Imagine Processor

Incomplete Recovered Document
with document format translation
Il 1ssues !!

]MAG]NE 2

The IMAGe engINE

Documentation & User Manual

May 1997

VERSION 0.70

Imagine Processor

Imagine Processor

4. THE REGISTER FILE...........uuiiooueiionsssanreoss 25
4.1 INEFOAUCEION..cccieiiiiteeireicssnecssaeessaeesssnessseisssnesssanessstesssnessansssssssssasssssssssasessssssssnessasessasaesssssnsane 27
4.1.1 the CONLIOL TEISTETS. ...eeuviitieieiieteiieteettesteetes e etesteesesseessesseesesstessesssesseessenseessesseessesssessessseessseesssseens 27
4.1.2 the VECtor INAEX GENETALOTS.ccvieiertiererieeteiteeteeteeseereeseeseesseeseesseessesseessesssessesssesseessseesssseessseeessseens 27
4.1.3 the 8CCESS MOAES.......eueeiiiiieteei ettt ettt ettt ettt et e s bt e e bt en b e e bt et e eaeenteeaeesbeeneeesmbeeennbeeeaneeean 27
4.2 The cONtrol regiSterS.....uueiiinnrriniverisssnneissnrisssseressseressssseesssssessssnsessssssesssssssssssassasssssssssss 28
4.2 Register plus register to register MOde:......coueerveeerreissnensseensressrecssaesssseessseessssssessssssssaseses 29
4.2.1 accesses to general purpose and CONtrOl TEGISTETS.evuviverierrerieeieeiieieetieteeteaeeee e eaesseeesseeeneneens 29
4.2.2 VECTOT TEZISIET ACCESSES. uevrerrrrurereererreesseaseesseaseesseaseessesssessesssesseessesseessesssessesseessesssesseessessseeessseessssees 29
4.2.3 The extended-INdeXed-ACCESSES.euerieieieeieiieiietiete ettt ettt ettt ettt et sae et ebe bt e beesseeenteennean 30
4.3 Immediate plus register to register Mode...........ccoueevversiercsserissercssenessenessseesessssssessesssssasenes 30
4.4 The 16 bit cONStANt 10ad.......ccocuueeeiiireriiiiniiinietiinsntecssneticsnsticssstecssseeessssssssssssseessssssssssses 30
4.5 The 32 bit constant 10ad / METge........ccuveeirieissnressensseessnessnecseecsssessssesssseessansssssssssaesssssssane 31
4.6 Vector INAEX SENETrAtOYS....eeierrersrecsersrrssssstrosssssresssssrssssnssssssssssosssssassssssssssonssssssnssssssassasssassssss 32
4.6.1 results Of the INAEX ENEIATOTS......ccuiiieriieieiieiereete st eie et et et e st e et e sseesaesseessesseesbesssesesssesseessenseessseens 32
4.6.2 control input for the INAEX ZENEIALOTS.ccuieiiirieiierietiereeteeeere ettt aesbeebesteebeereeseessneeessneeas 32
4.6.3 data input for the INdeX ZENETATOTS.cccueitieiiitieieieee ettt ettt s s 32
4.6.4 Index generator CAlCUIAtIONS.eeruieuieriieierie ettt ettt ettt ettt e st e e s et eeesseeteeseeteeneeneeeneenn 32
4.6.5 select the data bus used for the offset data..........ccooveviiieiiiee e 33
4.6.6 select the status for conditional index generation and byte write enablesccoccevvevieeienienceeenennn. 33
4.6.7 select between the use of the current or delayed Statuscccovevveeriicieiieciecieeeee e 33
4.6.8 generation Of the byte WITte ENaBICS........c.ccvieiiiiieiiiiiciceecte ettt reeae e e senee s 34
4.6.9 generation of the byte presets and DYLE IESELS......co.veruiriertiriiiieieeee et 34
4.7 The extended fUNCLIONS........ueiiirveeriirreriiiineriiiseticssttecsssenessseressssstssssssessssssessssssesssssssesssssssns 35
4.7.1 DYLE WITEE ENADIES. ...c.veuviiiiiieiieiieiiiieetcete sttt ettt ettt ettt eb e bttt en 35
4.7.2 On the fly WIite FUNCLIONS.......ccviiieiieiietieieee ettt sttt saeste e s e saeessesseessesssessesnseeensseens 35
4.7.3 application of the byte presets and DYLE FESELS........ccuirirriirieriieieriieierte et ete st ere e ere e e sseeeseneens 36
4.7.4 run time programmable data SIZES..........ccceeeeriieieriieiisrieiesteete st ete et e ste e e stesaesre e b e sreesseereesbeeaeeeseneens 36
4.7.5 preserved for COMPatiDILIty ONLYcouiiiiiiiiiiiei ettt et 36
4.8 The 7 independent sub units of the register file..........ccceevvuereeveerivserrcnscnerinsseeccssneencscnnenenns 37
4.8.1 read port A SPan Of CONIOL......ccueiiiiiiiiiriiiee ettt sttt n 37
4.8.2 read port B Span Of CONLIOL.........c.eeiiiiiiiieieiieieie ettt sttt esseessesseensesaeensesnneens 37
4.8.3 write port C Span Of CONLIOL.........ccuiiiiiiieieiieieit ettt steeseesseesaesreessesseesseessensens 37
4.8.4 read port A index generator Span Of CONLIOL........c.ccuieiiriieiiiiiiicieie et 37
4.8.5 read port B index generator span of CONIOL.........ccoiiiiiiiiiiiiieieeeee e 38
4.8.6 write port C index generator Span Of CONLIOL........ceiuiiiieiiiieiei et 38
4.8.7 write Select Unit Span 0f CONIOLc.eoiriiriiriiriiniiiiiciecieeee ettt 38
4.9 Instruction fields for each of the 7 sub-units of the register filecccceevuvererrrieeicciirnnnnnes 38
4.9.1 default values of instruction code fIeldscociririririnineeee e 39
4.10 Events which modify the Register File’s control registers........cccoeeereessrsnnnneeerreecsccsssssssnens 39
4.10.1 events which modify REG Control...........cccooiiiiiiiiiiiieieeeeeseee et 39
4.10.2 events which modify REG IMONILOT.ceouiriiriiiierieeieeieeie sttt et eee s 39
4.10.3 events which modify REG VECTOT.......cccoiririiiiiiiiiicicceenen ettt e 40
4.10.4 events which modify REG A INAICES........ccceruieiiriieiieieiecieie ettt eeae e e enneeennnee s 40
4.10.5 events which modify REG B INAICES......c.ccceeciiiuiiiiriiiiieieiieieie ettt ive e e sevee e s 40
4.10.6 events which modify REG C INAICES.......ccueiuieiiiriiiieieiieeerte ettt ettt aaeeenaeeseneeesenee s 40
4.10.7 events which modify REG C FIags.......ccccooiiiiiiiiiiiiieeieee ettt 40
4.11 Examples of vector operations with the register file.........ccoccceeeevcueriisverrissvnncssnereeccceccnnns 41
4.11.1 Example 1: Vectored 3 operand ROP with an 8X8 pattern..........c.ccoevverenieiiciincnnincenecnicniceeen 41
4.11.2 Example 2: Vectored parallel min/ max function............c.ecveeveriieienieiienieie e e s 41
4.11.3 Example 3: Vectored parallel table 100k up function............ccecuevverieeienieienieieceeeeeee e 41
4.11.4 Example 4: Vectored parallel histogram funcCtion..............cccecvervieienieienieiieeee et 42
4.11.5 Example 5: Vectored parallel add / subtract with saturate functions.............cccceeeererveniienieeenneen. 42
4.11.6 Example 6: Vectored parallel run length encoder............oooevieiiiieiieiiee e 43

Imagine Processor

Imagine Processor

4.12 INTErTUPL PrOCESSIME: .uuuuueeriricerrisssneeesssreeecssnserssssseressssessssssesssssessssssessssssssssssssnssssssassesssssses 44
5. BARREL SHIFT/ROTATE UNIT........uuuuuuvvuuenueenrensnersnenssnssssesssnsssassssassssessssssssssssnsens 43

5.1 OPEIationNS.....eeeiceecueiicscsnricsssnnicsssssissssnsrsssssssesssssssssssnssssssnssssssssssssssssssssssssssssnsssssssssssssssssssssssssss 47
S5.1.T OPETANA SELECL.......eeeieiieiieiieetieett ettt ettt e et e e e st e teeeaeeteeesbeenaeeenbeessaeenseensseanseensaeenseennssseeeann 47
5.1.2 Barrel shift fUNCIONSc.ooiuiiieiiie ettt ettt b et ettt e e e e e eetee e 47
BTN B YV U1 (T (0 3 VOSSPSR 47
5.1.4 The result register of the Barrel Shifter..........cccocoviiiniiininiiii e 47
5.1.4 The extended function of the Barrel Shifter............ccccooiiiiiiiniininin e 48

6. ARITHMETIC & LOGIC UNIT......cuuuuoouuuevvueinssuersssrvrsssns 49
6.1 OPErand SOUICE SCIECE:ccueeiiriieiieiierieeterteetesteetesteetesteesbesteeseaseessesseessesssessesssessesssesseessensesnsenssesesanes 51
0.2 ALU fUNCHOMN: ..ttt et et a e bbbt e bt e b e sb et et e st et e s et enteneeseeembeembeenbeeenneans 51
6.3 ALU INSTTUCEION SET ..eeutiiiietieiieitieiieet ettt ettt ettt ettt et e s b et e st e e e eb e et e es e e bt eaeesbeeneesbeenseeesmbeeennteennns 51
6.4 Three port parametrised L0ZIC fUNCHONS.eeuiitieiirieie ettt 52
6.5 ALU control register: 10ZIC fUNCHON......c..ecueiiiiriririeiinerestete ettt sttt 52
6.6 The ALU StatUS T@ISTOT. . ..eeiuiesvertieteriieteeeieteeetesteetesseesesseessesseessesssessesssesesssenseessenseenseesnsseesnseesssseennes 52
6.7 Conditional Control FIOW PrOCESSING:.........cievuirieiiiiieieieeiestee st ettt eetesseeseesseessesseesseeesnsaeessseennes 52
6.8 using status for CONAItioNal TEZISLET ACCESS......evuiiriirieriirieieiierteetesieeeesteeseereessesseeseesseessseessseeessseeanes 53
6.9 using status for the range MasK:.........coiiiiiiiiii e e 53
6.10 direct control register access to the F bus re@ister:........ccoervirieiirieiiiieeeieeee e 53
7. MULTIPLIER / ACCUMULATOR.......coonreriiossnasissssssssscsssssssssssssssssssssssssssssssssssssses 54

7.1 Multiplier / ACCUMUIALOTY ...cueiiereeriercrnricssrnicsssnsrssssnsissssnssesssssssssnsrssssnsssssssssssssssssssssssssssssss 56
7.1.1 The multiplier ACCUMUIALOT.ccuieiiiitieiietieiieiete ettt ettt et a e e e b e e teesbeeseebeessesseessessseesnseeesssenanes 56
A B N 1 T 03 |0 1<) 11 T OSSP 56
7.1.3 multiplier 0Perand SELECT..........ccuiiiiiiiiert ettt sttt e et eae 56

7.2 The basic set of multiplier Operations........c.cuieiineensenssennseecssnecssnecsseesssseessssssseeeesssssnaees 57
7.2.1 The Basic MUItIPLY OPLIONS.ccuiiieriieieriieiesiieieetieieetee et et testeeaesseesesseessessaensessaensesssaseeesnseesnes 57
7.2.2 Multiplications defined in the DASIC SEL.........cccvreieriieiiiiieieeieieee ettt seebe e sereeenes 57
7.2.3 The multiplier OPEIand tYPES.......cevviiieriirieriieiertieteeteeteeteesteeteessesreessessaesseessesseessesseessesseessesseesesseeses 59
7.2.4 Internal and OULPUL fOTMALS......ccuiiiieeiieiie ettt ettt te et e st e e staeebeessaeesseessnssaeeeensssseeeann 59
7.2.5 The Graphics data fOTMAL.........c.oiuiiiiiieieiee ettt e e e e st saeeeesaeesneee e 59

7.3 The extended multiplier fUNCLIONS.....cccceeirieiiriinnreissinnsinnsrensrecssnecssneessseessanssssesssssesssssaned 60

7.4 Description of the multiplier OPerationsc.ccceeevcerecscericsscricssssncsscnsircsssnsssseeseenssecssns 61
7.4.1 Operands for the MUIPIICT........cc.eeiiriieieiieiere ettt te et e sse e e e sseessesseessseesnsaeessseennes 61
T.4.2 BaSIC OPCTALIONS.uecueeveeeieiteeteiteeteeteesteetteseestesseessesseassesseessesssessesssessesssessasssasesssesseessessseesssessssesanes 61
7.4.3 8 bit Matrix functions: Quad INProAUCT...........ccueeiiieiiiiiieie et e e e 61
7.4.4 8 bit Matrix functions: 8 bit Matrix Vector multiplication.............ccceecereereiiininiiieeereeee e 62
7.4.5 8 bit Matrix functions: 8 bit Blend fUnCtion............coecieieiiiieri et 62
7.4.6 Data Pipeline initialiSAtION:c.ccveiieriieiieiieiie et sieeie ettt ettt e et eeesseesaesseesessaessesssenseesnsaeessseennns 62
747 ACCUMUIALOT FI1€ ACCESS. ... cuveueeuiiiiriiiiietiet ettt ettt ettt sttt ettt et ebt et ebeebe e bbb ea 62
7.4.8 Reading data from the accumulator file..........c.occveriieiiiieiiiicceeee et 63
7.4.9 Writing data to the accumulator file..........ccoooiiiiiiiiii e 63
7.4.10 Incremental FUNCHONS.coouiiieiiiieite ettt ettt ettt sttt sa e sae et st et e estete e smeeeeanteeenns 63
7.4.11 The MAC functions: multiply accumulate (SCALar)...........ccevveerirriririnieninineneneeerete e 63
7.4.12 The MAC functions: multiply accumulate (DloCK).........cceeeveriroieririenieierieieeeee et 63
7413 16 DIt VECTOT PIOAUCT. .. .cvieuieiiieeiieiieiieteettetesteete st eae st etesteesbessaesseessesseessasseessesseessesseensseesnseeessseennes 63
7.4.14 16 Dit COMPIEX PIOAUCT.....eceeietieiiieieieet et eie ettt ettt ettt e s e e teesbesaeesessaessesssesseessesseessassaessenseensenes 63

7.5 Multiplier / accumulator operand fOrmats........cccoevverecscrericsssseresssnnessssssssssssssssssesssssssssssses 64
7.5.1 Multiplier input and output format definitions............ccerieiiirieiiiieee e 64
7.5.2 Internal format defiNItiONS..........cccueiuiriiriieieete ettt ettt e esae e nnee e 64

7.6 The range ClP UNIL.......cooeeiiiivvriinicniensssnienssssiessssesssssssiosssssiesssssessssnsessssassssssassssssonsssssssssssss 65
T.6.1 OPCIALION. .. .cuvieeretieiieetiete et eteettesteettesseestesseessesseessesseesseaseessesssensesssesseassesseessessaessasaensensaensenssensenssessnes 65
7.6.2 RANEE CLIP ACHIVALION......ecvietieiiciieiecteste ettt e it et et e b et esseeteesbeesaeseeseesseessesseessesssessesssessassseesssesanes 65
7.6.3 Data $1Z€ aNd datad TYPE....cceiiuiiiiitieieiieeet ettt sttt et sttt st a ettt e e st e e netee e 65
7.6.4 RANEE CLIP OULPULeiniiiieitiee ettt ettt ettt et et et e e et e b e es e e bt en e e bt eneeesmneeesmneeeanteeanns 65
7.6.5 The status word: ALU RC_Status (ZCIL5)....coueririiniiniiieiiieieeeenceeetesie ettt 65
7.6.6 The 1ange MASK GENETALOT.........ccvertieiertieierieetesteesteeeeestesetesteeseeseessesseessesseessesseensesseensesnsseesseessnseennns 66

Imagine Processor

Imagine Processor

7.6.7 Balanced SiZNed COMPATES.........ccueriirrieiietieiteetierttete st eteste e teseeetesseeteeseeteeseaseeneesseeneesseeesnseeeanseeanns 66
7.7 Overview of the multiplier cOntrol registers.........ccieinienseecssnecssnenssnecsseessnessseessanecssneees 67
7.8 Multiplier accumulator control regiSter L...........oeieiicneiecscsnricsssnnicssssnessssenssssssssnssssssssns 68

7.8.1 The vector ram read / WITLE CONLIOLe.iiiiiiiiiieieiteiceite ettt s 68

7.8.2 The operand Data Size fIeld........c.cccveviiiiiiiiiiii ettt ettt be e sereeenes 68

7.8.3 The Data Type control fIeld.........cooriiiiiiiiii ettt s e et 68

7.8.4 The Accumulator INPUL SEIECTIONoouieiiiiieii ettt e st e e seeeeeneee e 68

7.8.5 OULPUL SHift fACTOT. c..cueiuiiiieiiiiciieiee ettt ettt ettt st et e b e saee e 68

7.8.6 The Range clip unit activation flagcccevieriiieniieieieiese ettt sae s e e sraeeseseeenes 69

7.8.7 The pipeline control fIeld..........cccovieiiiiieiiiieieie ettt b b et esseensaeesesaeenes 69

7.8.8 TTaNSPOSET OPCTALION. ...ccuvreeuieetieriieerteenteesteeeteesteeaseeseessseesseessseesssessseenseesssaessesssseesseessseessseessessssseessnn 69
7.9 Multiplier accumulator control reGiSter 2.........eieivieiveensveisseissenssencssenecssssnseesesssssseesens 70

7.9.1 blend COCTTICIENt SEIECTION.eeitieeieeiieiietieee ettt ettt et et este et esaeeneesaeeneesbeenseeneeanns 70

7.9.2 range unit: 32 01 64 DIt COMPATES......coeruirtirrirtirtiteteteteiteitetete ettt sttt et ese et et et esesbesuestesaeeeas 70

7.9.3 TANZE UNI:.c..eiiieiiiiieie et etete et et et e et et e s st esseeseessesseessesssensesssesseessenseensaseanseeseensesseessesssesseensessennsennes 70

Balanced SIZNEd COMPATE:.........ccuevuieieriieiieiieieeeete et etesteteseesseessesteesbesseessesseesseeseessesseessesseessesssessesssensseens 70

7294 TANZE UNI:.c..oiiviiiiiiieie it ettt et et e et e e teesaeeteesseeaeesbeesaesseessassaessassaessaseesseeseessesseesseessesseessesseessennes 70

DYNAMIC LIMIES. ...ttt ettt ettt e s ettt e s ae e e e s ae e besa e e beeseebeentenbeenbeeennteeennees 70

7295 TANZE UNIE:.c..eitieiiieieie ettt ettt et e et et e ae e et e et e be e st e teem e e b e em e e s e ense st enseeseenseeaeeseeneesneeneeaneeneeenns 70

RANZE MaASK SEIECHION.euiiuiiiiiiiiiiiieitcet sttt ettt b ettt sttt ettt ettt et ebeeseeaeeea 70

7.9.6 TANZE UNI:....eeuieiieiieieiieieetete et e e e te st este s st esseeseessesssessesssensesssesseessensaessasaensesseensesseassesssessesnsessennsennes 71

OULPUL CLIPPING. c..evteeveitieieeiiete ettt ettt et et e eteete et e eteesbesseessesseesseessesseesseseessasseesseaseessesssensesseessesssessesssensseens 71
7.10 Multiplier accumulator pointer CONtrol reGiSter.....cccevveriessrericssranresssreresssrersosssssesssssssscsssss 72

7.10.1 Vector register ram read and WIite POINLETS.ccueruiirieruirieitieieeiieie et eete ettt eesaeeeseeee e 72

7.10.2 Coefficient read and WIite POINLETS........ccuieiuirieriieiertieie st eteeteerte et eteeste e eseeseeesee et eneesseeesneeeeaneeeenns 72

7.10.3 The data type and signs used fOr MACS()......ccerirrererierierienieieieieeeeeere sttt 72
7.11 Multiplier accumulator coefficient register entry......c.cccceevcerecscerrcsscnrecsssnercsscnsrreesssssssnes 73
7.12 Multiplier accumulator 8 bit data pipeline OUtPUL........cccvverrercrurrerisnercsssnrecssnsissssnerssssssses 73
7.13 The state save and restore regiSter...cccviiennrriessssrresssrsresssssrrsssssssessssssssssssssssssssssssssssssssssssss 73

8. UNARY FUNCTION UNITuuuuuuuuueveuveriseeicsencssnsessssecsss 74
8.1 UNARY FUNCTION UNIT....ccccciierrerrcssersressensessssnsescsssssecssossesssonsesssssssssssssssssssssssssssssssssses 76

8.1.1 The result register 0f the UFU ccooiiiiiieiiciee ettt sse e enas 76

8.1.2 The instructions of the UFU oociiiiiiiieee ettt 76
8.2 The basic UNArY fUNCLIONS....cccvveiirsrrereosssaricscssriosssaeressssnresssssssssrssssssssssossssssesssssssssssssssssssssssse 77

8.2.1 Binary to Unary conversion: U = UNary(A).......ceceeeeieririenieienieeie sttt sttt eeee st esee e e 77

8.2.2 Unary to Binary conversion: U = binary(A) (Priority €ncoder)..........cceveeruereerrrrienerceeieeeneeeennes 77

2.3 et b h e h bRt bea e b s b a bRt h bRt n e b e st b st b et b et bt neeneenee 77

Absolute value: U =abs(A), U =aDS(F)...c.cccceririiiriiierieiesieestete ettt ettt s snneeennnee s 77

8.2.4 Sign function: U =s8ign(A), U =SIgN(F)....cceeeiririririeiirieiieierie ettt srae e seree e 77

8.2.5 Not zero function: U = notzero(A), U =1n0tZero(F)........ccooirvimviiiiiriiiieiieieseeeeeeee e 77

8.2.6 Swap bits function: U =swap(A), U =8SWap(F)....ccceevirrimiriiiei et 77
8.3 IEEE 754 floating point OPerationsS..........ccceeeeecsveerecsserecssneecsssencssseresssssessssssssssessssssssssssns 78

