpha generation by color key range
	10.3.4 Byte selection:
	10.3.5 Data Size definition:

	10.4 Feedback instruction
	10.5 Simultaneous input and output
	10.6 Setting up the translation tables
	10.6.1 The contents of the pseudo color to true color table.
	10.6.2 The contents of the true color to pseudo color table.

	10.7 The control registers of the VIO
	10.6.1 The Vector I/O Control register no. 1
	10.6.2 The Vector I/O Control register no. 2
	10.6.3 The alpha test and alpha generation control register
	10.6.4 The pseudo  true color conversion tables entry
	10.6.5 The transparent output color
	10.6.6 The transparent color input range

	11. THE PROGRAM SEQUENCER
	11.1 The program sequencer instruction word
	11.2 Sequencer control registers
	11.3 The control register functions
	11.4 The control flow instructions
	11.4.1 The jump instructions
	11.4.2 The call instructions
	11.4.3 The return instructions
	11.4.5 The repeat instruction

	11.5 Sequencer usage
	11.5.1 The branch delay slots in the instruction address generation
	11.5.2 The usage of the internal program counter stack
	11.5.3 Using the Imagine's ALU status for conditional control flow
	11.5.4 The usage of the immediate data in the instruction field

	11.6 The program sequencer mnemonics
	11.7 Vector processing control flow
	11.7.1 Variable length vector processing
	11.7.2 The repeat instruction
	11.7.3 Vector processing functional units
	11.7.4 Vector type data storage access

	11.8 The multimedia interrupt handler in the Imagine 2
	11.8.1 Programmers view:
	11.8.2 Multiple interrupts without repeated state saving and restoring:

	11.9 The status / control register
	11.10 Direct read and write accesses to the instruction cache

	12. THE MASK GENERATOR
	12.1 introduction
	12.1.1 The image masks
	12.1.2 The vector access unit
	12.1.3 The usage of the image mask
	12.1.4 The image mask and its construction

	12.2 The image mask control registers
	12.2.1 The mask generation control registers:
	12.2.2 The Window mask control registers
	12.2.3 The Spanline mask control registers
	12.2.4 The Range mask control registers
	12.2.5 The Complex mask control registers
	12.2.6 The Result mask registers

	12.3 The function specific mask generators
	12.3.1 The Window mask generator
	12.3.2 The Spanline mask generator
	12.3.3 The Range mask generator
	12.3.4 The Complex mask generator.

	 VLC DECODER / DEQUANTIZER
	15. MOTION ESTIMATOR.
	24. VIDEO TIMING GENERATORS
	24.1 The I/O signals of the Video Timing Generator
	24.1.1 schematic overview
	24.1.2 signal definitions

	24.2 Module overview of the Video Timing Generator (VTG)
	24.2.1 The IPB_interface
	24.2.2 The counters
	24.2.3 The Decoder
	24.2.4 The Instruction RAM
	24.2.5 The Read multiplexer

	24.3 Functional description of the Video Timing Generator
	24.3.1 Video Timing Generator instruction description

	24.4 Sample program for the Video Timing Generator
	24.5 Function Table of the Video Timing Generator
	24.6 Interfacing with the Video Timing Generator through the IP
	24.6.1 The Control register
	24.6.1.1 The Unit control register
	24.6.1.2 The Program counter
	24.6.1.3 The Decoder signals
	24.6.2 The Counter register
	24.6.3 The Instruction RAM

	24.7 Programmers Notes

	25. VIDEO OUTPUT UNIT
	25.1 The Input / Output Signals of RAMDAC (digital circuit)
	25.1.1 Input/ Output signals definitions

	25.2 RAMDAC module overview
	
	25.3 Read FIFO (fifoctrl.v)
	25.3.1 The timing of read from FIFO and ReadNext signal
	25.3.2 Input Data Format
	25.3.3 Block diagrams

	25.4 Pixel select and 16 bit to 32 bit color expansion (divpix.v)
	25.4.1 Block diagrams
	25.4.2 16-bit to 32-bit color expansion

	25.5 Read Look-up Table RAM (c_tbl.v)
	25.6 Cursor Generation (cur_gen.v)
	25.6.1 Block diagrams (cur_gen.v)
	25.6.2 Cursor modes definitions
	25.6.3 Cursor RAM
	25.6.4 Cursor positioning

	25.7 Color Data out (colorout.v)
	25.8 Internal Peripheral Bus I/F
	25.8.1 RAMDAC base address
	25.8.2 RAMDAC registers memory map

	25.9 Control Registers
	25.9.1 Color Control Registers
	25.9.2 Cursor Control Register
	25.9.3 FIFO Control Register
	25.9.4 Test Control Register
	25.9.5 Test Registers
	25.9.6 Cursor Position x, y Registers
	25.9.7 Count x, Count y Registers
	25.9.8 Cursor Color 0, 1 Registers
	25.9.9 Cursor Plane 0, 1 entries
	25.9.10 Color Look-up Table RAM entries