8.3.1 Handling of floating Point MUMDETSc.coertiriiriiieieieieeeener ettt ettt st et e e saee e 78

8.3.2 IEEE 754 32 bit floating point definition............c.ecuieieriecieniieiesieee et 78

8.3.3 IEEE 754 32 bit floating point macro fUNCLIONScceeieriieieriieeenieeieseete e eeeseeeeveeeeraeeeereeeenes 78
8.4 IEEE 754 floating point operation support register Cr33.....cccccceerernnrcsscnerisssreersrrrrsecsssssssne 79

8.4.1 Float To FiX offSet. CT33 [7:0]...uiecieeiiiiieeieeit ettt ettt e e e et e e staeeaeestaeenbeessaesnbaessnaenseessseennnes 79

8.4.2 Fix To Float offSet. CI33 [15:8]. i iiiiiiiiieieei ettt ettt et e e ve et e e beesteeesbeesaseenseeseseennnns 79

8.4.3 The H eXponent. Cr33 [23:10]. . uiieiiirieiieieie ettt ettt ettt ettt aesaeense st esesseeseenneesnseeennnes 79

8.4.4 EL: exponent offset usage in U = fixed() (see the Float to Fix offset).........cccccvveviviecenievienieieene, 79

8.4.5 EX: exponent offset usage in U = floatFd() (see the Fix to Float offset)........ccccceevvviecienieciinnenenee. 79

B0 bbbt h bbb bbbt b et h et b et s 79

UH: USE H @XPONEIL. ...ttt ettt ettt ettt sttt et et s bt et e e bt et e eb e et e esee et eae e bt emeesaeeembeeennneeenneeean 79

8.4.7 MUL: Use H exponent for add or MUItIPLYcceeriirieiiiiee e 79

8.4.8 NAN: Not a NUMDET €ITOT Tlag.....c.eoviiiiiiiiiiiiiiieesre sttt 79

Imagine Processor

Imagine Processor

8.4.9 UNF: UNderflow error f1ag........ccueiiiiiieieiieeie ettt ettt sttt ettt e e e e s e ae e neeenes 79
8.4.10 OVEF: OVErflow €ITOT flag......c..eoviriiriiiiiiieieiiiteee ettt ettt et 79
8.4.11 ERR: Floating point error flag..........cceoieoieriiiierieieeieieeteie ettt sre s steeseaeesnsaeennseeenenes 79
8.5 IEEE-754 floating POINt CONVEISIONS.ccueervieriereereerteertersesaessessesseessesseesesseessesseessesseessesseesssssesssessnsses 80
8.5.1 ThE PASS INSIIUCHION. ... ecvieuietieeiitieteite et etesteetesteesbeeteesseessesbeeseesseessesseesaasseessesssessesssessesssessenssensnes 80
8.5.2 The IEEE 754 cONVEISiON INStIUCTIONS. ... ecutetietietteiientieiesteete st ettt ebe st e et enee st e seeeneeseeeneeeeees 80
8.5.3 IEEE 32 bit floating point t0 INEEET........cccutrieierierieeiierteeeeete ettt et et seeeee s tesee et esaeeseesseeeeneeeenees 80
.51 ettt ettt ettt ettt et e h e R e s e b e be b e s b enbestentesbeRten e et e et e ete et e eteebeeheesebensensennreans 80
IEEE 32 bit floating point t0 fIX@d.........cerierierieriiiieiesieieetesee ettt st sbeesaesseessessaesnneeennnee s 80
8.5.5 Integer to IEEE 32 bit floating POINL........ccuevierieiierieiieitieieieeeesteeesesteeaesseessesseessesseessesseessesssessesensnes 80
8.5.6 Fixed to IEEE 32 bit floating POINL........ccverieriiiierieieeieeeesieeeesteeeeeteesesteesaesreessesseessessnessessnaesssesensnes 80
8.5.7 Some examples of floating point t0 INtEZEr CONVETISIONS.ccueeueruirreertieieiteetesieeieeieeteeeee e eneeseeeeees 82

9. DATA I/Q UNITT.couuuuuuuonenuevinnscansiosssssssossssssssosss 84
L R 1 1 1 1 86
9.1.1 Data MEMOIY OIZANISATION.ecveevertrereeriesteesresseesesseessesseessesssessesssessesssessesssessesssesseessesssssesssseessssesses 86
9.1.2 Data MemOTY addreSS tYPCS.....ecvviirieriieiertieteiteetesteetesteeteeteeseaseesesseesseeseesseesaesseessesseessesseessesssessesanes 86
9.1.3 Internal data rePreSEMEAtION.ceueeitieiertieiierte ettt ettt ettt et st e ste e tesbeeseesbeentesbeesmneeeanneeenns 86
9.2 Data AcCesS fUNCLION.......ueiiirreeriirneriiintiicnstticssstecssseressssstissssstssssssesssssssssssssssssssssessssssassssses 87
9.2.1 The use of the 3D graphics PIPEIINE.ccuevueiirieieiriiirerererte ettt 87
9.3 The Data transport fUNCtioN......coceieeivvericiicneiinssniessessiecsssserssssstiosssssissssssrssssssssssssssssssssssssses 87
9.3.1 The data StOre fUNCLIONS.ecuertirtiteieteieietee ettt ettt ettt ettt et ebe bbbt st e e beenbeesneeens 87
9.3.2 The data [0ad fUNCLIONS.ecuiitirtitetetet ettt ettt ae ettt sbestesbesaesbeebeenbeeeneeans 88
9.3.3 The internal zero and sign extend fUNCHONS.cc.eriirtieiiirieieeee et 88
9.4 Data I/O CONIIol FeGISTEI'S..cuiuieiiirrissrecssuenssrenssuenssanessssesssnessssessssessssssssssssssssssassssssssssssssssassssns 89
0.4.1 The D DUS TEZISLET......cueeuieuieiieiiriiitintieterte sttt ettt ettt sttt sttt e et et eaeea e e bt eat et ebeenbeesaeeeas 89
0.4.2 The DIO_CONIOl TEZISEI.....cccveitieieriieieeiieieeiesteetesteetesteeaesseesessaessesssessessseseessesseessessseesseesssseennes 89
0.4.3 The DIO_ AdAIesS TEZISTET.....ueeveieieieiiieiiieietieiesteeetesteestesseessesseessesseessesssessesssessesssessesssseessseessssesanes 89
0.4.4 The DIO OffSEt TEZISTET.....cueiviitieiiitieiieietiett ettt ettt este et e st e saeste e beessebeesseseessasseesseesrsseesnseeessseeanes 89
9.5 Data access unit: detailed operation desCription.......cccocevererscrericsssenicsssnnsesscrernsssansssssssssssses 90
0.5.1 Selected AAIESS.eeeieeieie ettt ettt ettt ettt ettt e e h e et e n e et e nt e teene e e enteeeentee e 90
9.5.2 Higher dimensional addressing via the Cache...........cocecueiriiiriinininincecct e 90
9.5.3 The use of the 3D graphics pipeline with the extended function............ccocceveeevercienince e 91
9.5.4 Vector accesses with the extended fUNCLION...........coiiiiiririiiiece e 92
0.5.5 SCIatCh PAA ACCESSES....uuitiiiiiiietieitietteete et et et et ete st e st e stt e be et ebeessesseesseeseessesseessesseesseessesseessesseessassaans 92
10. VECTOR I/O UNIT.....couuuuuueosuuuviossssunrisssssssscss 93
10.1 Image I/O function SElECt......cccceirveresscseriosssaricsssaniesssssrsssssersosssansossssssssssssssssssssssssssssssssnnnans 95
10.2 OUtPUL OPEIaAtiON..cccccccrcueeecssnerisssneeicssneecssssencssseresssssessssssesssssssnessssssssssssessssssessssssassssssssssssn 95
10.2.1 OUPUL SOUICE SEIECHION.ecuruieuiiiiiiuietieterteet ettt ettt ettt eae et sae sttt sae et et eseenteaeenteenbeenaeeeas 95
10,2, et a e h e a e bbbt bbb e bbbttt e a e eb bbbt bbb en 95
BYE SCLECLION.etieuiiitieieciete ettt ettt ettt et e et ete st e be s st e bessaebeesseseessenseesseeseesseessenseesaesseessessaenseeennseeesseens 95
10.2.3 True color to 16 bit error diffuSION:........coveieieieieiecei et 96
10.2.4 True color to 16 bit COLOT CONVETSION:eiuieiiiriieiieiieieeiiete ettt sttt ettt et sbe et e seeeneee s 96
10.2.5 True color to 8 bit PSEUAO COIOT. .. .eeuiiuiiiiiiee ettt ettt st e 96
10.2.6 True color to 8 Dit ditheTINg.......c.eeeeriieieieee ettt ettt et e sneeeeneeeenes 96
10.2.7 True color to 8 bit dither MAITX.......ceviririrerierietei ettt e s 97
10.2.8 True color tO 8 Dit ©ITOT COITECTION.c.eruirtirteieteteietet ettt ettt ettt sttt ettt e s e s eareen 97
10.2.9 AlPha COmPATE TSt .. c.ecoviiieiiieieitietieieeteeeeste et esteetesteetesteesbesseesbessaesseessaseessesseessesseessesssessesssesens 97
10.2.10 AIPha DIthering......c..ooueeiiiieiieiet ettt ettt sttt et s te st et e st enteeneee s 97
LO.2. 11 Wt DISADIC. ...ttt sttt ettt s et en et e et e e smneeesmteeeeneeeeane 97
10.2.10 TranSParenCY COLOT.......couieiiruieiteeiierteeterteeite st eete et ente st eeeeeeeseenee st eneesseeneesseensesseensesseenseeneenseeneeennns 97
10.3 INPUL INSEIUCLION. cuuueiiirenricsrinrresssnsressenstiesssstrcssssrsssnsissssnsesssssssesssassssssssssssssassessssssssssssssssses 98
TO.3.1 1O DIL INPUL Crvvreveeeeieieeteie ettt ettt et et e et et e eteesbeestesaeessesseesseesaessesssenseesaanseasseseessesssessesssensenssensens 98
OLOT COMVETSION: ...ueuteuteuteuieitentett et ettt ettt sttt et st e et e e st es e eb e e st eb e eb e e bt sb et et e s e s em s et e st eneeneebeebeebeebesbeabenbenteeneeans 98
10.3.2 8 Dit INPUL COLOT COMVETSION.cuvietieiirietieeiteeiteeeteeteesteesteessteesseessseeseessseenseesssaesseesssesssessssessessssenns 98
10.3.3 Alpha generation by color KEY Fange.........cceeruiiuieiiiiiiieieeieee ettt 98
10.3.4 B SCIECHION . ..c.ueeuiieiieetieie ettt ettt ettt ettt et e et e et e st e st eaeesaeeneesseensesseenseeseenteeseanseeneaseeeaneeenans 98

Imagine Processor

Imagine Processor

10.3.5 Data SiZ€ defiNItIONcoieieieieie ettt ettt et ettt e ste et e saeeeesbeeneeebeenteeseenseeneenseeneeeeans 98
10.4 Feedback INSIIUCTION....ccoviiiieeiiiensrecssuensnecssneessancssseesssnesssnssssnesssnessssssssasssssssssasssssssssssessss 99
10.5 Simultaneous iNPut ANd OULPUL.....ccccevrererrcerieresrrecssssrncsssnsrssssnsissssnssesssssssssssssssnsssssnsassens 99
10.6 Setting up the translation tables..........cocvueiieivrericsssnricsssnricsssaeiossssnsssssssssssssssssssssssssssssssssns 99

10.6.1 The contents of the pseudo color to true color table..........ccoviieeiiieieiieiicicieceeeeeee e 99

10.6.2 The contents of the true color to pseudo color table...........ccooiiiiiiiiiiiiieee e 99
10.7 The control registers of the VIO........eeiiiieiiiisveiiininiicnsneiicssneiicssnescsssescssseneesssssssnens 100

10.6.1 The Vector I/O Control TeZIStEr NMO. ©......cceririiriiriiniiieieteteieteieetesie sttt ettt e 100

10.6.2 The Vector /O Control TeZIStEr N0. 2......cceevuerierieeiieiieieiieiesieetessessesseessesseessesseessesssensseesssseensnes 101

10.6.3 The alpha test and alpha generation CONtrol TEZIStEr........ccveevirieriiriieriieietieeerie e sre e sree e 101

10.6.4 The pseudo € > true color conversion tables ENtIY...........c.ccieiiviivieriererieieieeeeee ettt eeeeerens 102

10.6.5 The transparent OULPUL COLOT.......ccuiiuiiiieiiitieieetiete ettt ettt et eb et s et e et e e sabeeeeeees 102

10.6.6 The transparent COLOT INPUL TANZE.cc.eervieuieriieuierieeierteete st ete st eteste e e ste e e eseeeeeseenseeneeneeeneeseeeneas 102

11. THE PROGRAM SEQUENCER...........eieesrrnssnercsssrncssssssssssssssssssssssssassssssssssnnss 1 03
11.1 The program sequencer inStruction WOId.........ccecveeresssnresssssrecssssrssssnsrssssnssssssnsssssnssssses 104
11.2 Sequencer CONLIOl FEGISLEIS ..cccviicrcrerissseresssssrecssssesssssrsssssssessssssssssssssssssasssssssssssssssssssssse 106
11.3 The control register fUNCIONSccuervveriieriiveiiisiiiseiintiesttiseeesseeseerssseesesssassessssssseses 107
11.4 The control flow INStrUCLIONS........eeeeerrveeriiivrriissericssnnrcssneresssnneesssnnencssssnsssssssssessesssssssses 108

11.4.1 The JUMP INSEIUCHIONS. c..c..ervieiteiteteeeiteiteieettete ettt sttt ettt et et b et be bttt st et et et ennenenesaee 108

11.4.2 The call INSIIUCLIONS. c...veuteuieiieiieieeteetertest ettt ettt eb bbbt st be st sa e bbb e beesieeeaneens 109

11.4.3 ThE retuIN INSIIUCLIONS. c..euveueeuieeieiteiietieteett ettt et sttt e st et e et estese e st eseebeebesbestesbesbesteesbeenteebeesbeeenneans 110

11.4.5 The repeat INSIIUCHION.ccviiieieiieteeierteetesteetesteeseeteesbeeteeseereessesaeessessaesseessesseessesseessasseessenseensnes 110
11.5 SeQUENCET USAZE....cuuueererrrurricssnricsssanecssssercsssssessssssesssssssesssssssssssssessssssesssssssssssssssssssssssssssssss 111

11.5.1 The branch delay slots in the instruction address generation..............ecevvereereerereereseeneeeee e 111

11.5.2 The usage of the internal program COUNtET StACK..........c.ceverirririerenienieieieieieeeeeeee e 111

11.5.3 Using the Imagine's ALU status for conditional control flow............ccoeveeverieriinieniieieeeie e 111

11.5.4 The usage of the immediate data in the instruction field............ccocveviiriiniiiieniieeeeeee, 112
11.6 The program seqUENCEr MNEMONICS. .cccvcviersssrresssssrsssssersosssarsosssssssssssssssssssssssssassssssssssssssses 113
11.7 Vector processing CONtrol flOW.......ccueeeicneeiicnieeicsineressseeicssneecssnnecsssescsssseesssssesssssenes 114

11.7.1 Variable length VECtOr PrOCESSINE.c.eiuieriierieriieiietieiiere ettt ee st ste st te et e e st e teeneesneeeeneeeas 114

11.7.2 The repeat INSLIUCTION.c..ectirterieteteieteitett ettt ettt et ettt et be b sbe ettt se et et e e e ennenaee 114

11.7.3 Vector processing functional UNILS..........c.ccievieriereierieriienieieseeieetesieeeesseeeessesssessesssessesnseessseeensnes 114

11.7.4 Vector type data STOTAZE ACCESS....uiivuirrieiiriertereerteitesseeetesseessesseessesseessesseessesseessesssessesssessesssessensses 114
11.8 The multimedia interrupt handler in the Imagine 2.........c..ccoovueevvueisvueriseccsnericcsssnneeneee 115

11.8.1 PrOZIAMINIETS VIBW ... ceutiitiiutiitieteetienttetie it ettesteestesteetesaeenbesse e bess e e beese et e easenbeeneesbeeneesseeneesaeensesneenes 115

11.8.2 Multiple interrupts without repeated state saving and reStoring:.........ccoceverrererierieeenieeeeeeeeennn 116
11.9 The status / CONLIOl FEGISTET ...ccucuueerirevurriisiriicsssnrressneresssnsiesssnstsssssssnsssassssssnsssssnsessssnssssss 117
11.10 Direct read and write accesses to the instruction cache............ccuueevsueivsueicseccsercsneeeenn 119

12. THE MASK GENERATOR........eeieesnneniicssnnsicsssssssscsssssssssssssssssssssssssssssssssasss 120
12.1 INEFOAUCTION. .ueiiueieieiisinricineeisneicsrncssnecsssncssseesssnssssssessassssssesssnesssnessssessssssssssssssssssssssssssssanas 122

12.1.1 The IMAZE MASKS.......eiviiiiitieiieieetieteete ettt ste et e e aesteesbesteesseeteesseeseesseeseessesssesseessesseasseessseeesnes 122

12.1.2 ThE VECTOT ACCESS UNIT ...euutiutiiiietieiieetieteetcete ettt et et eete st eate bt et e st e e e ebeenteebe e bt ebee bt eaeesmbeeesebeeennnes 122

12.1.3 The usage of the IMage MASKcociiiiiiiie e et e 122

12.1.4 The image mask and itS CONSIUCTION.ceiuirierireierieeiece ettt ettt ettt e e neeeeneeeeneeeas 122
12.2 The image mask CONLIOl FeGISLErS...c.ccceeerrvrrrerreneresscnniicsssntrcsssssrcssnsrsssnssssssassesssssssssssssssns 124

12.2.1 The mask generation CONtIOl TEEISTETS:ecvvirrierierieriieieiieterteeeesteeeesreessesseesesseeessseesnsseessseeensnes 124

12.2.2 The Window mask CONrOl TEZISIEIS........uivviiiiriiiieriieierteeteete ettt ae e eaesreesbe e e sbeessebeessenens 124

12.2.3 The Spanline mask CONtrol TEZISTETS.c..eeuirirriiriiiieriieieet ettt ettt et s e e 124

12.2.4 The Range mask CONtrol TEZISLEIS.eeiuiruiiiiieieiieieett ettt ettt sttt et e e e e e as 127

12.2.5 The Complex mask CONLIOl TEGISLETS.ceeutrueriruirirertintertenteteteteeeteeie ettt ae s e 127

12.2.6 The ReSult MaSK TEEISTETS.....c.ecveriireieieeeieiieiet ettt ettt e st ste st e b e e e e s aaeseessesseeneesseensesneensenns 127

Imagine Processor

Imagine Processor

12.3 The function specific MASK GENErators........ceeeeeevveiicsrrerrcsseeresssnericssnneecsssencsssersessessssnes 128
12.3.1 The WiIindow mask SENETAtOTc..coeruerierieiiiiieieriinenteetese ettt ettt ettt ettt seee s st eaeeseee e 128
12.3.2 The Spanline Mask ZENETALOT............ccvervieieriieiereeierteetesteeaesreetesreeseesaesseesaesessaesseessesnsseessseesnsnes 129
12.3.3 The Range mMask GENETALOL...........cceccuirieriieietieterteete st etesteete s e essesteessesseessesseessesseessesseesseessseeensnes 130
12.3.4 The CompleX MASK GENETALOT........c.cccverieeierieeierteeteeteetesteetesreessesreessesseesseesseseessesseessesseessesseessenses 131

VLC DECODER / DEQUANTIZER.........eiioscrnriossssanss 151

15. MOTION ESTIMATOR.........ouuuueeonuueinsarisssinsssisssssrossasees 1 I 0
24. VIDEQ TIMING GENERATORS.......oorerieinsaniicsssasssosssssssossssssssssssssssssssssssssssss 161

24.1 The I/O signals of the Video Timing Generator...........ccecceecnseisseesssecsseeccssssseesecssnne 162
24.1.1 SCREMALIC OVETVIEW. .. ettt ettt ettt ettt sttt et s bt e e et et est e st ese et e ebesaeebeebesbe et e enbeesaeeenteans 162
24.1.2 SIGNAL AETINITIONS. c..eveentieiiitt ettt ettt et se et s bt et s b et s bt et sbe et e ebbeesabaeesnbeeenenes 162

24.2 Module overview of the Video Timing Generator (VT G).......cceeceeeecveeeecsuennene. ..163
24.2.1 The IPB INEEITACE.iiuieiieeieieeieeee ettt ettt ettt et e et et e s st e ae s st ensesseenseeenneeeenneeennns 163
24.2.2 TRE COUNETS. ..c.eutiieiieiieiieiteteet ettt ettt et ettt eatebe bt b e s bt s ae b e bt se et e st et e st entebeebeebesbeebeebeesbeesateens 163
24.2.3 TRE DIECOMERTcuiiiiieiieteeee ettt bbbttt ettt et eb e bt e bt eb e ebesbesaeebeesateens 163
24.2.4 The InStruction RAM.....coiiiiiiiieee ettt sttt bbbttt et e s e et ens 163
24.2.5 The Read MUILPIEXET.......cuieiieeiieiieeiteriteeteestte et e ste et e st eebeestteebeessaeesteessseesseesssaensesssseenssseeesannes 164

24.3 Functional description of the Video Timing Generator.............cecevveeeecvceerccssneecssneenenes 165
24.3.1 Video Timing Generator instruction deSCIiPtION.ceeruireruerienterientenieteteeeeeene et sreaeneens 165

24.4 Sample program for the Video Timing Generator.........cccccevveeessueessuecssneessaeccsanecssnecsnnnee 166

24.5 Function Table of the Video Timing Generator.......c.cccceerevericsssnrrcsssnsresssnsssssssssssssssssssees 167

24.6 Interfacing with the Video Timing Generator through the IP........cccccccevvvuercrsvnnnrereeeecees 168
24.6.1 The CONMIOl TREISTETeiuiiutiitieieitieteet ettt ettt ettt ettt et bt et sbe et sb et sb e e e eaeebbeesabeeeseneeenens 168
24.6.1.1 The Unit CONIOL TEZISLOI......c.ueeteitieieetieiieieete ettt sttt se et ee et e e st eteenneeeenneeeenns 169
24.6.1.2 The Program COUNTET.........cueitieiertieieeiieteettesteeeesteeeeste et esee s aesteeste st ensesseensesseenseeseensesneensesnneennnes 169
24.6.1.3 The Decoder SINALS.........cceriiieriieieitieie ettt ettt e et estestesseeaesseessesseensesseensesseenseenseeensnes 169
24.6.2 The COUNLET TEZISET.....ccviiverterrerieeterteeteeteetesteeseeseessesseessesseessesssessesssessesssessesssensenssesseesenseenseensses 169
24.6.3 The InStruction RAM.....c..oiiiiii ettt ettt sttt st sttt et e sae e et ens 170

24,7 Programmers NOTES.....ccccocreresssercosssasesssssssssssssssssassossssssessossssssssassssssassossssssessssssssssssssasssss 170

25. VIDEQ QUTPUT UNIT..uucooovouuueieosssniiosssssssoss 171

25.1 The Input / Output Signals of RAMDAC (digital circuit)......ccceeveevvuervcensiencsseeeeicsscnnees 172
25.1.1 Input/ Output signals defiNitions...........cceeieiiiiiiieere et e e e e 172

25.2 RAMDAC MOAUIE OVEIVIEW...cciieirsieessuenssuenssneessanssssnesssnesssssssssesssssssssesssasessassssssessassssssesss 175

... 175

25.3 Read FIFO (fifOCtrLv)aucciiiciiinnnneeiiiccsnnnssnsiiecssssssssssecsssnne 176
25.3.1 The timing of read from FIFO and ReadNext signal............cccoeveeiiiieiinieniiiieieiee e 176
25.3.2 INput Data FOIMAL.........coiiiiiiiiieiieeet ettt sttt sttt ea et et e st e e et e e e e e enas 177
25.3.3 BlOCK QIAGIAMIS.eouiitieiiitieie ettt ettt ettt et e st e e e et e eesse e aeeme e beeseenaeensenneeneeenns 177

25.4 Pixel select and 16 bit to 32 bit color expansion (diVPiX.V)....cccecvererrcercissscnnnnnenneeeeeeenees 178
25.4.1 BlOCK QIAGIAMS.ccvieiieiieeieieeieieeteiesteste st eteeetesteesaesseessesseessesseessesssessessaessesssessesssesesssensenssensses 178
25.4.2 16-bit t0 32-bit COLOT EXPANSION....ccuviitieiereieieetieieeiesteetesteeee e etesseestesseessesseessesseessesssensseessseeensnes 178

25.5 Read Look-up Table RAM (€ _thLV).uciiccceiicsssericsssanicsssnsrssssserssssssssssssssssssssssssssssssssssssssns 179

25.6 Cursor Generation (CUF_ZEIM.V).....ccceerersserssercsserssssncsssssssssesssnsssssssssssssssssssssssssssssssssssssnes 180
25.6.1 Block dia@rams (CUL GEI.V)...cc.eeiueiiieieetieiietieteetie st te st et e ste e e ste e e seeenteseeenteeseenteeseeteenseeesnneeeennes 180
25.6.2 Cursor MOdes defINItIONS.c.eeieriirieiieietieieee ettt st e et e st e s see b e ssa e teeneesseeneesseensesneeneeenes 180
25.6.3 CUISOT RAMottt ettt ettt sttt st ae st sae et e ae e bt e esbe e e e e 181
25.6.4 CUISOT POSILIOMIIIZ. ... evveveeereveeeteeteeteeseeseeseeseestesseeseessesssesseessesseassesseessesssessesseessesseessesssessessssseensnes 183

25.7 Color Data oUt (COIOTOUL.V)ueciiieenrrrreeieeensssssnnsseccsssssnsssecsssssssnsssssssssssnssssssssssssssssssssssssssssas 184

25.8 Internal Peripheral Bus I/F........iciicinneiicsnenicsssaniossssniessssssessssssssssssssosssssssssonsssssnsassasaes 185
25.8.1 RAMDAC DASE AAIESS.....ueeeeeueeeieieetieiesitete ettt ettt e et este et e et e ee s st eeesseentesseenseeenneeeenneeennnes 186

Imagine Processor

Imagine Processor

25.8.2 RAMDAC 1egiSters MEMOLY IMAP......ceuuerueeuteereeteaseaeeeneenseeneesseseesseensesseensesseensesseenseaseessesseesseeennnes 186
25.9 CoNtrol REGISTEIS....ucciervcerierscrressenrnssesricssstiesssssicsssssnsssssessssssessssssssssssssesssssssssssssssssssssssns 187
25.9.1 Color Control REZISTETS........ecvieieerieiieiieieeiesiestestesetestestesteessesseessesseessesseessesseensesseensesssessesssessensnes 187
25.9.2 CurSOr Control REGISIET......ccuieiiiuieieiieieiieieeteteeteteeeteste e s e steesaesseessesseessesseessesseeessessnsseensseeensnes 188
25.9.3 FIFO CONIOl REZISET.....ccueeviitieiieiieieieteie ettt ettt te et teeseeteessesreesseesaessesssebesssessesssesseessesnes 188
25.9.4 Test CONIOl REGISTET.eiuiiiiieieiieiieie ettt et a et e e s bt e st e et e e e e enees 189
25.9.5 TESt REZISLETS. . .eueitieiietieie ettt ettt et ettt a ettt e et e aeesaeemeesaeeneesseenseanseeenneeeennes 189
25.9.6 Cursor Position X, ¥ REZISTETS.....c.cectririiiriiniiriirieetetetet ettt ettt s 189
25.9.7 Count X, COUNt Y REGISIEIS......ccveriiiieieiieieeiesieetesteetesteetesseeaesseessesseessesseessesssesesssessesssensenssensses 190
25.9.8 Cursor Color 0, 1 REZISIEIS......ccuecviriieiieiieiieiietiettesteettesteeeestessaesseessesseessesssessessaessesssessesseessseeessnes 190
25.9.9 Cursor P1ane 0, 1 €NTIIES.......ocieuiiiieeie et e et e et e e et e e et esaaeeeeaaeessnaeessennaesaeeeeeeeesesaans 190
25.9.10 Color Look-up Table RAM NLIIES.....c.ccuiiiuirtieiieiieiieiienie ettt sttt ebee e e s e e eeees 190
26. VIDEQ INPUT UNIT.ocuuuuooveuuerinsssuricossssssscssssssoss 191
26.1 The Input/Output Signals of the Video Input Unit.........cccocverrerrvercsssnnnccsssssssccnnnnnennennens 192
26.1.1 SiNAl CTINITIONS.uieeiiiieeiestieieetteie et ete et et et este et esbe st e sbeesbesseessesseessesseessesseessesseessesssessesssesensnes 192
26.2 Module overview of the Video Input Unit (VIN)....coevvereessrnrecscsnercsssaercsssssssssosssssssssssssssses 193
260.2.1 The IPB INEEITACE. ... icuiiiieeieie ettt ettt ettt b et bt et e et e e e e e eens 193
26.2.2 Stagel (INPUL STAZE)...eeueeeieuiertieieeti ettt ettt et et e te et e st et e s bt es e e et e eneeeaeeneesaeeseeneensesneenseeneenseennes 193
26.2.3 Stagel (4:2:2 10 A:4:4:4 CONVEISION)..c.uiitiriiiiiiieieiieiieieeteeteee sttt ettt ettt et ebeebeenbeesaeesaneens 193
26.3.4 Stage2 (DOWN SAMPIING)......ccceririierieiierieeieieetesteste et eteesteteeeeesseesaesseaseesseassesseessesseessessseesssseensses 193
26.3.5 Stage3 (COlOUT COMVETSION)......ccuirrierierrrerrerreerertessessessesssessesssesseessesseesesseessesssessesseessesssessesssessessses 193
26.3.6 FIFO (128 deep by 32-Dit WIdE)......coveieuieuiriiiiieiiite sttt ettt ettt st e 194
26.4 Functional description of the Video Input Unit.......cccoeecercescericscsanicsssaniesssasssscassossansnnes 195
26.4.1 Stagel (INPUL STAZE)...eeueetieuietieieete ettt ettt ettt ettt et e e et e eate bt ese e et e enseeaeeneeeaeensesneensesneenseeneenseennes 196
26.5 The CONLIol FeGISterS..uccinciisenssensseessnnsseesseessnecssnesssssessseessanessssessanessasesssaessssesssssssssssssne 197
26.6 Interfacing with the Video Input Unit through the IPB..........ccccovvvecvvvurreniccccnnneneennnennes 199
29. THE I28 AUDIO INTERFACE..........iionrericnscsassicsssssssessssssssssssssssssssssssssssssssssases 200
29.1 The Input/Output Signals of 12S Interface Unit........cccceeerueeisuricseecseccssnecssnecsnnens ...201
29.1.1 Input/ Output signals defiNItIONS.........c.ccvieiiriieiiiieieie ettt ettt ee et eeeesseeseeeseseeesaeeenens 202
29.2 12S Bus Interface UNit OVEIrVIEW....cccueicvverisveicsseiissnnissenissninssnecssesssssssssscsssssssssesssssssssssnns 204
.. 204

29.3 Serial Timing Generator (I2S_TGEN.V).....cuiiiiinnieniienssiennsnecnsninssneessseesssssssssssesesssssnee 205
29.3.1 Block Diagram (for I12S I/O Port 0).......ccceeriirieriieieniieieie ettt sttt e e e enneeeeens 205
29.3.2 Serial Timing (Slave, 12S fOrmat)..........cccccveriiriieiieieriieet et re e e saeeeeens 206
29.3.3 Serial Timing (Slave, Japanese fOrmat)............cccoveeueriieiieriieiieeeieee ettt see e e eereeesaeeeeenes 206
29.3.4 Serial Timing (Master, 12S fOrmat)..........cccooiiiiriiienie e 207
29.3.5 Serial Timing (Master, Japanese fOormat)...........cccoeoeriereiierenieee e e 207
29.3.6 Serial Data FOTMAL........cooiiiieiieieie ettt ettt et ettt e esseeaeeneeeenneeeenneeennns 208
29.4 FIFO Input/Output Registers (I2ZS FR.V)....uiiiirvviicisvercsscniessessiessssssncssnsrsssssssssssnssssssassens 209
29.4.1 Block Diagram (FIFO INpUt REZISLEIS).......cccveriirieriiiieriiiieriieiesie ettt ettt ee e sae e essesnneenens 209
29.4.2 Block Diagram (FIFO Output REZISIEIS)......cccvieiiriieiiiiieierieeie ittt sieeteeeebeeseeseeereeesaeeeeenes 209
29.5 128 X 32 bit FIFO (F_I2S.V)cciiereticscraeiesssanrcssssssesssssssssssssessssssssssssssssssassssssssssssonssssses 210
29.5.1 Block Diagram 1/2 (FIFO BlOCK).......coouiitieiieiieieeet ettt e 210
29.5.2 Block Diagram 1/2 (Controller & Arbiter bIOCK)ccovieiiiieiiiieiieeeeeeeee e 211
29.5.3 FIFO ATbiter (J2SFABT.V) ettt ettt ettt s 212
29.5.4 FIFO Controller (I2SFCTRL.V).....coiiiiiiiiiiecieeieeiteie ettt ettt st sseessessaesaeessesseessessseenssneensnes 213
29.6 Interrupt Generator (I2S _IGEN.V).ciicieiicscseissssnniesssssessssssssssssesssssssssssssssssssssssssssssses 213
29.7 Internal Peripheral Bus I/F (I2ZSIPBIO.V)....cicoineiicsssnnicscneisssssersssssssessssssssssssssossssssssssssns 214
DAL IR I AT 2 4] 1 PPN 215
29.8.1 I2S Controller base address.ceuierueruierieriierieeiereeee st ettt ettt et et e e st eee e ensesneessesneenseenns 215
29.8.2 128 Controller regiSters MEMOTY MAP........cverveeruerreerrerseeeerseersesseessesseessesssessesssessesssessseesssseessseeensses 215
29.8.3 12S Main Control REGISTETS.ccverieiieiieiieierieeieieetesteete st ssesteesaesteessesseessessaessesssensesssessesnseensnes 216

Imagine Processor

Imagine Processor

29.8.4 Interrupt Control REGISTET.......coouiiuiiiiitieiieiee ettt eeee e e e e eees 217
29.8.5 Input/Output FIFO Status REGISTET.......coeviriririiririeieienictcieteceiteeec ettt 218
29.8.6 FIFO Input/Output Port Status REGIStEr.......c.ccvieiieriieieriieieeieieetee ettt e s 218
29.8.7 FIFO Control/Status REZISTETS.......ccverieiiieriiieieiieiesieeiesteeeesteeeesteeaeseeesseseessesssessesssessnssessssseensnes 219
29.8.8 FIame SiZE TEEISTEIS......eevuieeiirtierieitieteiteeteiteetesteestesteesseeseesseeseesseessesseessesseessesssessesssessesensseessseeensnes 219
29.9 125 Data AcCeSS POrts....eicneeiiiiseiiciineicinnencssnercsssneecsssseecsssssescssssescssssssssssssssssssssssanes 220
29.9.1 I2S FIFO INPUL POIt TEZISLEIS. ... eeuteeueetieueerteeeesteeeesteetesseesesseeseeseesesseenteeseenseeneesseasseeesseeesnneeennnes 220
29.9.2 128 FIFO OULPUL POTE TEEISTEIS. c..cveretititeteteteatetettetteteeteeteste st sttt st et te st eseeaeent e eteenbeesaeesaneens 220
30. THE AC97 AUDIO CODEC........uuuunuuunuenuercuinsrenseenssrisssnssssssssessssssssssssssssssssssssssasse 221
30.1 The Input/Output Signals of AC’97 CoNtroller........cccovvrerecscrnricsssserossssnscsssssssssossssssssasssns 222
30.1.1 Input/ Output Signals defiNTTIONS.eeririeriiiieitieiee ettt st e et eseaeeas 222
30.2 AC’97 controller MOdule OVEIVIEW.....cccuueercrrmerissnericssneeicssnnencssnsencssnseressnsesssssnsens ...224
.. 224
30.3 AC’97 Serial Timing Generator (T_GEN.V).....ciiiinveicnicneicnscnniicsssneicsssssncsssssssssnssssssens 225
30.3.1 The timing of Serial Timing GENEIALOT..........c.ccereerierierieeeerieetestietesreeeesseeeesreessesseessesseesseessseens 225
30.3.2 BIOCK DIAZIAMIL......ceiiiiiiiitieiieetieteeteete et eteeteetesteeaeeteesbeesaesseessesseessesseessaseessasseessesseeesssessssseesnseens 225
30.4 AC’97 Serial Data Enable Generator (SE_GEN.V).....ccuuiivvirniennsercscernsnecsssnnecnecnnne 226
T T 23 o Tod e - a1 1 USRS 226
30.4.2 Set/Reset Conditions of Serial @nables..........c.ccivierieiiinieiierieie e 227
30.5 AC’97 Serial Output Generator (SO_GEN.V)...iiirvviicrsrnnicscsnerssssnsicsssnsnessssssssssssssssses 227
30.5.1 BIOCK DIAGIAMIL.....cceiiiiiiiitieieitietiettete et eteete et eteestestessessaessesssesseessesseessasseessesssessesseeessseesssseesnseens 228
30.6 FIFO Input/Output Registers (F_REGS.V).uuiicinreicssnerissceriosssaniossssssessnsssssones 229
30.6.1 Block Diagram (AC’97 Commend R/W RegIStErS)......cceeruiruirriirieriiiiieieiieiereeee e 229
30.6.2 Block Diagram (FIFO INput ReGISTEIS)......ccueeruiriieiiieiieiieiieieeieie ettt 230
30.6.3 Block Diagram (FIFO Output REISTETS).......ccuevueuriieieiiniininienierienteetentestee ettt e 231
30.7 Read Input Tags (R_TAG.V).uueiceiceriescnniicsssnnncsssssnssssnsissssnssse 232
30.8 128 X 32 bit FIFO (F_ACO7.V)uecicircuerinscnericsssnnicsssssnsssnsisssnsssssssssssssssssssssssssssssssssssnssss 232
30.8.1 Block Diagram 1/2 (Controller & Arbiter BIOCK)ccoieviiiieiiieiieiieieeceee e 233
30.8.2 Block Diagram 2/2 (FIFO DIOCK)eeouiiuiiiiiieieiiee ettt st 234
30.8.3 FIFO AIDItEr (F ABT.V).c.iiiiiiteiiiieirieirtcet ettt ettt 235
30.8.4 FIFO Controller (F CTRL.V)..cciiiiiiiriiiiiteereeceetetete ettt s 235
30.9 Interrupt Generator (INT GEN.V)....ccoiiiicreiicscsniicsssnnicsssnsncsscnsissssnssssssassesssassessse ...236
30.10 Internal Peripheral Bus I/F (ACIPBILO.V)....ueiiencniiosssnnicsssnsncsssnsrsssssssssssssssssssssssssssnes 236
30.11 AC 97 ReZIStOISuuciiercreriesssaeresssaresssrsssssssassossssssessssssssssssssssssassessssssssssnsssssssassssssnssss238
30.11.1 AC’97 Controller base address.........ceueiuerieririeiiieieeieee ettt ettt ettt e et e st eeseeeeas 238
30.11.2 AC’97 Controller regiSters MEeMOIY IMAP.ceuteuerreereerreereerseeneesseensesseeneeeseesseeseesseesesseesnseeesnneens 238
30.11.3 AC’97 Main Control REZISTETS.ccerviriiiiieieiiiieienieeierie sttt ettt 239
30.11.4 Interrupt Control REGISIEI........cccuirieiiieieiieierie ettt ettt sttt et e teessesteessesseeessseeensneesnneens 240
30.11.5 Input/Output FIFO Status REGISIEI......cceevviiiieieriieiieiieieeeeteeteste et steeee e esee e esaesseesaesseessesseensens 241
30.11.6 FIFO Input/Output Port Status REeGISIEr.......c..ccuivriiviiitieiiiieie sttt r e en e 241
30.11.7 FIFO Control/Status REGISEIS.cecuiruieriiriieiiiiete ettt sttt s e et eseeeeseeeeas 242
30.12 AC’97 Data AcCesS POrts.....ueeicieeeiiscueiiininricnineecnsnsecsssnsescssstecssssncsssssssssnsesssssssssssses 242
30.12.1 AC’97 CoONtrol TeZISLET ACCESS POTL.....eueruerrirrirrerrerterteteteteiteseeseetestesteesesresaeseesessensensenneenseesseenens 242
30.12.2 AC’97 Control register read retUIN POTT.......c.eecverrierierieierieeieseesieseetesteteeeseseeseesseesseseesneesnneens 242
30.12.3 AC’97 Playback OULPUL POITL....ccviieieiieiierieieiieiesteetesteetesteesaesreessesseessesseessessaessesssessenseessesseesseens 242
30.12.4 AC 97 ReECOTA INPUL POTL...uieerieiieieiieiieniieetieeteeieesteesteeseteeseesssesbeessseesseessseesseessseensesssseesseesssses 243
30.12.5 AC’97 Modem Line OULPUL POIT......ccueiiiieieiintieiietieie ettt ettt sttt sttt sttt sbe et seeenee b eneeeaeees 243
30.12.6 AC’97 Modem Line INPUL POIT.....ccueiueeiieieieiietieieeiieieeece st ce sttt e st eesteetesbeeae st eneesseeneeeneeneeeneens 243
30.12.7 AC’97 MICTOPRONE INPUL POTT....cueruiriiriinrintirtintetenteteiteiteieettete et sttt ste st ee st ene st eseeaeeseesee 243

Imagine Processor

Imagine Processor

Imagine Processor

Imagine Processor

Chapter 3

THE PROGRAMMING
MODEL

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE IMAGINE 2 CORE CONTROL REGISTERS

CONTROL

REGISTER UNIT NR

cr0 REG 1 Register file control register cr0 REG_Control
crl REG 1 Extended instruction control crl REG_Monitor
cr2 REG 1 Vector index control register cr2 REG_Vector

cr3 REG 4 Vector indices entry / write delay line entry cr3 REG_Fifo

cr4 REG 1 Vector indices port A cr3.0 REG_A_Indices
cr5 REG 1 Vector indices port B cr3.1 REG_B_Indices
cré REG 1 Vector indices port C cr3.2 REG_C_Indices
cr7 REG 1 Vector indices write enable & status cr3.3 REG_C_Flags
cr8 BSH 1 Q BUS register Q-bus | BSH_Qbus

cr12 ALU 1 F BUS register F-bus ALU_Fbus

cr13 ALU 1 Three operand logic function cré ALU_Logic

cr15 ALU/RNG 1 Status register cr5 ALU_RC_Status
cr16 MAC 1 M BUS register M-bus | MAC_Mbus
cr17 MAC 1 Multiplier control register 1 cri2 MAC_Control1
cr18 MAC 1 Multiplier control register 2 cr16 MAC_Control2
cr19 MAC 1 Vector & Coefficient pointers cr13 MAC_RamPtrs
cr20 MAC 16 Coefficient registers entry new MAC_Coef

cr21 MAC 1 MAC pipeline output cr15 MAC_Pipe

cr22 MAC 1 Lower limit compare register [31:00] new MAC_LoLimit0
cr23 MAC 1 Lower limit compare register [63:32] new MAC_LoLimit1
cr24 MAC 1 Higher limit compare register [31:00] new MAC_HiLimit0
cr25 MAC 1 Higher limit compare register [63:32] new MAC_HiLimit1
cr26 MAC 1 Low limit register (32 bit) cr17 MAC_LoLimit32
cr27 MAC 1 High limit register (32 bit) cr18 MAC_HiLimit32
cr28 MAC 1 Accumulator register [31:00] cr14.0 | MAC_Accu0
cr29 MAC 1 Accumulator register [63:32] cr14.1 MAC_Accu1
cr30 MAC 1 State save & restore entry cr19 MAC_Save

cr32 UFU 1 U BUS register U-bus UFU_Ubus

cr33 UFU 1 IEEE 754 float conversion register cr8 UFU_IEEE

cr36 DIO 1 D BUS register D-bus DIO_Dbus

cr37 DIO 1 Data 1/O control register cr20 DIO_Control
cr38 DIO 1 Data I/O address register cr21 DIO_Address
cr39 DIO 1 Data /O linear offset register new DIO_offset

cr40 13D 1 3D graphics Look up table indices new 13D_Clutindices
crd1 13D 256 3D graphics Look up table entry new 13D_ClutData
cr42 13D 1 3D graphics Color Key Low values new 13D_ColorKeyLo
cr43 13D 1 3D graphics Color Key High values new 13D_ColorKeyHi
crd4 VIO 1 V BUS register V-bus VIO_Vbus

crd5 VIO 1 Vector I/O control register 1 cr24 VIO_Control1
cr46 VIO 1 Vector 1/0 control register 2 new VIO_Control2
crd7 VIO 1 Vector I/O alpha test & generation new VIO_Alpha

cr48 VIO 640 Vector I/O translation table entry new VIO_TableData
cr49 VIO 1 Vector /0O Transparent Output Color new VIO_Transparent
cr50 VIO 1 Vector I/O Color Key Low values new VIO_ColorKeyLo
cr51 VIO 1 Vector /O Color Key High values new VIO_ColorKeyHi
cr52 SEQ 1 Sequencer status control register cr32 SEQ_Status
cr53 SEQ 1 Program counter cr33 SEQ_PrCounter
cr54 SEQ 1 Address register cr34 SEQ_Address
cr55 SEQ 1 Interrupt table register cr35 SEQ_Interrupt
cr56 SEQ 1 Repeat count register cr36 SEQ_Repeat
cr57 SEQ 1 Maximum repeat count cr37 SEQ_MaxRepeat
cr58 SEQ 1 Sequencer test register cr39 SEQ_Test

cré0 SEQ 1 Instruction cache store register 0 cr30 ICA_Low

cro1 SEQ 1 Instruction cache store register 1 cr31 ICA_High

Imagine Processor

Imagine 2 Multi Media Processor

4. The register file

THE IMAGINE 2 CORE CONTROL REGISTERS (continued)