	26. VIDEO INPUT UNIT
	26.1 The Input/Output Signals of the Video Input Unit
	26.1.1 Signal definitions

	26.2 Module overview of the Video Input Unit (VIN)
	26.2.1 The IPB_interface
	26.2.2 Stage0 (Input stage)
	26.2.3 Stage1 (4:2:2 to A:4:4:4 conversion)
	26.3.4 Stage2 (Down sampling)
	26.3.5 Stage3 (Colour conversion)
	26.3.6 FIFO (128 deep by 32-bit wide)

	26.4 Functional description of the Video Input Unit
	26.4.1 Stage0 (Input stage)

	26.5 The control registers
	26.6 Interfacing with the Video Input Unit through the IPB

	29. THE I2S AUDIO INTERFACE
	29.1 The Input/Output Signals of I2S Interface Unit
	29.1.1 Input/ Output signals definitions

	29.2 I2S Bus Interface Unit overview
	
	29.3 Serial Timing Generator (I2S_TGEN.v)
	29.3.1 Block Diagram (for I2S I/O Port 0)
	29.3.2 Serial Timing (Slave, I2S format)
	29.3.3 Serial Timing (Slave, Japanese format)
	29.3.4 Serial Timing (Master, I2S format)
	29.3.5 Serial Timing (Master, Japanese format)
	29.3.6 Serial Data Format

	29.4 FIFO Input/Output Registers (I2S_FR.v)
	29.4.1 Block Diagram (FIFO Input Registers)
	29.4.2 Block Diagram (FIFO Output Registers)

	29.5 128 x 32 bit FIFO (F_I2S.v)
	29.5.1 Block Diagram 1/2 (FIFO block)
	29.5.2 Block Diagram 1/2 (Controller & Arbiter block)
	29.5.3 FIFO Arbiter (I2SFABT.v)
	29.5.4 FIFO Controller (I2SFCTRL.v)

	29.6 Interrupt Generator (I2S_IGEN.v)
	29.7 Internal Peripheral Bus I/F (I2SIPBIO.v)
	29.8 I2S Registers
	29.8.1 I2S Controller base address
	29.8.2 I2S Controller registers memory map
	29.8.3 I2S Main Control Registers
	29.8.4 Interrupt Control Register
	29.8.5 Input/Output FIFO Status Register
	29.8.6 FIFO Input/Output Port Status Register
	29.8.7 FIFO Control/Status Registers
	29.8.8 Frame Size registers

	29.9 I2S Data Access Ports
	29.9.1 I2S FIFO input port registers
	29.9.2 I2S FIFO output port registers

	30. THE AC97 AUDIO CODEC
	30.1 The Input/Output Signals of AC’97 Controller
	30.1.1 Input/ Output signals definitions

	30.2 AC’97 controller module overview
	
	30.3 AC’97 Serial Timing Generator (T_GEN.v)
	30.3.1 The timing of Serial Timing Generator
	30.3.2 Block Diagram

	30.4 AC’97 Serial Data Enable Generator (SE_GEN.v)
	30.4.1 Block diagram
	30.4.2 Set/Reset Conditions of Serial enables

	30.5 AC’97 Serial Output Generator (SO_GEN.v)
	30.5.1 Block Diagram

	30.6 FIFO Input/Output Registers (F_REGS.v)
	30.6.1 Block Diagram (AC’97 Commend R/W Registers)
	30.6.2 Block Diagram (FIFO Input Registers)
	30.6.3 Block Diagram (FIFO Output Registers)

	30.7 Read Input Tags (R_TAG.v)
	30.8 128 x 32 bit FIFO (F_AC97.v)
	30.8.1 Block Diagram 1/2 (Controller & Arbiter block)
	30.8.2 Block Diagram 2/2 (FIFO block)
	30.8.3 FIFO Arbiter (F_ABT.v)
	30.8.4 FIFO Controller (F_CTRL.v)

	30.9 Interrupt Generator (INT_GEN.v)
	30.10 Internal Peripheral Bus I/F (ACIPBIO.v)
	30.11 AC’97 Registers
	30.11.1 AC’97 Controller base address
	30.11.2 AC’97 Controller registers memory map
	30.11.3 AC’97 Main Control Registers
	30.11.4 Interrupt Control Register
	30.11.5 Input/Output FIFO Status Register
	30.11.6 FIFO Input/Output Port Status Register
	30.11.7 FIFO Control/Status Registers

	30.12 AC’97 Data Access Ports
	30.12.1 AC’97 Control register access port
	30.12.2 AC’97 Control register read return port
	30.12.3 AC’97 Playback output port
	30.12.4 AC’97 Record input port
	30.12.5 AC’97 Modem Line output port
	30.12.6 AC’97 Modem Line input port
	30.12.7 AC’97 Microphone input port