CONTROL UNIT NR

REGISTER

cré4 13D 1 Linear interpolator control register new I3D_Control

cré5 13D 1 Texture mapping control register new I3D_Texture ?
cré6 13D 1 Depth buffer control register new I3D_7?

cre7 13D 1 Low level control register new I3D_LowLevel ?
cré8 13D 8 Lighting Alpha component parameter entry new I3D_Alpha ?
cré9 13D 8 Lighting Red component parameter entry new I3D_Red ?

cr70 13D 8 Lighting Green component parameter entry new I3D_Green ?
cr71 13D 8 Lighting Blue component parameter entry new I13D_Blue?

cr72 13D 8 Texture Q co-ordinate parameter entry new I3D_TextureQ ?
cr73 13D 8 Texture R co-ordinate parameter entry new I3D_TextureR ?
cr74 13D 8 Texture S co-ordinate parameter entry new I3D_TextureS ?
cr7b 13D 8 Texture T co-ordinate parameter entry new I3D_TextureT ?
cr76 13D 12 Depth 1/Z co-ordinate parameter entry new I3D_Depth ?
cr77 13D 10 Lighting Fog Attenuation factor entry new I3D_Fog ?

cr78 13D 1 Border color register new I3D_Border ?
cr79 13D 16 Texture MIP map address offset table entry new I13D_MipMap ?
cr80 MES 1 Motion Estimator control register new MES_Control
cr81 MES 1 Sum of Differences new MES_SumOfDiff
cr82 MES 1 Minimum value found new MES_Minimum
cr83 MES 1 Position of the minimum value new MES_Position
cr88 MSK 1 Image mask control register 1 cr40 MSK_Control1
cr89 MSK 1 Image mask control register 2 crd MSK_Control2
cr90 MSK 1 Window X minimum / maximum cr42 MSK_Window_X
cro1 MSK 1 Window Y minimum / maximum crd3 MSK_Window_Y
cr93 MSK 1 Polygon Y minimum / maximum new MSK_Polygon_Y ?
cro94 MSK 1 Polygon start coordinate entry crd4 MSK_PolyStart
cr95 MSK 1 Polygon end coordinate entry crd5 MSK_PolyEnd
cr96 MSK 1 Polygon start/end coor.register cr46 MSK_PolyCoord
cr97 MSK 4 Spanline start coordinate register [3:0] new MSK_SpanStart
cro8 MSK 4 Spanline end coordinate register [3:0] new MSK_SpanEnd
cr99 MSK 4 Spanline start/end coord. Register [3:0] crd7 MSK_SpanLines
cr100 MSK 1 Spanline start edge delta value new MSK_DeltaStart ?
cr101 MSK 1 Spanline end edge delta value new MSK_DeltaEnd ?
cr102 MSK 1 Span Line Length new MSK_SpanLength ?
cr103 MSK 1 Span Line Address new MSK_SpanAddr ?
cr104 MSK 8 Complex alpha mask register [1:0][3:0] cr48 MSK_CplxAlpha
cr105 MSK 8 Range clip mask register [1:0][3:0] cr49 MSK_RangeClip
cr106 MSK 8 Transparent mask register [1:0][3:0] cr50 MSK_Transp
cr107 MSK 8 Opaque mask register [1:0][3:0] cr51 MSK_Opaque
cr112 VAU 1 Vector access control register cr52 IMM_Control
cr113 VAU 1 Bit plane mask register cr53 IMM_PlaneMask
cr114 VAU 1 Foreground color register cr54 IMM_FG_color
cr115 VAU 1 Background color register cr55 IMM_BG_color
cr116 VAU 1 Image 1 XY pointer (mask ref.) cr57 IMM_Image1
cr117 VAU 1 Image 2 XY pointer cr58 IMM_Image2
cr118 VAU 1 Image 3 XY pointer cr59 IMM_Image3
cr119 VAU 1 Display XY size register new IMM_DispSize
cr120 VAU 1 Image 1 offset address new IMM_Offset1
cr121 VAU 1 Image 2 offset address new IMM_Offset 2
cr122 VAU 1 Image 3 offset address new IMM_Offset 3
cr123 VAU 1 Display offset address new IMM_DispOffset
cr126 EMI ? External Memory Interface Address new EMI_Address ?
cr127 EMI ? External Memory Interface Data new EMI_Data ?

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE IMAGINE 2 CORE REGISTERS
The IMAGINE has about 900 core registers. They play a central role in the programmers model.

The control registers

Almost all functional units in the IMAGINE contain so called control registers. The data processing units can refer to these
registers during so called extended instructions. Some of these control register entries give access to multiple similar registers
(normally 4). These registers are accessible in an auto increment way with preset-able 2 bit pointers (a 64 bit version of the
IMAGINE will have 8 instead of 4 registers on these entries). The programmer sees the control registers as 128 extra
registers in the three port register file. The B read port has a choice of 120 normal and 128 control registers for reading while
the write port can write to 120 normal and 128 control registers. Two control registers can be accessed each cycle (one read
access and one write access).

The bus register/drivers
All data processing and I/O units contain a 'bus-register’ which contents can be used by other units.

A bus: three port register file read port
B bus: three port register file read port
Q bus: the barrel shifter result.

F bus: the ALU result.

M bus: the multiplier/accumulator result.
U bus: the unary function unit result.

D bus: the data memory I/O register.

V bus: the image memory I/O register.

These bus registers are visible in the native instruction language:
AB =rd(r43,cr36) -> F=add(A,B) -> wr(cr36, F);

The three port register file registers

The three port register file contains 120 general purpose registers and 256 vector registers. Two ports can read data and one
port can write data each cycle. Some of these registers have a predefined function for the C compiler. A direct access to
register 63 with any of the 3 ports is a no op for this port. The vector registers are accessible by the vector index generator.
One read port and one write port are used to access the control registers.

The multiplier/accumulator register file

The MAC contains 64 internal 128 bit registers which can be used as 128 registers of 64 bit (the typical vector length is 64).
These registers can be used for vector accumulation operations as well as parameters for differential engine type operations in
combination with the accumulator. These registers can further be split up in the typical HISC way. A 64 bit register can also
be a double 32 bit and a quadruple 16 bit register.

A 128 bit register can be a double 64 bit and a quadruple 32 bit register. An example of vector accumulation is image
filtering: A 3x3 convolution adds three vector while a 4x4 convolution adds four vectors. Examples off differential engine
functions are: Gouraud shading interpolation and 2D or 3D coordinate calculation (linear, Bezier spline etc..).

The multiplier pipeline registers

These registers are used in those 8 bit multiplications which make the most efficient use of the HISC multiplier. The 16
multiplications (4x4) per cycle performed by the matrix times vector multiplication and the quadruple inproduct
multiplication require up to 32 bytes as input operands per cycle. The pipeline register provides these operands to the
multiplier. The important graphics and image processing algorithms like interpolated rotation and scaling, discrete cosine
transformation, color space conversion, convolution and correlation are directly supported.

The sequencer on chip micro stack

This little on chip stack can be used to speed up

¢ Library function

¢ Assembly code

4 Non recursive C-functions.

+ Interrupts.

examples: The on chip micro stack can be used to speed up a number of elementary library functions such as division,
emulated floating point functions etc. These functions can use the micro stack and scratch pad registers to implement a
call/return mechanism with only 2 or 3 cycles overhead, much less as the normal C compiler. The inner loops of assembly
code might be implemented as a call rather than a loop in functions with lots of options. The call address is determined in the
initialisation phase of the function and used in the inner loop. The C compiler can use the stack for return address saving in
non-recursive functions. At least all functions who do not call other functions can use this mechanism. The situations is more
complex for functions which do contain calls. Horizontal sync interrupts: a simple horizontal sync interrupt routine or
DRAM refresh interrupt is as short as 2 instructions, one for the required function and one return instruction. No state saving
is needed because of the micro stack. The total time needed for the interrupt including the branch delays of the jump to the
interrupt vector table and the return is only 5 cycles: 100 ns at 50 MHz.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

THE IMAGINE INSTRUCTION SETS

THE HIERARCHY OF INSTRUCTION LEVELS

The IMAGINE has an hierarchical instruction set to provide compatibility with existing software, compilers and operating
systems at one end, and highly efficient parallel vector processing at the other end. The various instruction levels can be
intermixed freely in the assembler code. All instruction levels can be written as "In Line" code in C and C++ programs.

We differentiate between the following levels:

(¢) Compiler based C code and C++ code
(compiler generated)

. RISC/CISC level assembly code
(macro function set)

* Free pipeline assembly code

(native machine language: graphs of pipeline sequences)
. Vector processing level

(set of macro functions for vector operations and user defined vector operations)
* Specific use of control registers and special purpose graphics hardware.

The RISC/CISC instruction set (which is hierarchically the highest of the four levels of assembly code) contains typical
register based instructions like:

mnemonic: function:
mul_(pl, c10, v0); pl =¢cl10 *v0
add_(vl,v2,v3); vl=v2+v3
abs_(vx, vy); vx = abs(vy)
st_byte (data, val); *(ptr) = val

This level is the 'interface layer' to compilers, existing graphics and image processing software written in high level language,
operating systems etc. The RISC/CISC level is a macro function level within the IMAGINE assembler. The functions above
are expanded to small instruction graphs defining the sequence of individual pipeline stages; typically: read registers, execute
function, write back register. This notation level is the native instruction language of the IMAGINE.

AB =rd(c10, v0) -> M =mult(A, B, iss) ----- > wr(pl,M);
AB =rd(v2,v3) -> F=add(A,B) > wr(vl,F);
A =rd(vy) > U =abs(A) > wr(vx, U);

AB = rd(ptr, val) -> DA =wrAd(A), D = byte(B);

The RISC/CISC level includes all functionality needed to interface to the code generation part of modern optimising
compilers. In this sense it provides already more functionality than most RISC processors do, which generally lack explicit
functions for byte and 16 bit operations and conversions between the various

formats (compilers need to include up to 3 or 4 barrel shift operations for a single 8 bit instruction). Almost all IMAGINE
instructions at this level can be orthogonally used on all word lengths.

We present version 1.0 of the RISC/CISC level instructions in this document. The instruction set can be expanded since it is
a macro function set. Some instructions are added which are more CISC-like, such as the multiple stack push and pop
operations. The bit operations are included in the Intel processors since the 386 are implemented as a CISC example. The
instructions take 2 to 3 pipeline slots in some contrast with the 486 which needs 3 to 103 cycles. The programmer will use
the RISC/CISC type operations in the areas outside the inner loops of the graphics and image processing where the lowest
programming levels are used. RISC/CISC type assemble code will normally be used in the preparation stage. This stage can
be predominant in some graphics functions such as Gouraud shaded triangles. Some of this code can then be replaced during
an optimisation stage with native IMAGINE instructions which can perform up to 3 or 4 instructions per cycle.

So the lowest level functions are found in the innermost loops of the code where Gouraud interpolated pixels are drawn.
Textures mapped from a source to a destination area, images filtered etc. The RISC/CISC level is useful in the preparation
stage of these function where parameters are handled, prepared and transformed to the format needed in the inner loops

The capability to go smoothly and instantaneously from hardware like pixel oriented processing to higher level parameter
processing up to C or C++ code and back is one of the great advances of the IMAGINE processor. The lack of this facility
cripples other attempts found in the market place which at one end of the spectrum use multiple on chip 8, 12 or 16 bit ALU's
for pixel processing but break down in terms of speed when higher level operations are required. As well as RISC-like
processors which have included some very specific hardware for certain graphics operations. These special purpose circuits
have to communicate through or along side autonomous bus handling units which have to schedule cache line reads and
writes, bus snooping operations for cache coherency etc. These 'non deterministic' operations do hinder both the hardware
and programmer to reach the very high sustained 1/O speeds needed for high performance graphics.

Imagine Processor

Imagine 2 Multi Media Processor

4. The register file

THE RISC/CISC LEVEL INSTRUCTIONS (1)

LOAD and STORE accesses to DATA MEMORY

mnem. operands

Id_byte_
Id_short_
Id_word_

Idu_byte
Idu_short_
Idu_word_

st _byte
st_short_
st word_

std_byte_
std_short_
std_word_

push_

push2_
push3_
push4_
pushS_
push6_
push7_
push8

pop_

pop2_
pop3_
pop4_
popsS_
pop6_
pop7_
pop8_

dst:

src:
base:
offset:
address:
stack:

Sizeable instructions can be used to access an allocated 2 dimensional or 3 dimensional area in data memory:

2D example:
3D example:

base:
offset:
address:

2D address:
3D address:

(dst, base, offset)
(dst, base, offset)
(dst, base, offset)

(dst, base, offset)
(dst, base, offset)
(dst, base, offset)

('src, base, offset)
('src, base, offset)
('src, base, offset)

('src, addr)
('src, addr)
('src, addr)

('stack, src)

('stack, srcl, src2)
('stack, srcl .. src3)
('stack, srcl .. src4)
('stack, srcl .. src5)
('stack, srcl .. src6)
('stack, srcl .. src7)
('stack, srcl .. src8)

('stack, dst)
('stack, dstl, dst2)
('stack, dstl .. dst3)
('stack, dstl .. dst4)
('stack, dstl .. dst5)
('stack, dstl .. dst6)
('stack, dstl .. dst7)
('stack, dstl .. dst8)

DESTINATION
SOURCE
ADDRESS-BASE
ADDRESS-OFFSET
ADDRESS
STACK-POINTER

cycl.
1 yes
1 yes
1 yes
1 yes
1 yes
1 yes
2 yes
2 yes
2 yes
1 yes
1 yes
1 yes
2 no
3 no
4 no
5 no
6 no
7 no
8 no
9 no
2
3 no
4 no
5 no
6 no
7 no
8 no
9 no

function

Load sign extended byte from *(base+off) into dst
Load sign extended short from *(base+off) into dst
Load word from *(base+off) into dst

Load zero extended byte from *(base+off) into dst
Load zero extended short from *(base+off) into dst
Load word from *(base+off) into dst

Store byte from src to *(base+off)
Store short from src to *(base+off)
Store word from src to *(base+off)

Store byte from src to *(address)
Store short from src to *(address)
Store word from src to *(address)

Push (control-) register to stack

Push 2 (control-) registers to stack
Push 3 (control-) registers to stack
Push 4 (control-) registers to stack
Push 5 (control-) registers to stack
Push 6 (control-) registers to stack
Push 7 (control-) registers to stack
Push 8 (control-) registers to stack

no Pop (control-) registers from stack
Pop 2 (control-) registers from stack
Pop 3 (control-) registers from stack
Pop 4 (control-) registers from stack
Pop 5 (control-) registers from stack
Pop 6 (control-) registers from stack
Pop 7 (control-) registers from stack
Pop 8 (control-) registers from stack

register or control register
register or control register
register or control register
register or immediate
register or control register
register (or control register)

1d_word_16 (dst, base, offset)
std_byte 8 (src, address)

2D/3D BASE
2D/3D OFFSET
2D/3D ADDRESS

register or control register

register

register or control register

X-component Y-component Z-component
bits 16..31 bits 0..15 -—-

bits 16..23 bits 8..15

Imagine Processor

bits 0..7

Imagine 2 Multi Media Processor

THE RISC/CISC LEVEL INSTRUCTIONS (2)

REGISTER MOVE INSTRUCTIONS

4. The register file

mnem.

move_
movi_
swap_

operands

(dst, src)
(dst, imm)
(reg, opB)

cycl. size. function

1 yes Move (control-) register to (control-) register
1 yes Move immediate value to (control-) register
2 yes Swap register with (control-) register

ARITHMETICAL ALU INSTRUCTIONS

mnem. operands

add_
sub_
rsub_
iner_
decr_
addincer_
subdecr_
rsubdecr_

LOGICAL ALU INSTRUCTIONS

(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opB)

(dst, opB)

(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)

cycl. size. function

yes dst = opA + opB
yes dst = opA - opB

yes dst = opB - opA

yes dst=o0pB + 1

yes dst=o0pB -1

yes dst = opA + opB + 1
yes dst =opA -opB -1
yes dst =opB - opA - 1

— b b e e e e

mnem. operands

clear_
set_
invert_
and_
nand_
or_
nor_
Xor_
equiv_
andrev_
andinv_
orrev_
orinv_

dst:
OpA:
opB:
reg:
imm:

(dst)

(dst)

(dst, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)
(dst, opA, opB)

DESTINATION
OPERAND A
OPERAND B
REGISTER
IMMEDIATE

cycl. size. function

yes dst ='0000"

yes dst = 'FFFF'

yes dst = lopB

yes dst= opA & opB
yes dst = !(opA & opB)
yes dst= opA| opB
yes dst = !(opA | opB)
yes dst= opA " opB
yes dst = !(opA * opB)
yes dst = !opA & opB
yes dst= opA & !opB
yes dst = !opA | opB)
yes dst= opA |!opB

b b e b e e e e e e e

register or control register
register or immediate
register or control register
register

immediate value

Sizeable instructions operate on double 16 bit and quadruple 8 bit data:

double 16 bit example:
quadruple 8 bit example:

Imagine Processor

add_16 (dst, opA, opB)
shl_8 (dst, imm, opB)

Imagine 2 Multi Media Processor

4. The register file

THE RISC/CISC LEVEL INSTRUCTIONS (3)

BARREL SHIFT/ROTATE INSTRUCTIONS

mnem. operands cycl. size. function
shflog_ (dst, opA, opB) 1 yes dst = shift opB over opA places logical, (bi-directional)
shfarh_ (dst, opA, opB) 1 yes dst = shift opB over opB places arithmetic, (bidirect.)
rotate_ (dst, opA, opB) 1 yes dst = rotate opB over opA places (bi-directional)
shr_ (dst, imm, opB) 1 yes dst = shift logical right opB over imm places.
shl_ (dst, imm, opB) 1 yes dst = shift logical left opB over imm places.
sar_ (dst, imm, opB) 1 yes dst = shift arithmetical right opB over imm places.
sal_ (dst, imm, opB) 1 yes dst = shift arithmetical left opB over imm places.
ror_ (dst, imm, opB) 1 yes dst = rotate right opB over imm places.
rol_ (dst, imm, opB) 1 yes dst = rotate left opB over imm places.

UNARY FUNCTION UNIT INSTRUCTIONS
mnem. operands cycl. size. function
abs_ (dst, opA) 1 yes dst = absolute value of opA
sign_ (dst, opA) 1 yes dst = sign of opA (1,0,-1)
notzero_ (dst, opA) 1 yes dst = if A=0:'0000' else 'FFFF'
swap_ (dst, opA) 1 yes dst = swap bits of opA
unary_ (dst, opA) 1 yes dst = exp2(opA) -1 (opA=0->0)
binary_ (dst, opA) 1 yes dst =1og2(opA)+1 (opA=0->0)

ZERO / SIGN EXTENSION INSTRUCTIONS
mnem. operands cycl. size. function
zextbyte (dst, opB) 1 no zero extend byte from opB to 32 bit
sextbyte (dst, opB) 1 no sign extend byte from opB to 32 bit
zextshort_ (dst, opB) 1 no zero extend short from opB to 32 bit
sextshort_ (dst, opB) 1 no sign extend short from opB to 32 bit

MULTIPLE UNIT FUNCTIONS: BIT TEST FUNCTIONS (ix86 TYPE)
mnem. operands cycl. size. function
bt_ (opA, opB) 2 yes dst = test bit opA of opB (set minus flag if '1")
btc_ (dst, opA, opB) 3 yes dst = test bit opA of opB, complement bit -> dst
btr_ (dst, opA, opB) 3 yes dst = test bit opA of opB, reset bit -> dst
bts_ (dst, opA, opB) 3 yes dst = test bit opA of opB, set bit -> dst
bsf_ (dst, src) 2 yes dst = 'bit scan forwards' (lowest order '1" in src)
bsr_ (dst, src) 3 yes dst = 'bit scan reverse' (highest order '1' in src)
dst: DESTINATION register or control register
OpA: OPERAND A register or immediate
opB: OPERAND B register or control register
reg: REGISTER register
imm: IMMEDIATE immediate value

Sizeable instructions operate on double 16 bit and quadruple 8 bit data:

double 16 bit example:
quadruple 8 bit example:

Imagine Processor

abs_16 (2x16, dst, opA)
mulx_8 (4x8, dst, opA, opB, mtype)

Imagine 2 Multi Media Processor 4. The register file

THE RISC/CISC LEVEL INSTRUCTIONS (4)

MULTIPLIER INSTRUCTIONS

mnem. operands cycl. size. function
mul_ (dst, opA, opB) 1 yes dst = opA * opB (signed)
umul_ (dst, opA, opB) 1 yes dst = opA * opB (unsigned)
mulx_ (dst, opA, opB,mtyp) 1 yes dst = opA * opB (any of 16 types of multiplication)
DIVIDE INSTRUCTIONS
mnem. operands cycl. size. function
div_ (dst, opA, opB) - yes dst = opA / opB (signed)
udiv_ (dst, opA, opB) - yes dst = opA / opB (unsigned)
mod_ (dst, opA, opB) - yes dst = opA / opB (signed)
umod _ (dst, opA, opB) - yes dst = opA / opB (unsigned)
divmod_ (dst, opA, opB) - yes dst = opA / opB (signed)
udivmod _ (dst, opA, opB) - yes dst = opA / opB (unsigned)
MISCELLANEOUS INSTRUCTIONS
mnem. operands cycl. size. function
swapbyte (dst,sre,s0,s1,52,83) 2 no swap bytes: dst(0)=src(s0), dst(1)=src(s1),...dst(3)=src(s3)
logic (dst,reg,opA, opB) yes
logic3 (dst,reg,opA,opB,op3) yes
IEEE 754 32 BIT FLOATING POINT FUNCTIONS (non-pipelined)
mnem. operands cycl. function types
int_sf (dst, opB) 1 dst = int (opB) float -> integer
float_sf (dst, opB) 1 dst = float (opB) integer -> float
neg_sf (dst, opB) 2 dst = -opB float = neg (float)
abs_sf (dst, opB) 2 dst = abs(B) float = abs (float)
add_sf (dst, reg, opB) 9 dst =reg + opB float = float + float
addint_sf (dst, reg, opB) 10 dst =reg + opB float = float + integer
sub_sf (dst, reg, opB) 9 dst =reg - opB float = float - float
subint_sf (dst, reg, opB) 10 dst =reg - opB float = float - integer
rsubint_sf (dst, reg, opB) 10 dst =reg - opB float = integer - float
add3_sf (dst, reg, op2, op3) 11 dst =reg + op2 + op3 float = float + float + float
mul_sf (dst, reg, opB) 12 dst =reg * opB float = float x float
mulint_sf (dst, reg, opB) 13 dst =reg * opB float = float x integer
mul3_sf (dst, reg, op2, op3) 17 dst =reg * opB float = float x float x float
div_sf (dst, reg, opB) 26 dst =reg / opB float = float / float
divint_sf (dst, reg, opB) 27 dst =reg / opB float = float / integer
rdivint_sf (dst, reg, opB) 26 dst =reg / opB float = integer / float

IEEE 754 32 BIT FLOATING POINT FUNCTIONS (pipelined)

matxvecdx4_sf(dstptr, srcptr)

trans4x4_sf

(dstptr, srcptr)

Imagine Processor

34
60

homogeneous coordinate transformation
homogeneous transformation + perspective division

Imagine 2 Multi Media Processor

THE RISC/CISC LEVEL INSTRUCTIONS (5)

CONTROL FLOW INSTRUCTIONS

4. The register file

General format of the control flow instructions

function condition type ([label] , [opA, OpB])

function:

branch
jump
subr
call
return

type:

32
16
8

sf

examples:

jump pc relative
jump absolute
call pc relative
call absolute
return

32 bit test
32 bit test
16 bit test
8 bit test
32 float test

branch_lIt_(label, opA, opB)
branch_set (label, 3, opB)
subr_gt 16(label, opA, opB)
return_eq (-1, opB)

Imagine Processor

condition:

" no condition
eq if opA equal opB
ne if opA not equal opB
gt if opA greater than opB
ge if opA greater or equal opB
It if opA less than opB
le if opA less or equal opB
ugt if unsigned opA greater than opB
uge if unsigned opA greater or equal opB
ult if unsigned opA less than opB
ule if unsigned opA less equal opB
set if bit opA of opB is 1"
res if bit opA of opB is '0'

Imagine 2 Multi Media Processor

4. The register file

THE FREE PIPELINE LEVEL INSTRUCTIONS (1)

THREE PORT REGISTER FILE INSTRUCTIONS

Basic & extended accesses:

AB = rdsz(opA, opB), wr(dst, bus) OopA = register or immediate value

AB = rxsz(opA, opB), wx(dst, bus) opB, dst = register or control register
Indexed basic & indexed extended accesses:

AB = rdsz(opA, opB), wr(dst, bus) opA = indexed register or immediate value
AB = rxsz(opA, opB), wx(dst, bus) opB, dst = indexed register or control register
data size: sz=[",'1x32", 2x16', '4x8'] bus: A (register) B (register)
immediate value: +1023...-1024 bus: D (data-bus) V (image-bus)
register: 10...r63 (r63=noop) bus: M (multiplier) F (ALU)
control register: cr0..cr63 bus: Q (barrel shifter) U (UFU)
Immediate load accesses:

wrmsk(dst,imm16) dst = register or control register

immediate 16: 0...65536
byte write mask:

BARREL SHIFT / ROTATE UNIT INSTRUCTIONS
all functions executed at a single cycle throughput
modes: all functions operate on 4x8 bit, 2x16 bit and 32 bit

mnemonic operation
Q = shflog(data, A)
Q = shfarh(data, A)
negative

Q =rotate(data, A)

Q = shift logical data over A places,
Q = shift arithmetic data over A places

Q = shift logical data over A places,

Imagine Processor

wrl6HL, wrl6H, wrl6L, wr8 3, wr8 2, wr8 1, wr8 0, wr8 321, wr8 210, wr8 30 etc.

Right if A is positive, Left if A is negative
Right if A is positive, Left if A is

s

Right if A is positive, Left if A is negative

Imagine 2 Multi Media Processor 4. The register file

THE FREE PIPELINE LEVEL INSTRUCTIONS (2)

ARITHMETIC AND LOGIC UNIT INSTRUCTIONS
all functions executed at a single cycle throughput
modes: all functions operate on 4x8 bit, 2x16 bit and 32 bit

mnemonic operation mnemonic operation

F = clear F = all bits '0’ F =decr (R) F=R-1

F =and (R,S) F=Rand S F =incr (R) F=R+1

F = andrev (R,S) F=(notR)and S F =decr (S) F=S-1

F = copy (S) F=S F =incr (S) F=S+1

F = andinv (R,S) F =R and (not S) F = subdecr (R,S) F=R-S-1

F =noop (R) F=R F =sub (R,S) F=R-S

F = xor (R,S) F=Rxor S F = subbor (R,S) F=R-S+carry
F=or (R,S) F=RorS F = minus (S) F= -8S

F =nor (R,S) F=not (RorS) F = subdecr (R,S) F=S-R-1

F = equiv (R,S) F =R xnor S F =sub (R,S) F=S-R

F =invert (R) F=notR F = subbor (R,S) F=S-R+carry
F = orrev (R,S) F=(motR)orS F = minus (R) F= -R

F = copyinv (S) F=notS F =add (R,S) F=R+S

F = orinv (R,S) F=R or (not S) F = addincr (R,S) F=R+S+1

F = nand (R,S)

F =not (R and S)

F = addcar (R,S)

F=R+ S + carry

F = set F =all bits '1" F =logic (R,S) F = three op logic function

Operand R can be selected from busses: A(register), D(data-memory), M(multiplier) and Q(barrel-shifter)
Operand S can be selected from busses: B(register), V(image-memory), F(ALU) and U(unary function unit)

UNARY FUNCTION UNIT INSTRUCTIONS
all functions executed at a single cycle throughput

mnemonic operation modes

U = pass (A) pass AtoU 4x8 bit, 2x16 bit, 32 bit

U = unary (A) binary to unary conversion 4x8 bit, 2x16 bit, 32 bit
U = binary (A) unary to binary conversion 4x8 bit, 2x16 bit, 32 bit
U = integer (Ad) float to integer conversion 32 bit
U = fixed (Ad) float to integer conv. variable offset 32 bit
U = float (Ad) integer to float conversion 32 bit
U = floatFd (Ad) integer to float conv. variable offset 32 bit
U = abs (X) absolute value 4x8 bit, 2x16 bit, 32 bit
U =sign (X) sign function 4x8 bit, 2x16 bit, 32 bit
U = notzero (X) non zero function 4x8 bit, 2x16 bit, 32 bit
U =swap (X) swap bits function 4x8 bit, 2x16 bit, 32 bit

Operand X can be selected from buses: A(register) and F(ALU)

Imagine Processor

Imagine 2 Multi Media Processor

THE FREE PIPELINE LEVEL INSTRUCTIONS (3)

MULTIPLIER / ACCUMULATOR INSTRUCTIONS
all functions executed at a single cycle throughput

mnemonic

M = mult (Ma, Mb, option) basic multiply operation (48 combinations)

option

iuu
ius
isu
iss
nuu
nus
nsu
nss
fuu
fus
fsu
fss
guu
gus
gsu
gss

M = inproduct (Mb)
M = matrixvec (Mb)
M = loadpipe (Ma, Mb)

M = read_ram ()
M = write_ram ()

M = linearstep ()

M = macs (Ma, Mb)
M = macb (Ma, Mb)

M = vectprod (Ma, Mb)
M = complex (Ma, Mb)

Operand Ma can be selected from : A(register), D(data-memory), M(multiplier) and Q(barrel-shifter)

data type

integer,

integer,

integer,

integer,

normalised fixed point
normalised fixed point
normalised fixed point
normalised fixed point
fixed point

fixed point

fixed point

fixed point

rounded norm. fixed point
rounded norm. fixed point
rounded norm. fixed point
rounded norm. fixed point

signs

unsigned x unsigned
unsigned x signed
signed x unsigned
signed x signed
unsigned x unsigned
unsigned x signed
signed x unsigned
signed x signed
unsigned x unsigned
unsigned x signed
signed x unsigned
signed x signed
unsigned x unsigned
unsigned x signed
signed x unsigned
signed x signed

modes

4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit
4x8 bit, 2x16 bit, 32 bit

8 bit array operations 16 multiplies & 12 adds per cycle:

quadruple vector inproduct,
4 x 4 matrix times vector multiply
load data & coefficient pipe line

accumulator ram access:

read 96 bit (multi) word from the accumulator ram
write 96 bit (multi) word to the accumulator ram

incremental functions for differential engine applications:

general multiply accumulate functions:

incremental add

multiply accumulate scalar
multiply accumulate vector

4. The register file

4x8 bit, all data types, signed/unsigned
4x8 bit, all data types, signed/unsigned
4x8 bit, all data types, signed/unsigned

4x12 bit, 4x24 bit, 2x48 bit, 1x72 bit

all 48 basic multiply options
all 48 basic multiply options

multiple 16 bit functions: 4 multiplies and 2 additions per cycle:

16 bit vector dot and cross products
16 bit complex products

all data types, signed

all data types, signed

Operand Mb can be selected from : B(register), V(image-memory), F(ALU) and U(unary function unit)

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Chapter
4. THE REGISTER FILE

T he register file plays a central role in the processing philosophy of the Imagine.

It contains 120 general purpose 32 bit registers and a Vector register file of 256
words of 32 bit with a wide range of special purpose options. This unit also serves
as a port to a large number of control registers spread throughout the core
Processor.

120 General Purpose Registers:

For C type code and RISC assembly code. A 'Register plus Register to Register
mode' and an 'Immediate plus Register to Register mode' are available. The latter
supports operations with constants and the C stack relative addressing to local
variables.

256 Vector Registers:

The 256 word Vector register file which is accessible with the Vector Index
generators, enables the implementation of a large number of algorithms which are
by nature less suitable for classic SIMD processors. It allows various forms of
parallel conditional processing by means of conditional data flow mechanisms
instead of conditional control flow. It fully supports the three basic data types of the
Imagine: single 32 bit, double 16 and quadruple 8 bit words. It can generate
addresses for all these sizes conditionally by using status information from the
Status Register or Range Check Unit. This means for 8 bit words that it can
generate 12 different register file addresses in each cycle: eight to read data and
four to write data. The Vector Index generator supports besides conditional address
generation also conditional byte write enabling, byte preset and byte reset.

128 Control Register entries:

The Imagine core processor, The 3D graphics unit and The Mask Generator
contain many control registers which can be accessed in much the same way as the
120 general purpose register. The reads and writes to these control registers use
two separated busses. A control register can be read and one can be written each
cycle.

Overview of the Register file

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4 THE REGISTER FILE

4.1 introduction

The Register File is a 120 + 256 word RAM with two read ports (A and B) and one write port (C). Two Read
actions and one Write action can be performed each cycle. 120 entries are directly accessible (entry O through
119). The instruction code has three 7 bit address fields for these entries. References to entries 120 to 126 have a
special meaning. Entry number 127 is interpreted as a no-op. The 256 vector registers are accessible via indices
generated by the Vector index generator. The data read from the register file is placed in the A and B registers
which are readable by the other data processing and I/O units. All eight internal buses can be selected as the
source of the data to be written into the Register File. A read from a register which is written to in the same cycle
loads the new value directly in the A or B register, bypassing the RAM.

4.1.1 the control registers

The address fields for the register file may be used alternatively to access the internal control registers which
accompany many of the individual functional units. One control register can be read and one can be written each
cycle. The B port is used to read and the C port is used to write to a control register. A total of 128 different
control register addresses is available. Two Instruction code bits (B and C) differentiate between normal and
control register accesses. The A port can load an 11 bit immediate value instead of a register value.

A port: read from register or 11 bit immediate (range: -1024...+1023)
B port: read from register or control register
C port: write to register or control register

4.1.2 the vector index generators

The Vector Index Generator provides addresses (indices) to access the 256 word vector register file. It can
generate individual indices for 8 bit or 16 bit components of the 32 bit words. Up to twelve different indices can
be generated each cycle: four for the four bytes of port A, four for the four bytes of port B and four for the four
bytes which are written via port C. The generator can use 8 bit data offsets for run time generated register
address. It can generate Write Enables which control writing of individual bytes. The indices and write enables
can be generated conditionally based on status information from the ALU and the Range control unit. This type
of parallel conditional processing is used to perform various graphics and image processing algorithms at a very
high sustained speed.

4.1.3 the access modes

The Register file has four main access modes:

4 register plus register to register

A general or vector register is loaded in the A port register. A general, vector or control register is loaded in the
B port register and any of the 8 internal buses is written into a general, vector or control register.

¢ immediate plus register to register:

An 11 bit sign extended value from the instruction word is loaded in the A register. A general or vector register is
loaded in the B register and any of the 8 internal buses is written into a general or vector register.

4 16 bit constant load:

16 bit constants can be written into any bytes of a general, vector or control register. The 16 bit is placed on
both the highest and lowest 16 bit of the 32 bit control register bus while four byte write enables control the
writes to the individual bytes.

¢ The 32 bit constant load / merge:

This mode loads a 32 bit constant directly into a general, vector or control register. The merge function allows
bit field insertion by rotating a value on the A bus (immediate or register value) to the right bit position and then
merge the selected bits (indicated via the 32 bit constant value) together with the value on the B bus (register or
control register). Four byte write enables in the instruction control writes to individual bytes.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.2 The control registers

One of the basic principles of the programming model of the Imagine 2 is to allow extra functionality with the
use of control registers. The basic instructions do not use these registers and are completely defined by the
instruction word without any side effects. Other instructions with extra capabilities do refer to control registers to
see what the exact function should be. The registers above are used for this extra functionality.

cr0: REG_Control: The Register File Control register
IsizeA IsizeB IsizeC FIFOPTR. o Write. VIPTR.
0 o] |0 o1 [0 p2op |0 20 0000 W3 W2 WI WO ISE| 00" |puncT| 0’| [2:0

(Write enables)

\31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8\ 7 |6 |5 \4| 3 |2 |1 |o

crl: REG_Monitor: Data Size Monitor Register
Asize | Bsize | Qsize | Fsize | Msize| Usize | Dsize | Vsize . , AxSIZE| |Bxsize
o] | o | [0 | oy | oy | orrop | oo | rop 00000000000 0] | 0’| 1:0]
\31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8\ 7 |6 |5 \4| 3 |2 |1 |0
cr2: REG_Vector: Vector Index control register
BASEA| OFFSETA BASEB| OFFSETB BASEC| OFFSETC |SELBUS.| SELSTA.
00" 1 [1:0] [2:0] 00" | [1:0] [2:0] 00" | [1:0] [2:0] [1:0] 0] |PW IWEW

]31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8] 7 |6 |5 \4| 3 |2 |1 |0

cr3: REG_Fifo: Write delay fifo entry , REG_Indices: Vector Indices entry
Access to data from the Write Delay Fifo or Vector Indices A, B, C and flags
[31:0]

]31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8\ 7 |6 |5 \4| 3 |2 |1 |0

cr4:

REG_A_Indices:

Vector indices for Read port A

A3 INDEX
[7:0]

A2 INDEX
[7:0]

A1l INDEX
[7:0]

AO INDEX
[7:0]

\31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8\ 7 |6 |5 \4| 3 |2 |1 |o

crs:

REG_B_Indices:

Vector indices for Read port B

B3 INDEX
[7:0]

B2 INDEX
[7:0]

B1 INDEX
[7:0]

B0 INDEX
[7:0]

\31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8\ 7 |6 |5 \4| 3 |2 |1 |0

cré6:

REG_C_Indices:

Vector indices for Write port C

C3 INDEX
[7:0]

C2 INDEX
[7:0]

C1 INDEX
[7:0]

CO INDEX
[7:0]

]31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8] 7 |6 |5 \4| 3 |2 |1 |0

cr7: REG_C_Flags: Byte Write Enables, Presets, Resets and delayed status flags

RES 1
[1:0]

PRE 0
[1:0]

RES 0
[1:0]

PRE 3
[1:0]

RES 3
[1:0]

PRE 2
[1:0]

RES 2
[1:0]

PRE 1

[1:0] PO

P3 [|R3] S3 |W3 P2 [R2]S2 |W2 P1|R1]|S1|WI RO | SO [WO

31|30|29\28|27|26|25|24‘23|22|21\20|19|18|17|16‘15|14|13\12|11|10|9|8]7 |6 |5 \4| 3 |2 |1 |0

The vector index generator has the capability to calculate up to 12 different 8 bit indices which are used to access
individual bytes of the 256 word vector register file. These indices are visible in control registers cr4 to cr6. The
Vector Index generator control register (cr2) contains the definition of the index generation. Besides indices it
also can generate four byte write enables, visible in cr7: flags W[3:0], which can be used to disable the writing of
individual bytes into the vector register file. In many cases we want to use the data itself for the index generation
or the byte write enables. An input fifo on the write port can temporary delay data from 1 to 8 cycles before being
written to vector register file during the time it takes to calculate indices and/or byte write enables. The

extended access also provides on the fly operations on data which is being written into a general, vector or
control register and a function which allows the use of run time programmable data sizes for the A port and the B
port. The data size monitor can save and restore the data sizes of the 8 buses during interrupts.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.2 Register plus register to register mode:

¢ The A port is read from a general register or a vector register
¢ The B port is read from a general register, a vector register or a control register
¢ The value of one of the 8 internal buses is written to a general register, a vector register or a control register.

4.2.1 accesses to general purpose and control registers

The A port and B port registers are available for other functional units in the next cycle. The two ports have 2 bit
size information besides the 32 data bits. Two bits in the instruction field define the size of the A and B read
data. The size information of the data selected by the write port is not stored into the register file. The register
file does not keep track of sizes but adds them during read operations.

Some examples of read operations:
Register file read port size

A =rd(r17); B =rd(cri21); 0: size is 4x8 (quad_byte)
AB = rd(r37, cr53); AB = rd4x8(r47, r48); 1: size is 2x16 (double_short)
B =rd2x16(r104); B =rd1x32(r57); 2: size is 1x31 (single_word)

3: {reserved}

The read function contains an optional size indicator '4x8', "2x16' or '1x32'. 32 bit accesses are default when no
size indication is given. The normal registers are indicated by r0 .. r119 while the control registers are indicated
by cr0 .. cr127. Some examples of write operation:

wr(r89, M); wr(r39, F); wr(r15, D); wr(cr124,Q); Write port bus selection
The write examples select data from buses M, F, D and Q: the Multiplier result,
the ALU result, the Data Input from data memory and the Barrel Shifter. All
eight on chip buses can be selected as a data source for the C write port of the
register file. A write to a control register may occur while another is read on the
B read port because there is a separated control register read and a control
register write bus.

select A bus data
select B bus data
select Q bus data
select F bus data
select M bus data
select U bus data
select D bus data
select V bus data

NogokrwN=2O

4.2.2 vector register accesses

The 120 General purpose registers are accessed with]]
values from 0 to 119. From the remaining 8 options we Special register addresses
use 127 as a no-operation instruction. The remaining

addresses are used to indicate that a vector index gen- 120 extended indexed, generate new index

121 extended indexed,

erator is used to generate the actual register address. 122 load write fifo, generate new index

There are 256 vector registers which can be accessed in 123 load write fifo

this way. Indices have to be generated first before they 124 indexed access, generate new index

can be used in the next cycle. Examples of generate-index 125 indexed access

instructions: 126 no operation, generate new index
127 no operation

genad(A); genad(A, B); genad(wr);

genad(); genad(A, B, wr); genad();

The index addresses are calculated with the vector index generators. This unit can calculate up to twelve different
addresses each cycle plus four 'byte-write-enables' for the write port.

The way in which the index is calculated is defined by the Vector Index generator control register and described
in detail in the chapter devoted to this unit. The generate index instruction can be combined with an indexed-
access, an extended-indexed access or with a load-write-fifo function (write port only) The LSB of the special
address should be ‘0’ to invoke this function. Four indices are generated per port (one for each byte). Multiple
generate-index instructions for more than one port can be combined into a single instruction. If the port name is
omitted (empty brackets) then all three ports are affected.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Special mnemonics are use to indicate the use of the special addresses. Instead of absolute addresses like r12 or
rd8 we us 'ri', ‘xi’ or ‘fifo’ Implicit generation of new indices for a specific port is possible by adding ++ to
the mnemonics. The effect is the same as a separate genad() function. Examples of indexed accesses:

A =rd(ri); AB = rd4x38(ri, ri); AB = rd (xi, cr12); wr (ri++, V);

B =rd1x32(ri); wr (xi++, B); AB = rd4x8 (ri, xi++); AB=rd4x8(ri, r17);
B =rd2x16(xi++); wr (fifo, B); wr (xi);

ri’ = register indexed-access ‘ri++’ = register indexed-access and generate new indices
‘xi’ = extended-indexed-access ‘xi++ = extended-indexed-access and generate new indices
fifo’ = load-write-fifo

4.2.3 The extended-indexed-accesses

The normal read and write functions can be executed with a number of extra options. It is not the instruction
word but the Register file control register which determines the exact function.

Three extra functions are provided:

¢ individual Byte write enabling during a write to a vector register.

¢ 'On the fly operations' on data before it is written into a vector register.

¢ Conditional Byte Presets and Byte Resets on data before it is written into a vector register.
¢ Run time programmable data sizes for the A port and the B port.

The functions are not visible in the instruction mnemonics since they are not defined by the instruction itself but
by a control register. The mnemonic indicates that the function is an extended function (Xi instead of ri) The
optional functions are described in detail in the chapter of the 'Extended functions'.

4.3 Immediate plus register to register mode

¢ The A port is loaded with a 11 bit sign extended value from the instruction.
¢ The B port is either read from a general or vector register
¢ The value of one of the 8 internal busses is written to a general or vector register.

This mode allows the use of an 11 bit immediate value. 11 bits in the instruction word are placed in the 11 least
significant bit locations of read port A. The upper 21 bits of read port A are sign extended (identical to the 11"
bit) The read port B is loaded from a general register or vector register and the write operation stores a selected
value in either a general register or vector register. Examples:

A =rd(0x325), wr(r12, F); AB =rd(-23, r56), wr(r27, M); AB =rd(912, r4), wr(r16, U);

The data size used for these access modes is always 32 bit. This size will be attached to the A port and B port
data. The control registers can not be accessed. Both size bits in the instruction code and control register access
flags in the instruction code are freed for the 11 bit immediate value. The most important use of this access mode
is in RISC like C code where it provides single cycle immediate operations as: X =4*Y or B=A<<19 orQ =
P&0x3F and in single cycle Load operations with Stack relative and Base relative addressing where a small
constant value is added to the stack- or base-pointer.

4.4 The 16 bit constant load.

A 16 bit value in the instruction word is used to load 16 bit values into general, vector or control registers. The
16 bit value is placed on the highest and lowest 16 bit of the 32 bit control register write and four byte write
enables in the instruction word control the writing to individual bytes. The read port A and read port B registers
are not modified. They will keep their contents. The C address from the instruction word is used as the write
address.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

Examples of 16 bit constant loads:

wr (r0, 14); wr16H(r12, 0x12345678 >> 16); wr16L (r12, 0x12345678 & OxFFFF);

wr8_3 (cr24, 0x84<<8); wr8_1 (cr0, 0x0E<<8); wr8_2 (cr1, 0x67);

wr8_0 (cr6, 0x3A); wr16H(ri, 0x1234); wr16HL(ri, 0);

wr16HL: write to 16 MSB and 16 LSB bits. wr8_3: write to bits 24..31. (upper 8 bit of data)

wri16H: write to 16 MSB bits. wr8_2: write to bits 16..23. (lower 8 bit of data)

wr16L: write to 16 LSB bits. wr8_1: write to bits 8..15. (upper 8 bit of data)
wr8_0: write to bits 0..7. (lower 8 bit of data)

the 8 bit versions can be combined into any arbitrary combination of bytes like: wr8_321, wr8_210, wr8_30
et cetera (A 'l'in the write enable field allows writing. IC3=we3, IC2=we2, IC1=wel, ICO=we0)

4.5 The 32 bit constant load / merge.

This function uses the complete 64 bit instruction word for itself so the other data processing units can not be
active and they will hold their current values. The only active part of the register file is the write port and
optionally the write index generator. The read ports and their index generators will hold their current value.

The 32 bit load function can store a 32 bit field from the instruction word directly into a general, control or
vector register. The 32 bit merge function can perform a bit field insertion by rotating the A port register which
contains the field to be inserted to the right bit positions and the use the 32 bit field from the instruction word to
merge the selected bits with the value from the B port register which should contain the data into which the bit
field is to be inserted.

Examples of 32 bit constant loads:

wr32(r109, 0x76543210); wr32(cr2 0x25252546);

Example how to insert a 5 bit value from register r49 to position 24 of control register cr17:

AB =rd(r49,cr17); merge(cr17, 24, Ox1F << 24);

Example how to merge the highest 16 bit of register r12 with highest 16 bit of register r59. Register r12 is
shifted 16 positions down before merging. The result is stored in control register cr90.

AB =rd(r12, r59); merge(cr90, -16, OXFFFF);

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.6 Vector index generators.

4.6.1 results of the index generators

The 256 word Vector Register File can be accessed with the use of the Vector index generators. A Vector index
generator is a versatile unit which has numerous ways to construct the effective addresses for the Vector register.
Each byte of read port A, read port B and write port C has its own Vector index generator: a total of twelve
different 8 bit indices can be generated: XYINDEx. Where X is register port A, B or C and Y is byte number 0, 1,
2 or 3. The results are visible in three control registers (cr4: REG_A Indices, cr5: REG_B_Indices, cr6:
REG C Indices). A fourth control register (cr7: REG _C Flags) contains 4 generated byte write enables for the
write port, four byte Presets and four byte Resets.

4.6.2 control input for the Index generators

The 12 vector indices generators for the read ports A and B and write port C are controlled by three parameters
per port plus two parameters for all three ports:

BASEA[1:0], BaseB[1:0], BaseC[1:0] : Selectthe A/B/C vector bases (defined in cr2)
OFFSETA[2:0], orrseTB[2:0], orrseTC[2:0] : Select the A/B/C vector offsets (defined in cr2)
IsizeA[2:0], IsizeB[2:0], IsizeC[2:0] : Size of the A/B/C indices (number of bits-1) (defined in cr0)
SELBUS[1:0] : Select 1 of 4 busses for the offset value (defined in cr2)
SELSTA[2:0] . Select 1 of 8 status flags for cond. operations (defined in cr2)

The byte write enable generation uses the 4 selected status flags. The operation is controlled with two flags:
EW : Enable the generation (Byte Write enables = status)

IW : invert the status values when used as Byte Write enables

pDW : use the delayed status flag for Write enables, Presets and Resets

4.6.3 data input for the Index generators

data and status which can be used for the index generation: dataY[7:0] :four bytes data selected from the A, B,
M or V bus and statusY: four 1 bit status flags from the ALU RC_Status register (crl5)

4.6.4 Index generator calculations

The calculation of the indices is defined by the BaseX [1:0] and orrseTX [2:0] fields. Together they construct the
XYmpEX [7:0] value from the current XYIDEX value plus the selected input data Y [7:0] and statusY flag. The
write port C can also use the current index of read port A for Read-modify-Write type operations. The IsizeX
[2:0] value defines the number of LSB bits from XYmDEX [7:0] which can be modified. The remaining higher
bits are write protected. The value 0 enables modifying bit 0 while 7 enables the modification of [7:0]

The functionality provided by BASEX: (X = register port A, Bor C, Y =byte number 0, 1, 2 or 3)
0: BASE_O base XY =0
2: BASE_CURRENT_ADDR base XY = XYINDEX (The current index is used as base)
3: BASE_READ_A_ADDR base XY = AYINDEX (The read port A index used as base)
The functionality provided by OFFSETX: X = register port A, Bor C, Y = byte number 0, 1, 2 or 3)
0: NO_OFFSET XYINDEX = base XY + 0
1: ADD_1 XYINDEX = base XY + 1
2: ADD_OFFSET XYINDEX = base XY + data Y
3: ADD_OFFSET_ADD_1 XYINDEX = base XY +data Y + 1
4: ADD_1_IF_TRUE XYINDEX = base XY + (status Y?1: 0)
5: ADD_1_IF_FALSE XYINDEX = base XY + (status Y?0: 1)
6: ADD_OFFSET_IF_TRUE XYINDEX = base XY + (status Y ?data¥Y :0)
7: ADD_OFFSET_IF_FALSE XYINDEX = base XY + (status Y ?0:datayY)
12: ADD_1_IF_OLD_TRUE XYINDEX = base XY + (delayed status Y ?1: 0)
13: ADD_1_IF_OLD_FALSE XYINDEX = base XY + (delayed status Y ?0: 1)
14: ADD_OFFSET_IF_OLD_TRUE XYINDEX = base XY + (delayed status Y ? dataY : 0)
15: ADD_OFFSET_IF_OLD_FALSE XYINDEX = base XY + (delayed status Y ? 0 : data Y)

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.6.5 select the data bus used for the offset data

8 bit offsets can be taken from the A bus, B bus, M bus or
the V bus with the SELBUS[1:0] field from the vector index SELBUSI[1:0] Select the bus for the offset
generation control register. The actual offset data depends
on the size of the chosen bus. When the bus size indicates
single 32 bit word data size then the lowest 8 bits of the
selected bus are used for all four indices. So a port will have
identical offsets for each of its four individual bytes.

B_BUS_OFFSET: select the B bus
M_BUS_OFFSET: select the M bus
A_BUS_OFFSET: select the A bus
V_BUS_OFFSET: select the V bus

N2

If the data size is 4x8 (quadruple 8 bit data), then
the 8 bits are used from each individual byte of the Select offset data depending on the bus size
32 bit wide selected bus data. In this case all four
offsets can be different for each of a ports for size=4x8 size=2x16___size=1x32
bytes. In case of a double 16 bit word data size, data 0= bit[8:0] bit [7:0] bit [7:0]

bits [7:0] are used for the lowest two of the four data 1 = b?t [15:8] b!t [7:0] b?t [7:0]
byte address generators, and bits [23:16] are used data 2 = bit [23:16] bit [23:16] bit [7:0]
vt & ? : data3= bit[31:24] bit[23:16] bit [7:0]

for the highest two. So a 16 bit word will have
identical offsets for both it’s bytes.

4.6.6 select the status for conditional index generation and byte write enables

The status information which is
generated by the ALU or the SELSTA [2:0] function.
Range unit and saved in the
ALU_RC Status register, (crl5)
can be used for conditional index
generation for the read ports A
and B and write port C. Condi-
tional index generation is dis-
cussed in the previous para-
graphs. It is also used for condi-
tionally writing to a vector reg-
ister.

STATUS_ZERO status = ALU_RC_Status [24, 16, 8, 0]
STATUS_MINUS status = ALU_RC_Status [25, 17, 9, 1]
STATUS_CARRY status = ALU_RC_Status [26, 18, 10, 2]
STATUS_SGNCMP status = ALU_RC_Status [27, 19, 11, 3]
STATUS_INSIDE status = ALU_RC_Status [28, 20, 12, 4]
STATUS_HIGHER status = ALU_RC_Status [29, 21, 13, 5]
STATUS_LOWER status = ALU_RC_Status [30, 22, 14, 6]
STATUS_WRONG status = ALU_RC_Status [31, 23, 15, 7]

Noghrwdhd2O

Conditional writing can be combined with the four byfe write enables which can be used possible during
extended register access instructions. If both are used together then a byte can only be written if both the
extended-byte-write-enable is true ('1") (control register 0, bits [11:8]) and the conditional-byte-write-enable is
true ('1'). The four conditional status bits are depending on the data size used during the operation which has
generated them in the ALU or the Range unit. If the data type was quadruple 8 bit byte, then all four conditional
enables are different because they were generated in four byte operations.

If the data type was 'double 16 bit short' then the upper and lower pair are identical because they stem from
double 16 bit word operations. In the single 32 bit word operation all four conditional enables are identical.

4.6.7 select between the use of the current or delayed status

The read port A index generator result can be used by the write port C index generator for a number of Read-
modify-Write operations. The read port A index generator will also save the selected status flags from the status
register (cr15: ALU RC_Status) into four flags of control register cr7 (REG_C Flags). This means that the status
flags can be re-used in the next cycle by another index generator for a conditional function. The use of the
delayed status instead of the current status in the status register can be controlled individually for each index
generator and for the generation of byte write enables, presets and resets

ofrsETA[3]: Select the delayed status for the read port A index generation.
ofrsETB[3]: Select the delayed status for the read port B index generation.
ofrseTC[3]: Select the delayed status for the write port C index generation.
DW: Select the delayed status for the write port C byte write enables, presets and resets generation.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.6.8 generation of the byte write enables

The four selected status flags can be used as four byte write enables. A logic ‘1’ enables writing. The status bits
can be optionally inverted before being used as write enables. Three flags in the vector index generation control
register define the operation: EW, IW and DW.

EW: enable status for write enable
‘0’ Do not use the status flag. The byte write enables are set to ‘1’ (enabled)
e The selected status flags are used as a conditional byte write enable for the C port.

IW: invert status for write enable

‘0’ Do not invert the status: write enable if the status is true ('1").

s Invert the status: write enable if status is false ('0").

DW: invert status for write enable

‘0’ Use the current status from the ALU RC_Status register, selected with the SELSTA[2:0] field from
the REG Vector control register.

T Use the four (delayed) Status flags from the REG _C Flags register which are loaded by a genad(A)
instruction from the ALU_RC_Status register, selected with the SELSTA[2:0] field from the
REG_Vector control register.

4.6.9 generation of the byte presets and byte resets

Four Byte preset flags and Four Byte reset flags are generated by the four write port index generator. These flags
can be used by extended indexed write accesses. E.g.: wr(xi, F) Normal indexed accesses do not use these flags.
The preset flag will set the byte to ‘11111111° while the reset flag will set the byte to ‘00000000 The
generation is controlled for each flag individually by a 2 bit field in control register cr7: REG C Flags. The
PREY[1:0] fields generate the preset flags while the resY[1:0] fields generate the reset flags. ('Y indicates the
byte: 0...3)

Preset Flag generation options: Reset Flag generation options:
0 PRESET_NEVER 0 RESET_NEVER

1 PRESET_IF_TRUE 1 RESET_IF_TRUE

2 PRESET_IF_FALSE 2 RESET_IF_FALSE

3 PRESET_ALWAYS 3 RESET_ALWAYS

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.7 The extended functions.

The extended functions are defined by the Imagine instruction plus the contents of the control registers. Four
extra functions can be added and mixed in any combination: Byte write enables, On the fly operations on write
data operations, Byte presets / resets and Run time programmable bus sizes for the A bus and B bus.

4.7.1 byte write enables

The byte write enable option allows the writing of individual bytes to a vector register:

cr0 bit[8]: WO: if 1 { enable write to bits [7: 0] } else { disable write to bits[7: 0] }
cr0 bit[9]: WI1: if 1 { enable write to bits [15: 8] } else { disable write to bits [15: 8] }
cr0 bit[10]: W2: if 1 { enable write to bits [23:16] } else { disable write to bits [23:16] }
crO bit[11]: W3: if 1 { enable write to bits [31:24] } else { disable write to bits [31:24] }

4.7.2 On the fly write Functions

Three simple 'On the fly operations' can be performed on the data before it

is written into the register file. A two bit field in control register cr0 On the fly function: cr0 [4:3]
selects the function to use for the operation.

0: DATA_PASS
.Function 0: NO-OPERATION 1: DATA_INCREMENT.
This function does not alter the data which is to be written into the 2: DATA_DELAY
selected register. Use can use the four byte write enables in case you want

to write part of the entire word only.

Function 1: WRITE DATA INCREMENT

The use of this function is in counting functions. After an arbitrary classification a table entry should be
incremented. If a classification is made each cycle for a number of cycles in a row, then the same entry might be
used in two consecutive cycles: in which case the result of the first cycle is needed as the operand of the second.
The on the fly increment provides this function. Increments are performed on bytes, 16 bit words or the complete
32 word depending on the data size of the selected bus

Function 2: WRITE DELAY FIFO

This function is used to delay the data in functions where the data itself determines in some way the vector index
generation or write enables. The information from the vector index generators and the Data itself should arrive at
the same time. This function can be used to introduce extra pipeline delay. The internal 32 bit wide and 7 stages
deep shift register used for the delay is loaded by a load fifo instruction: e.g.: wr(fifo, Q) this function also
increments the Fifo pointer (found in crO: REG Control) A value from the Fifo is read and written into a vector
register (and the Fifo pointer is decremented) with the use of an extended write instruction. e.g.: wr(xi). The 3
bit Fifo pointer has values from 0 through 7. A value of zero indicates that the Fifo is empty, reading the fifo will
repeat the last read value. A value of N = 1..7 means that the Fifo is filled with N values. (the value 7 is not
incremented, and the value 0 is not decremented)

Overview of the extended write data functions

Extended Functions

Bus data[31:0] »
Ladl
Bus Bussize[1:0] 3| Increment:
Bbusp! Selection > crement:
32 bit
Qbus data[31:0] 2x16 bit
+ Bus data[31:0 —>
Ebusp size[1:0] > R 4x8 bit > wiite | Byte | Byte
’ function | resets | presets
mnstruction selected | handled | handled
AUbusy,f code[2:0] : by: by: by:
D busy,| oft.he control | control | control
write register | register | register
P select v A 4 cr0 ct7 cr7
unit 0 1 2 3 4 5 6 7 [43] [12,10,18,26]](3,11,19,27]
Fifo entry: selected by control register cr0 [18:16]

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.7.3 application of the byte presets and byte resets

The byte preset and reset flags generated by the write port index generators and available in the REG C Flags
control register (cr7) are applied during extended indexed writes. These writes use the ‘Xi” mnemonic like in
wr(xi, F)

4.7.4 run time programmable data sizes

This is an extended read function for the read ports A and B: The data sizes are taken by default from the
instruction code. The data sizes can also be taken from the two fields AXSIZE and BxSIZE in control register
REG_Monitor (cr0), The SE flag (Size enable) in REG_Control [7] should be 'l'

4.7.5 preserved for compatibility only

The following operations are provided for Imagine 1 compatibility only and will be discontinued in future
versions of the IMAGINE.

-Extended accesses to the general purpose registers and control registers:

The extended functions (only those of the Imagine 1) can also be applied to the general registers and the control
registers. A single bit in the instruction code changes the operation of all three ports to extended mode. The
normal register and control register values can be used. This option is supplied for reasons of compatibility only
and should not be used for any new code and replaced in old code with for instance the 32 bit load / merge
function. The mnemonic used to indicate that the Three Port register file operates in extended mode are rx and
wx instead of rd and wr:

Examples: AB =rx(r12, r15), wx(r50, F); AB =rx(r12, cr12), wx(r110, B);

-Indirect accesses to the Index pointer control registers:

The 4 control registers cr4: REG_A_Indices, cr5: REG_B_Indices, cr6: REG_C _Indices, cr7: REG_C_Flags are
also indirectly accessible via control register cr3. The Fifo pointer (cr0: REG_Control[18:16]) should be 0
otherwise one of the Fifo registers is accessed. The VIPTR[1:0] selects between the for control registers. This
field is post-incremented after a control register read or write access (but only if the Fifo pointer is 0)

-Moving sizes to the A or B bus:

The sizes can be added to the A bus and B bus data during extended read operations by setting SE to '1', SO to 'l'
and using the two select fields as 3 bit pointers into the array of bus sizes (A=0, B=1, Q=2, F=3, M=4, U=5,
D=6, V=7).

- 1 Cycle Write delay register

The extended write function with the old 1 cycle On-the-fly-delay function still works but only with the old
wx(ri) function, the new wr(xi) activates the full Write Delay FIFO function: The difference is that wx(ri) shifts
the 7 stage Fifo registers and does not decrement the Fifo pointer while wr(xi) does not move the Fifo registers
and does decrement the Fifo, The function wx(ri) should not be used for any new functions and replaced in old
code.

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.8 The 7 independent sub units of the register file

The register file consist of seven independent units. Each of the units has it’s own copy of the instruction code
register (the instruction bits which it needs) so the repeat functions can be executed independently for each of the
seven units. The seven units are:

3 access ports: read port A, read port B, write port C
3 vector index generators for the three ports
1 write input bus selector and write FIFO control unit

The following example shows how all units repeat their own function N times. Where N is 16 in this example.
repeat, graph (example_graph)

example_graph:

genad(A) => A= rd(ri) => genad(B) => B= rd(ri) => wr(fifo, B) => genad(Wr) => wr(xi);

genad(A) C LI C I I C I C I)]
2 (o [e s O
genad(B) oy C T I C I e e e]
B=rd(ri) O]
wr(fifo,B) [C I C I P P P e]
genad(Wr) 3]
LY/ 7C) N

4.8.1 read port A span of control
Read Port A controls the modification of the A bus[31:0] register plus the corresponding A size[1:0]

4.8.2 read port B span of control
Read Port B controls the modification of the B bus[31:0] register plus the corresponding B size[1:0]

Some Control register reads can modify other control register’s state E.g.: auto increment reads may cause a
pointer to be incremented. The Register File control registers have two such pointers: REG_Control [FIFOPTR],
cr0[18:16] and REG_Control [VIPTR] , cr0[1:0] Both pointers can be incremented by reads from control
registers REG_Fifo, cr3.

4.8.3 write port C span of control

Write Port C controls the modification of the General purpose registers, the Vector registers and the control
registers.

Some Control register writes can modify other control register’s state E.g.: auto increment writes may cause a
pointer to be incremented. The Register File control registers have two such pointers: REG_Control [FIFOPTR],
cr0[18:16] and REG Control [VIPTR] , crO[1:0] Both pointers can be incremented by writes to control
registers REG_Fifo, cr3. REG_Control [FIFOPTR] can also be decremented by an extended indexed write to a
vector register with data read from the Delay FIFO: wr(xi) Finally a write of a ‘1’ to the monitor enable flag:
REG_Monitor [ME], cr1[7] will load the 8 bus sizes in highest 16 bit of the same control register.

4.8.4 read port A index generator span of control

This unit generates the contents of REG_A Indices, cr4 plus the four delayed status flags in control register
REG_C Flags[S3, S2, S1, S0], cr7[25,17,9,1]

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.8.5 read port B index generator span of control
This unit generates the contents of REG_B_Indices, cr5.

4.8.6 write port C index generator span of control
This unit generates the contents of REG_C Indices, cr6 plus 12 flags in REG_C Flags:

Four Byte write enables: ~ REG_C_Flags[W3, W2, W1, W0] cr7[24,16,8,0]
Four Byte resets : REG_C Flags[R3, R2, RI, RO] cr7[26,18,10,2]

Four Byte write enables: REG_C Flags[P3, P2, PI1, PO] cr7[27,19,11,3]

4.8.7 write Select Unit span of control

This unit selects the input bus during write operations. The only registers which it modifies are the registers of
the write delay FIFO and the corresponding FIFO pointer REG Control [FIFOPTR], cr0[18:16] which it may
increment if it writes into the FIFO.

4.9 Instruction fields for each of the 7 sub-units of the register file

read port A

A read address 7 bit

11 vit signed immediate value

read port B

B read address 7 bit
Mode

write port C

‘XX’ | C write address 7 bit C

type

XX . . _ Write
C write address 7 bit 16 bit constant load value enables[3:0]
Port A index generator
A read address 7 bit

Port C index generator

C write address 7 bit
Mode

Werite Select unit

XX’ | C write address 7 bit
Mode

Imagine Processor

Write
select[2:0]

C
type

Imagine 2 Multi Media Processor 4. The register file

4.9.1 default values of instruction code fields

Not all of the fields are always available. A number of the fields have default values in case they are needed but
aren’t supplied in the instruction field:

Size 1C[6:5] the default value is: ‘10’ 32 bit data

B IC[3] the default value is : ‘0’ register (not control register)
C IC[4] the default value is : ‘0’ register (not control register)
Wr enables IC[3:0] the default value is: ‘1111’ write all bytes

4.10 Events which modify the Register File’s control registers

All the control registers fields can be modified by writing to them with a control register write operation. Here we
provide a detailed overview of the other events which modifies the control register fields.

4.10.1 events which modify REG_Control

IsizeA[2:0] modified by a control register write only.
Is1izeB[2:0] modified by a control register write only.
Is1izeC[2:0] modified by a control register write only.
FIFOPTR[2:0] This pointer is auto incremented by a:

- Control register read to cr3: REG_Fifo and riropTR[2:0] is not 0 or 7.

- Control register write to any byte of cr3: REG_Fifo and rirorTR[2:0] is not O or 7.
- Load-write-fifo instruction and FirFopTR[2:0] is not 7.

This pointer is decremented by an:

- Extended Indexed Write and riropTR[2:0] is not O.

(The pointer stays the same if both incremented and decremented)

WE3,WE2,WE1,WE0 modified by a control register write only.
SE modified by a control register write only.
FUNCT modified by a control register write only.
viPTR[1:0] This pointer is auto incremented by a:

- Control register read to cr3: REG_Fifo and riropTr[2:0] is 0.
- Control register write to any byte of cr3: REG_Fifo and riropTR[2:0] is 0.

4.10.2 events which modify REG_Monitor

Asize[1:0] loaded from the A bus by a control register write of ‘1 to ME, crl[7].
Bsizg[1:0] loaded from the B bus by a control register write of ‘1’ to ME, crl[7].
Qsizg[1:0] loaded from the Q bus by a control register write of ‘1’ to ME, crl[7].
Fsize[1:0] loaded from the F bus by a control register write of ‘1 to ME, crl[7].
Msizg[1:0] loaded from the M bus by a control register write of ‘1’ to ME, crl[7].
Usizg[1:0] loaded from the U bus by a control register write of ‘1’ to ME, crl[7].
Dsizg[1:0] loaded from the D bus by a control register write of ‘1’ to ME, crl[7].
Vsizg[1:0] loaded from the V bus by a control register write of ‘1’ to ME, crl[7].
ME can’t be modified, always returns a ‘0.

SO not modified in case of a control register write of ‘1’ to ME, crl[7].
ABUSSEL[2:0] not modified in case of a control register write of ‘1° to ME, crl[7].
BBUSSEL[2:0] not modified in case of a control register write of ‘1° to ME, crl[7].

Imagine Processor

Imagine 2 Multi Media Processor

4.10.3 events which modify REG_Vector

BASEA[1:0]
OFFSETA[2:0]
BASEB[1:0]
OFFSETB[2:0]
BASEC[1:0]
OFFSETC[2:0]
SELBUS[1:0]
SELSTA[2:0]
DW

W

EW

modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.

4.10.4 events which modify REG_A_Indices

A3NDEX [7:0]
A2mpEx [7:0]
A1mDEX [7:0]
AOINDEX [7:0]

modified by a read port A index generation (only IsizEA[2:0] bits are modified)
modified by a read port A index generation (only IsizEA[2:0] bits are modified)
modified by a read port A index generation (only IsizEA[2:0] bits are modified)
modified by a read port A index generation (only IsizEA[2:0] bits are modified)

4.10.5 events which modify REG_B_Indices

B3mpex [7:0]
B2mpEx [7:0]
B1mpEex [7:0]
BOmDEX [7:0]

modified by a read port B index generation (only IsizeB[2:0] bits are modified)
modified by a read port B index generation (only IsizeB[2:0] bits are modified)
modified by a read port B index generation (only IsizeB[2:0] bits are modified)
modified by a read port B index generation (only IsizeB[2:0] bits are modified)

4.10.6 events which modify REG_C _Indices

C3mpEex [7:0]
C2mNpEex [7:0]
C1lmpEex [7:0]
COmDEX [7:0]

modified by a write port C index generation (only IsizeC[2:0] bits are modified)
modified by a write port C index generation (only IsizeC[2:0] bits are modified)
modified by a write port C index generation (only IsizeC[2:0] bits are modified)
modified by a write port C index generation (only IsizeC[2:0] bits are modified)

4.10.7 events which modify REG_C_Flags

PRE3[1:0]
PRE2[1:0]
PRE1[1:0]
PREO[1:0]

RES3[1:0]
RES2[1:0]
RES1[1:0]
RESO[1:0]

P3, P2, PI, PO
R3, R2, RI, RO
83, S2, SI, SO
W3, W2, W1, W0

Imagine Processor

modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.

modified by a control register write only.
modified by a control register write only.
modified by a control register write only.
modified by a control register write only.

modified by a write port C index generation.
modified by a write port C index generation.
modified by a read port A index generation.
modified by a write port C index generation.

4. The register file

Imagine 2 Multi Media Processor 4. The register file

4.11 Examples of vector operations with the register file

4.11.1 Example 1: Vectored 3 operand ROP with an 8x8 pattern

A typical MS window function is the pattern rectangle operation: On of the more complex versions performs an
arbitrary logic function with a source rectangle, destination rectangle and an 8x8 pattern. This example archives
this function with two vectors. The 8x8 pattern is stored in the vector register file. The size of the A indices is set
to 3 bit, The generate index function increments the indices so the indices will wrap around after each eight
accesses to generate the 8x8 pattern. The three operand logic function of the ALU is used which executes the
logic function defined in the ALU_Logic control register

destination rectangle = function (rop3, source rectangle, destination rectangle, 8x8 pattern)

vector 1: Load values of the source image.
repeat, graph (pattern_rop3_load_source);

pattern_rop3_load_source:
V=input => DA= extended(), D= word(V); // Load in non-cacheable on chip data memory

vector 2: Load values of the destination image, read 8x8 pattern, read source image perform any of 256 three
operand logic functions and write the result back to the destination image.
repeat, graph (pattern_rop3_logic_operation);

pattern_rop3_logic_operation:
DA=extended() => A=rd4x8(ri++) =>D=word(ul),V=input,U=pass(A) => F=logic(D,V,U) => V=output;

4.11.2 Example 2: Vectored parallel min/ max function

The current minimum (maximum) values are stored in the register file and read via the A port while new values
are read in with the vector I/O unit for comparison. The new values are written into the delay FIFO to be
conditionally written later after the calculation of the byte write enables. The subtract operation of the ALU
provides the right status flags to determinate if the new values are smaller (larger) then the current ones, both for
unsigned or signed compares. The genad(Wr) function generates the byte write enables and wr(xi) writes the
delayed values from the FIFO into the vector register file. The genad function for read port A and the write port
increments the read and write indices.

repeat, graph (minmax);
minmax:
V= input, A= rd4x8(ri++) => wr (fifo, V), F=sub(A,V) => genad(Wr) => wr(xi);

4.11.3 Example 3: Vectored parallel table look up function

This function uses a 256 entry translation table for a look up function which is useful for various purposes like
pseudo color to real color conversion (1 value in, 4 values out), non-linear functions (4 values in, 4 values out)
like gamma correction, histogram equalisation for contrast improvement for medical applications, solarisation
effects for photoshop type applications. The input values are used as indices by the read port A index generator.
The result is written back to memory.

repeat, graph (table_look_up);

table_look_up:
V= input => genad(A) => A= rd4x8(ri) => V= output;

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.11.4 Example 4: Vectored parallel histogram function

This function can generate a 256 entry histogram from byte information. It counts the number of occurrences of
a byte values. It can process two bytes values per cycle. The two byte values generate indices to two 16 bit
locations which are read incremented and then stored back to the same location. The V= input function should
use it’s byte select function to move the two relevant bytes to bits[7:0] and [23:16] of the V bus and the V bus
size should be set to 2x16. The On-the-Fly-increment function increments the count values. The Write port
indices are copied from the read port A indices.

Example program: histogram without scaling.

repeat, graph (histogram);

histogram:

V=input, genad(A) => A= rd2x16(ri), genad(Wr) => wr(xi, A);

The input values can be scaled into a certain range for the histogram, either to make the number of entries smaller
or to reduce the number of input values into a 256 entry range. E.g. medical applications may scale 12 bit values
into 8 bit values for histogram equalisation purposes. We can use the Multiplier to scale and use the M bus for
the index offsets.

Example program: histogram with scaling.
repeat, graph (histogram);

histogram:
V= input => M= mult(Q,V) =====> genad(A) => A= rd2x16(ri), genad(Wr) => wr(xi, A);

4.11.5 Example 5: Vectored parallel add / subtract with saturate functions

Two vectors stored in the register file are added in this example. Pixel values are 8 bit (sometimes 16 bit)
unsigned values with black level 0 and maximum level OxFF (or OXFFFF) Adding two images may not cause
overflow: The results should be clamped to OxFF (0xFFFF) Subtracting two images may not result in values less
then 0: The results should be clamped to 0. Clamping to OXFF (OxFFFF) is possible with the conditional Preset
function and clamping to O is possible with the conditional reset function.

Add with saturate program:

The two vectors are read from the vector register file and added together in the ALU. The ALU produces a result
plus carry flags in case of unsigned overflow. The result is written to the Write Delay fifo because we need a 1
cycle delay. The carry flags selected from the status register (cr15: ALU RC_Status) are used to set the Preset
flags in register cr7 (REG_C_Flags) In the last cycle we write the result from the Fifo, preset in case of carry,
into the vector register

repeat, graph (add_saturate);
add_saturate:
AB= rd4x8(ri++, ri++) => F= add(A,B) => wr (fifo, F), genad(Wr) => wr(xi);

Subtract with saturate program:

The two vectors are read from the vector register file and subtracted in the ALU. The ALU produces a result plus
borrow (~carry) flags in case of unsigned under flow. The result is written to the Write Delay fifo because we
need a 1 cycle delay. The inverse carry flags selected from the status register (cr15: ALU _RC_Status) are used to
set the Reset flags in register cr7 (REG_C Flags) In the last cycle we write the result from the Fifo, reset in case
of borrow, into the vector register

repeat, graph (subtract_saturate);
subtract_saturate:
AB= rd4x8(ri++, ri++) => F= sub(A,B) => wr (fifo, F), genad(Wr) => wr(xi);

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.11.6 Example 6: Vectored parallel run length encoder

This implementation operates on 4x8 bit data. It will produce two vectors: One vector with run length data and
one vector with run length counts.

Example input vector with data which should be run length encoded:

2 2 2 2 116 2 2 123 123 123 2 167 2 2 2 2
2 2 116 116 116 2 123 2 2 2 2 167 167 167 2 2
2 116 2 2 116 2 123 2 2 2 2 167 2 2 167 2
2 116 2 2 116 2 2 123 123 2 2 167 2 2 167 2
Result Run length data vector:

2 116 2 123 2 167 2 - - - - - - - - -
2 116 2 123 2 167 2 - - - - - - - - -
2 116 2 116 2 123 2 167 2 167 2 - - - - -
2 116 2 116 2 123 2 167 2 167 2 - - - - -

Result Run length count vector: ~ (count = runlength-1 which gives a range of 1 to 256)

OO = W
S O N O
—_—— O =
S OO
—_ O W o
— o N O
_— 0 = WD

(e

[,

(e

S

1

1

1

1

1

vector 1: Load values for run-length encoding.
repeat, graph (run_length_load);

run_length_load:
V= input => DA= extended(), D= word(V); // Load in non-cacheable on chip data memory

vector 2: Store the run length data in the vector register, store only once if a value occurs more then one time:
The values which will be run length encoded are read back with the Data I/O unit on the D bus. The Vector 1/O
unit loads again the vector with values but 1 position shifted so the values on the D bus can be compared with
their direct successor on the V bus. If a value is equal to it’s successor then the count must be incremented (done
in the 3rd vector) If it is not equal to it successor then we increment the write index and write the new value in
the vector register. The zero flags of the ALU are used after a subtraction to test on equal or not equal.

repeat, graph (run_length_values);

run_length_values:

DA= extended() ==> D= word(ul), V= input => wr (fifo, D), F= sub(D,V) => genad(Wr) => wr(xi);

vector 3: Count the occurrences of a value (It’s run length) increment write index if value is different. The start
of this vector is equal to the previous. Values are compared with their direct successor. If they are equal then the
count value which is stored in the vector register is incremented. If they are different then the index in the register
file is incremented to point to the next count value which should be initialised to zero when written for the first
time. This is done with the conditional clear function which also needs the zero flags of the ALU. It should clear
on ‘not equal’ to initialise a new count value. The F= sub(D,V) function generates the status flags. The genad(A)
increments the read address if not equal and loads the selected status flags in control register cr7. The genad(wr)
in the next cycle re-uses the A-index for the write index and it uses the delayed status flags from cr7 for the
conditional clear function. The count values will not overflow if counting is not continued more then 256 times.
Count values should not be bigger then 256 anyway. They should fit in a single byte because what we want to do
with this algorithm is compressing data. A new vector after 256 values should start again with new data and count
indices.

repeat, graph (run_length_counts);

run_length_counts:

DA=extended() ==>D=word(ul),V=input =>F=sub(D,V) =>genad(A) =>A=rd(ri),genad(Wr) => wr(xi,A);

Imagine Processor

Imagine 2 Multi Media Processor 4. The register file

4.12 Interrupt processing:

- Saving and Restoring the data bus sizes of the A bus, B bus, Q bus, F bus, M bus, U bus, D bus and V bus:

The data sizes of the internal buses can be read and written back in control register REG Monitor (crl).

- Saving and Restoring the registers of the Write Delay Fifo:

The 7 individual registers of the Write Delay Fifo can be accessed via control register cr3: REG Fifo. The
selection between the various registers is made with the Fifo-pointer field in control register crO0: REG_Control

bits [18:16] This field should have a value of 1..7 The field is post incremented by a control register read or
write access. (The value of 0 is not incremented).

Imagine Processor

Imagine 2 Multi Media Processor 5. The Barrel Shifter / Rotate unit

Chapter
5. BARREL SHIFT/ROTATE UNIT

The Barrel shift / Rotate Unit
works on the basic data types of the Imagine: single 32 bit, double 16 bit and
quadruple 8 bit. For all these formats it supports N-place shifting, logic as well as

arithmetic, and N-place rotation.

Imagine Processor

Imagine 2 Multi Media Processor 5. The Barrel Shifter / Rotate unit

fig. barrel shifter

Imagine Processor

Imagine 2 Multi Media Processor 5. The Barrel Shifter / Rotate unit

5.1 operations

The Shift/Rotate unit can work on a single 32 bit word, double 16 bit words or quadruple 8 bit words. The word
size is inherited from the source of the operand and stored together with the result in the Q register from where
the result is sent to other functional units over the Q bus.

5.1.1 Operand select

The operand to be shifted can be selected from two buses: the B bus from the register file and the F bus from the
ALU. The first one is used in typical register to register functions while the second uses the ALU result (the ALU
also has the ability to redirect any of the other buses). The operand size is inherited from the B bus or the F bus.

5.1.2 Barrel shift functions

The three basic functions: rotate, shift logical and shift arithmetic are provided. The selected operand to be
shifted (B bus or F bus) can have any word size (32, 2x16, 4x8).

The operator A is defined as a single two's complement word taken from the A bus. This word can be 32, 16 or 8
bit. In the last two cases the lowest word is used (A0..A15 and A0..A7).

5.1.3 Shift direction

If A is positive then the shift (rotate) direction is left. If A is negative then the shift (rotate) direction is right.
If A is larger than the maximum number of locations which can be shifted then the result will still be correct: all
'0's or all '1's.

The bits shifted in by the shift logical are always '0'. The shift arithmetic should be seen as a multiplication by a
power of 2 on a two's complement number. If we look at the case of a negative value for the operand (sign bit is
'1') and a negative operand for the operator (shift right: divide by a power of 2) then we see that the number
should stay negative and so 'l's have to be shifted in at the left side.

Barrel shifter / rotator functions

32:30 Mnemonics function size

0 Q=noop no operation B size

1 Q=rotate(B,A) rotate input B over A positions B size

2 Q=shflog(B,A) shift input B logical over A positions B size

3 Q=shfarh(B,A) shift input B arithmetical over A positions B size

4 Q=extended B size / F size
5 Q=rotate(F,A) rotate input F over A positions F size

6 Q=shflog(F,A) shift input F logical over A positions F size

7 Q=shfarh(F,A) shift input F arithmetical over A positions F size

5.1.4 The result register of the Barrel Shifter

The results of the Barrel Shift function unit are available in the Q bus register which can be used by other

functional units, The register file or the I/O units This register is also accessible as a control register
(BSH_Qbus, cr8)

Cr8 BSH_Qbus: Barrel Shifter Bus Registers
32 bit Qbus result data (4x8, 2x16 or 1x32)
[31:0]

31[30]29]28]27]26[25]24 [232221] 20 19] 18] 17[16] 15[14 13] 12]11]10[9[8[76 [543]2]1]0

Imagine Processor

Imagine 2 Multi Media Processor 5. The Barrel Shifter / Rotate unit

5.1.4 The extended function of the Barrel Shifter

The functions of the barrel shifter can also be performed with a fixed shift factor which can be defined in control
register BSH_Control (cr9). The 8 bit fixed shift factor is a signed byte (-128, +127). The higher bits are
significant for the shift function: A word can be completely shifted out of the register leaving only zeroes or ones
(Shift Arithmatic right of a negative number). The Bus can be selected with the BUS SEL field (0=B bus, 1=F
bus) and the Function can be selected with the Function Field (0=noop, 1=rotate, 2=shflog, 3=shfarh)

cr9 BSH_Control: Barrel Shifter Control register for the extended function
‘0000 0000 0000 0000 00' FUNCT '000" bus SHIFT FACTOR
[1:0] sel [7:0]

\31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8\ 7 |6 |5 \4| 3 |2 |1 |0

Cr8 BSH_Qbus: Barrel Shifter Bus Registers
32 bit Qbus result data (4x8, 2x16 or 1x32)
[31:0]

31[30]29]28]27]26[25]24 [232221] 20 19] 18] 17[16] 15[14 13] 12]11]10[9[8[76 [543]2]1]0

Imagine Processor

Imagine 2 Multi Media Processor 6. The Arithmetic and Logic unit

Chapter
6. ARITHMETIC & LOGIC UNIT

The Arithmetic and Logic Unit

works on the basic data types of the Imagine: single 32 bit, double 16 bit and
quadruple 8 bit. It has the entire set of the 16 possible logic functions and a second
set of 15 additive type instructions like addition, subtraction, negation, increment,
decrement et cetera. Addition and subtraction functions with saturation are
available. A special function not found in other processors but of high value in
Window graphics applications is the parametrised three operand logic function: a
software parameter can select between any of the 256 possible logic operations on
three operands.

Imagine Processor

Imagine 2 Multi Media Processor 6. The Arithmetic and Logic unit
fig. alu

Imagine Processor

Imagine 2 Multi Media Processor 6. The Arithmetic and Logic unit

The ALU can be used as a single 32 bit ALU, a double 16 bit ALU or a Operand Select
quadruple 8 bit ALU. The 9 bit instruction field consists of two sub fields:
the operand source select field and the ALU instruction. Ic[41:38] Rinput Sinput
. 0 R=Abus S=Bbus
6.1 Operand Source select: ; R Abus S =V bus
The two operands for the ALU, called the R and the S input, can both be 2 R=Abus S=F bus
selected from any of four inputs. In most cases the operand size is 3 R=Abus S=Ubus
inherited from the S source, except for a number of operations that use the 4 R=Dbus S=Bb
- e =Dbus S=Bbus
R source only; in these cases the R size is used. 5 R=Dbus S =V bus
. 6 R=Dbus S=F bus
6.2 ALU function: 7 R=Dbus S=Ubus
The ALU provides three types of operations: _ _
¢ The set of 16 elementary two operand logic functions. We use the X g S _ m Ezz g _ \B} EE:
window convention for the mnemonics of the logic functions. A R=Mbus S =F bus
¢ A set of 15 add/ subtract/ increment/ decrement functions. Addition B R=Mbus S=Ubus
and subtraction with saturation are available. The addsat() function clips
to OxFF, OxFFFF or OxFFFFFFFF for 8, 16 or 32 bit operations in case of C R - Qbus S - B bus
overflow while the function subsat() clips to 0 in case of underflow. E S _ 8 EEE 2 _ \F/ 83:
¢ A parametrised three port logic function which uses an eight bit control = R=Qbus S=U bus
register to define any of the 256 elementary three operand logic functions.
6.3 ALU instruction set
Logic functions Arithmetic functions
1c[37:33] Mnem Operation size [c[37:33] Mnem Operation size
00 F=clear F = all Os Ssz 10 F=decr(R) F=R-1 Rsz
01 F=and(R,S) F=RandS Ssz 11 F=incr(R) F = R+1 Rsz
02 F=andrev(R,S) F = (notR)and S Ssz 12 F=decr(S) F =S-1 Ssz
03 F=copy(S) F=8 Ssz 13 F=incr(S) F = S+1 Ssz
04 F=andinv(R,S) F =R and (not) S Ssz 14 F=subdecr(R,S) F = R-S-1 Ssz
05 F=noop(R) F=R Rsz 15 F=sub(R,S) F=R-S Ssz
06 F=xor(R,S) F =R xor S Ssz 16 F=subsat(R,S) F =R-Sor0* Ssz
07 F=or(R,S) F=RorS Ssz 17 F=minus(S) F= -8 Ssz
08 F=nor(R,S) F = (not R) and (not S)Ssz 18 F=subdecr(S,R) F = S-R-1 Ssz
09 F=equiv(R,S) F=RxnorS Ssz 19 F=sub(S,R) F=8-R Ssz
0A F=invert(R) F=notR {-R-1} Rsz 1A F=subsat(S,R) F = S-Ror 0* Ssz
0B F=orrev(R,S) F=(notR)orS Ssz 1B F=minus(R) F= -R Rsz
0C F=copyinv(S) F=notS {-S-1} Ssz 1C F=add(R,S) F=R+S Ssz
0D F=orinv(R,S) F=Ror(notS) Ssz 1D F=addincr(R,S) F = R+S+1 Ssz
OE F=nand(R,S) F = (notR)or(notS) Ssz 1E F=addsat(R,S) F = R+S or max* Ssz
OF F=set F=all1s Ssz (*) saturation
Parametrised logic function
Ic[37:33] Mnemonics Operation size

1F F=Logic(R,S,U) F = logic_function(R,S,U) Ssz

Imagine Processor

Imagine 2 Multi Media Processor

6.4 Three port parametrised logic functions

ALU operation 1F invokes bit0..7 from the ALU control register
(cr12) which can provide a parametrised logic function for the
ALU: the eight bits in the register can define any arbitrary three
operand logic function. Typical applications are the ROP functions
of windows 95 where every graphics operation should be possible
with an arbitrary logical function and a bitplane mask: F = ((R op
S) & U) | (S & 'U). Another example are Functions like shift/mask/
merge and shift/mask/compare for the handling of compacted
binary images. The Shift/Rotate unit provides the shift function and
the ALU unit provides the three operand logic function:

F=R & U) | (R & !U) -> Q =rotate (F,A);

6.5 ALU control register: logic_function

The L(x) bit determines the result value depending on the input
values of the Un, Sn and Rn operands. This operation is indepen-
dently executed for all n (0..31) bits of the result value F.

6.6 The ALU status register

6. The Arithmetic and Logic unit

control register cr13:

Inputs: - result:
Un=0, Sn=0, Rn=0 = Fn=L7
Un=0, Sn=0, Rn=1 > Fn=L6
Un=0, Sn=1, Rn=0 = Fn=L5
Un=0, Sn=1, Rn=1 > Fn=L4
Un=1, Sn=0, Rn=0 = Fn=L3
Un=1, Sn=0, Rn=1 = Fn=L2
Un=1, Sn=1, Rn=0 - Fn=L1
Un=1, Sn=1, Rn=1 = Fn=L0

ALU_Logic: crl3

MASK _SEL | L7 (L6 | L5 | L4 [L3 | L2

L1

LO

w[ofs]7]6]s4]3]2]1]o

ALU_RC_Status: cr15: Status flags from the ALU and Multipler / Accumulator

W3|L3|H3[I3|S3|C3(M3|Z3|W2{L2|H2|I2(|S2|C2[M2[Z2|WI1|Ll|HI|Il

S1|C1(MI1|Z1|WOfLO|HO| IO |SO]|CO

MO

Z0

31]30]29[28[27]26]25] 2423 [22]21 20 19]18[17]16]15] 14131211]10] o[8[76 [5]4[3[2]1]0

The Status register (control register crl5) contains sixteen bits
from the ALU (b0..3 b8..11, b16..19, b24..27). These bits are the
status flags generated by the ALU in the previous cycle. Each of
the four 8 bit words has its own four status outputs:

V4 Zero not (bO+b1+b2+..bn)
M Minus value of by,

C Carry from Dmgb t0 brngoi

S SgnCmp Overflow xnor Minus

The definition of the status bits is depending on the F word size:

The instruction F = copy(F) does not change the contents of the F
register and is also a nop for the status register flags: the Carry,
SgnCmp and other flags will not change.

6.7 Conditional Control Flow Processing:

The Program sequencer can use the ALU results for conditional
operations. It can use Z0, M0, CO and SO for conditional Jumps,
Calls and Returns. The programmer and C compiler can make
comparisons between 32 bit, 16 bit and 8 bit words (the latter two
cases use the lowest sub word 0..15 and 0..7).

Imagine Processor

Z0

M3

Sg
S3
S2
S1
S0

Zero 8 bit 16 bit 32 bit

z3 z3.z2 z3.z2.z1.20
z2 z3.z2 z3.z2.z1.z20
z1 z1.z0 z3.z2.z1.z0
z0 z1.z0 z3.z2.z1.z0

Minus 8 bit 16 bit 32 bit

m3 m3 m3
m2 m3 m3
m1 m1 m3
m0O m1 m3

Carry 8 bit 16 bit 32 bit

c3 c3 c3
c2 c3 c3
c1 c1 c3
c0 c1 c3

ncmp 8 bit 16 bit 32 bit
s3 s3 s3
s2 s3 s3
s1 s1 s3
sO s1 s3

(20..z3 are the byte oriented zero flags).

(m0..m3 are the byte oriented minus flags).

(c0..c3 are the byte oriented carry flags).

(s0..s3 are byte oriented sgncmp flags).

Imagine 2 Multi Media Processor

zero:
Zero flag: This flag is used for 'is equal' and 'is not equal'
conditional expressions.

carry:
Carry flag: This flag is used for all unsigned conditional
expressions like 'greater than' or 'smaller than or equal to' etc..

sgnemp:
Signed Compare: This flag is used for all two's complement

conditional expressions like 'greater than'

or 'smaller than or equal to' etc.

6.8 using status for conditional register access

The status information can be used internally in the Register
file address generator for conditional addressing and
conditional writing into the register file. The status bits are also
available in control register ALU_RC_Status (= crl5). This
register is readable and writable. A write operation overrules
the new status flags from the ALU.

6.9 using status for the range mask:

The Mask Generator can use the ALU results to assemble
the Range Mask which can be used for conditional vector
write operations to external Image memory. The field
MASK_SEL selects the four status bits which are send to the
Mask Generator where they can be assembled into the 64x4
bit Range Mask.

ALU_Logic: cr13

'00000"

MASK SEL | L7 [L6 (LS| L4 | L3 |L2|L1|LO

15[1a]13]2f1i]of o8 [7]6][s]4]3]2]1]0

6. The Arithmetic and Logic unit

Test on equal / not equal

X ==
X1=Y

Unsig

X>=Y
X<=Y
X>Y
X<Y

Signe

X>=Y
X<=Y
X>Y
X<Y

flag ALU
if zero X-Y
if not (zero) X-Y

ned integer equations
flag ALU
if (carry) X-Y
if not (carry) X-Y-1
if (carry) X-Y-1
if not (carry) X-Y

d integer equations
flag ALU
if (sgncmp) X-Y

if not (sgncmp) X-Y-1
if (sgncmp) X-Y-1

if not (sgncmp) X-Y

MASK_SEL: status flags-> range mask

000:
001:
010:
011:
100:
101:
110:
111:

ALU_ZERO
ALU_MINUS
ALU_CARRY
ALU_SGNCMP
ALU_NOT_ZERO
ALU _NOT_MINUS
ALU _NOT_CARRY
ALU _NOT_SGNCMP

6.10 direct control register access to the F bus register:

The result register of the ALU: The F bus register is directly accessible as control register ALU_Fbus (= cr12)

cr12: ALU_Fbus:

Accumulator F Bus Register

32 bit F bus result data
[31:0]

(4x8, 2x16 or 1x32)

31[30]29]28]27]26]25] 242322 [2120 19] 18] 17[16] 15[14131211]10] 08 7]6[s5]4[3]2]1]0

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

Chapter
7. MULTIPLIER/ ACCUMULATOR.

T he Multiplier/Accumulator is a truly multifunctional unit and it supports various

data types in an even more diverse way than the other functional units. The basic
multiplication is supported in a regular and orthogonal way for different word sizes
and data types. Like the other functional units it supports single 32 bit, double 16
bit and quadruple 8 bit operations. These operations are performed on integers,
fixed point numbers, normalised numbers and so-called graphics numbers. Both
operands can be independently signed or two's complement. It can apply either
rounding or truncation.

The Extended function set holds more special sum of product functions like 8 bit 4x4
matrix times vector multiplication and quadruple (4x1) inproducts (both 16
multiplications, 12 additions), blend functions (8 multiplications and 6 additions),
and 16 bit complex, vector dot and vector cross products.

The Accumulator stage twice the original word length: single 64 bit, double 32 bit
and quadruple 16 bit. It can accumulate a single stream of multiplication results
into a single result or it can do vector accumulation to accumulate N streams of M
results into M final results. The Accumulator has the ability to work stand alone for
incremental operations for “Digital Difference Engine” functions.

The Range Control Unit checks if data is within the limits of a range with an upper
and a lower boundary. It can handle unsigned integers as well as two's complement
numbers. It can replace out of range data with the limit values and/ or can generate
a 2 dimensional pixel masker from the range check results. This masker is used in
the IMAGINE 2 for masked write operations to the Image memory. The Boolean
results of the Range clip unit are available in the Status register which can be used
in the Three port register file for conditional addressing and write enabling.

Imagine Processor

Imagine 2 Multi Media Processor

7. Multiplier / Accumulator

Detailed overview of the IMAGINE 2 Multiplier /Accumulator

Instruction/
Control reg.
ADMQ BV FU crl7,crl8,crl9
Instruction
Ma Input Selection ~ Mb decode
st
1 Stz?ig_e_ ______ cr20, cr21 64 bit write data register | ...
MULTI FUNCTIONAL ‘“Sime*lcitr‘lg“ MAC VECTOR
MULTI OPERAND R ge 2 REGISTER
2" Stage 128 word
.......... X N -
Instructi 64 bit
IMAGINE 2 r;ji;lellcirllzn
MULTIPLIER s 3
rd
3 Stfl%_e. _____ multiplier result register (64 bit) 64 bit read data register | L....
Instruction
pipeline
stage 4
AStage a0 |
N
A 4
32 bit low limit, cr26 64 bit multi input Adder
32 > 64 expander ‘ 32 > 64 expander ‘
n v v
4 Stage 64 bit low limit register ‘ er22 4 64 bit Accumulator register } er28 cr24 64 bit high limit register ‘
cr23 cr29 cr25
N /
64 bit 64 bit
— lower limit comparator o am m— higher limit comparator <
v v 4 A 4
64 bit = 32 bit selector
th
> St'fl_g“e __ 32 bit M Bus register, crl6 H M size ‘ ______________________ Status register, crl5 | ...
Internal 64 bit formats:
‘ 64 bit data ‘
‘ 32 bit data ‘ 32 bit data ‘
16 bit data

Imagine Processor

16 bit data ‘ 16 bit data

16 bit data ‘

Imagine 2 Multi Media Processor

7.1 Multiplier / Accumulator

7.1.1 The multiplier accumulator

The Multiplier/Accumulator is a five stage pipelined unit
with a wide variety of functions. The basic set of multipli-
cations is directly executed by the instruction code. Much
more advanced operations are performed by a combination
of extended instructions and control register parameters.
Instruction and control information are packed together and
sent into the multiplier pipeline. Once an instruction is
given, it will be executed until completed. This means that
control registers can be changed without the risk of dis-
turbing on-going operations (intermediate modification of
internal multiplier registers which contain data such as the
Accumulator register and the Compare registers of the
Range Unit do change the outcome of ongoing operations).

7.1.2 The pipeline

The multiplier/accumulator has five internal pipeline-stages.
This means that it takes five steps to complete a multiply /
accumulation operation. Latency is the same for all multiply
operations, with or without accumulation and optional range
clipping. Since the MAC is pipelined, one result can be
produced each cycle. 'One result’ means a single 32 bit
result, two 16 bit results or four 8 bit results. The type of
multiplication can change each cycle. The instructions code
starts the operation in the multiplier/accumulator pipeline.
The result is available five cycles later.

7.1.3 multiplier operand select

7. Multiplier / Accumulator

Stage 1:
Input Selection

Stage 2:
Multiplier first stage

Stage 3:
Multiplier second stage

Stage 4:
64 bit accumulator

Stage 5:
64 bit range clip

The two inputs of the multiplier are referred The Multiplier operand select field:
to as the Ma and Mb operands. The output
of the multiplier is stored in the M bus 50:47 Ma input sources Mb input sources Data size
register from where it is made available to . _
the other functional units in the Imagine. 0 A bus (registers) B bus (registers) ~ Msz = Bsz
. 1 A bus (registers) V bus (vector I/0) Msz =Vsz
Thj opzra;nl()ii can(;be single 32, double 16 2 A bus (registers) F bus (ALU) Msz = Fsz
and qua 1t words 3 Abus (registers) U bus (UFU) Msz = Usz
The internal results used by the accgmula— 4 D bus (data 1/O) B bus (registers) Msz =Bsz
tors are 64, double 32 and quad 16 bit. The | 5 Dbus (datal/O) Vbus (vector /O) Msz = Vsz
operands have besides a wordsize a number 6 D bus (data 1/0O) F bus (ALU) Msz = Fsz
of other attributes. An operand can either be 7 D bus (data 1/O) U bus (UFU) Msz = Usz
unsigned or two's complement. It can have o _
one of four formats: Integer, fixed point, 8 M bus (multiplier) B bus (registers) Msz =Bsz
: . 9 M bus (multiplier) V bus (vector I/O0) Msz =Vsz
lised hics fi t. Th t-
pomalied o ot o The |3 M s (muplen Fbus (0] Nes-
\ p p B Mbus (multiplier) U bus (UFU) Msz = Usz
attributes as well.
C Q bus (shifter) B bus (registers) Msz =Bsz
D Q bus (shifter) V bus (vector I/O0) Msz =Vsz
E Q bus (shifter) F bus (ALU) Msz = Fsz
F Q bus (shifter) U bus (UFU) Msz = Usz

Imagine Processor

Imagine 2 Multi Media Processor

7.2 The basic set of multiplier operations

7. Multiplier / Accumulator

Two function sets are supplied for the MAC (Multiplier/Accumulator) on the Imagine: the Basic set and the
Extended set. The Basic function set includes all normal multiplication functions. 48 Different multiplications

are possible in an orthogonal way.

7.2.1 The Basic Multiply options

The functions in the basic set are entirely defined by
the instruction and the data size and do not depend of
the contents of any of the control registers. The
operand size chooses between 32x32=64, double
16x16=32 and quadruple 8x8=16 multiplications. The
Data size used for the operation is taken from the Mb
input operand. The multiplications can have an integer
or one of various fixed point fractional formats. Both
input operands can be independently signed or
unsigned (the result will be signed if one ore more
inputs are signed). Four bits in the instruction code
select the various multiplication options if the basic
function set is selected. Data Type and Sign
information define the type of multiply operation. This
information is stored in control register crl9 of the
multiplier from where it can be used for the
multiply/accumulate function:

M = macs()

There is a choice between three sizes:

single 32 bits multiplication
double 16 bits multiplication
quadruple 8 bits multiplication

There are four sign options:
unsigned multiplication,
signed multiplications
unsigned x signed

signed x unsigned

All operations are possible on four data types:

7.2.2 Multiplications defined in the basic set

[46:42] Mnemonics multiplier type
00 M = mult (Ma,Mb,iuu) Integer format
01 M = mult (Ma,Mb,ius) Integer format
02 M = mult (Ma,Mb,isu) Integer format
03 M = mult (Ma,Mb,iss) Integer format
04 M = mult (Ma,Mb,nuu) Normalised format
05 M = mult (Ma,Mb,nus) Normalised format
06 M = mult (Ma,Mb,nsu) Normalised format
07 M = mult (Ma,Mb,nss) Normalised format
08 M = mult (Ma,Mb,fuu) Fixed Point format
09 M = mult (Ma,Mb,fus) Fixed Point format
0A M = mult (Ma,Mb,fsu) Fixed Point format
0B M = mult (Ma,Mb,fss) Fixed Point format
oC M = mult (Ma,Mb,guu) Graphics format
0D M = mult (Ma,Mb,gus) Graphics format
OE M = mult (Ma,Mb,gsu) Graphics format
OF M = mult (Ma,Mb,gss) Graphics format

Integer format (point at end)
Normalised format (point at begin)
Fixed point format (point halfway)
Graphics format (point at begin)
Ma sign Mb sign
unsigned unsigned
unsigned signed
signed unsigned
signed signed
unsigned unsigned
unsigned signed
signed unsigned
signed signed
unsigned unsigned
unsigned signed
signed unsigned
signed signed
unsigned unsigned
unsigned signed
signed unsigned
signed signed

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

BASIC MULTIPLICATIONS

32 bit data | | 32 bit data

1) 1)

32 x 32 =64 bit

signed, unsigned, mixed mode

U

64 bit internal data

| 32 integer result

32 bit fixed point result

32 bit normalised fixed result

)

| 32 result data

I6bitdata | 16 bitdata | | i6bitdata | 16bitdaa

1) L)

Double 16 x 16 = 32 bit

signed, unsigned, mixed mode

L

| 32 bit internal data | 32 bit internal data |

H 16 bit integer 16 bit integer
16 bit fixed 16 bit fixed

16 bit norm. i 16 bit norm. g

| i6bitdan | 16bitdaa |

| svit | sbit | 8bit | 8ot | | svit | svit | sbit | soit |
{1} {1}

Quad 8 x 8 =16 bit

signed, unsigned, mixed mode

U

| 16 bit data | 16 bit data | 16 bit data | 16 bit data |
o | od | e o
Sbins | [Sbithy i [Sbitfix| | [Sbitfx] i

IS bit nor] iS bit nor| iS bit nor iS bit nor]

| svit | sbit | 8bie | 8ot |

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.2.3 The multiplier operand types

Besides a size (32, 2x16 or 4x8) the operands have an operand type as well. The use of these types should
simplify the use of basically integer calculations in pre-calculations for graphic algorithms. Fixed point
calculations offer fractional calculations as opposed to pure integer calculations. The location of the binary point
is essential in the multiplication operation, contrary to addition and subtraction operations.

If we define a fixed point value by m.n, where m is the number of bits before the binary point and n the number
of bits behind, then addition type operations will produce m+1.n results and multiplication operations will
produce 2m.2n results: the word length of the result is doubled both before and after the binary point. This means
that the result should be shifted n places to the right (except for integer numbers where n=0). The types specified
for the Imagine are integer, normalised , and fixed point. Integer is defined as p.0, normalised as 0.p and fixed
point as p/2.p/2 where p is the word length. If a multiplication is specified with a certain type then this may be
interpreted as an integer multiplication with an implicit shift to the right: p places in case of a normalised fixed
point multiplier and p/2 places in case of a fixed point multiplier. Notice that the multiplier type specifies only
one of the two operands, either Ma or Mb. The other one can be in any format m.n while the result value, after
being sized to the original word length, gets the same m.n format. Which one of the two operands (Ma or Mb) is
seen as having the type specified is merely a question of interpretation.

7.2.4 Internal and output formats

Internal 64 bit Multiply Result 32 bit Selected M bus output
32 bit
integer [63:00] [31:00]
fixed point [63:00] [47:16]
normalised [63:00] [63:31]
2x16 bit
integer [63:32] [31:00] [47:32] [15:00]
fixed point [63:32] [31:00] [65:40] [23:08]
normalised [63:32] [31:00] [63:48] [31:16]
4x8 bit
integer [63:48] [47:32] [31:16] [15:00] [55:48] [39:32] [23:16] [07:00]
fixed point [63:48] [47:32] [31:16] [15:00] [59:52] [43:36] [27:20] [11:04]
normalised [63:48] [47:32] [31:16] [15:00] [63:56] [47:40] [31:24] [15:08]

7.2.5 The Graphics data format

The graphics type has the point at the MSB position like the normalised data format, however with an essential
difference: in many cases an n-bit-word should represent a value from 0% up to and including 100%. Some
examples are the colour values RGB where Red=0 means 0% red and Red=255 means 100% red. Another
example is the alpha-plane where 0=0 means 100% transparency and a=255 means 0% transparency. A
multiplication by 255 must be equal to a multiplication by 1.000 exactly. The graphics data format offers this
option for 8, 16 and 32 bit multiplications, both unsigned and signed:

Unsigned multiplications: Signed multiplications:

8 bit: M = (Ma x Mb) x (256/ 255) 8 bit: M = (Ma x Mb) x (128/ 127)
16 bit: M = (Ma x Mb) x (2'%/ 2'-1) 16 bit: M = (Ma x Mb) x (2'% 2™-1)
32 bit: M = (Ma x Mb) x (2% 2%11) 32 bit: M = (Ma x Mb) x (2*" 2*'-1)

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.3 The extended multiplier functions

The Extended function set includes the more specialised functions like the 16 bit complex multiplication, the 4x4
matrix times vector multiplication et cetera. Many of them can also use the Accumulator stage and the Range
Clip stage of the MAC. The two multiply/accumulate instructions, M = macs() and M = macb(), use
multiplications from the basic set but allow the use of the Accumulator stage and the Range Clip stage. The
second table indicates which resources a given instruction can use. It defines which fields of the MAC_Control1
register (crl7) are used during the execution of the instruction. Some fields refer to two other registers contain-
ing control information. The MAC_RamPtrs register (cr19) is used when the read or write fields indicate an
Access to the Accumulator Ram file and the coefficient registers. This control register contains

read and write pointers. The MAC_Control2 register (cr18) is used if the Range Unit field (range) is TRUE
(logical '1"). The Range Unit control register uses two 64 bit registers with a Low and High limit (cr22, cr23 and
cr24, cr25). The data size, type and sign fields define the data format used for a certain multiplication
function, e.g.: the matrix x vector product can be performed in 16 different ways. The accu field selects between
the three operands for the Accumulator: the Multiplier result, the Accumulator Ram file and the Accumulator
itself. The pipe field controls the two 4x4 register sets for the matrix operations. These are located in the first
stage where the multiplier input operands are selected.

Mnemonics

operation (Single cycle throughput)

10 M =inproduct (Mb) quadruple vector inproduct (4 x 8 bit vectors)
11 M = matrixvec (Mb) 4x4 matrix vector multiplication (8 bit)
12 M = blend (Ma,Mb) Open GL compatible blend function
14 M = loadpipe (Ma,Mb) shift 4x4 matrix data and coefficient pipelines
15 M-=read_ram () read 64 bit word from the accu Ram into accumulator
16 M = write_ram () write 64 bit word from the accumulator to accu Ram
17 M = linearstep(*) incremental add 4x16 bit, 2x32 bit, 1x64 bit
18 M = macs (Ma,Mb) multiply accumulate (scalar)
19 M =macb (Ma,Mb) multiply accumulate (block)
1C M = vectprod (Ma,Mb) 16 bit vector dot product and cross product
1D M = complex (Ma,Mb) 16 bit complex multiply M = a*b - b*c + i(a*d + b*c)
1E M=nop no operation
1F M = halt halt MAC: freeze the entire MAC pipeline.
(*) = optional Mb operand for Range Unit: () or (Mb)
Write read size type sign accu out range pipe

Mnemonics 30-29 27-26 21-22 19-18 17-16 15-12 10-8 7 4-0
10 M =inproduct (Mb) used used 4x8 used used used used used used
11 M = matrixvect (Mb) used used 4x8 used used used used used -
12 M = blend (Ma,Mb) used used 4x8 graph unsign used used used -
14 M = loadpipe (Ma,Mb) - - 4x8 - - - used used used
15 M =read_ram () -~ used used -—- - ram used used -
16 M = write_ram () used -- used --— -— -— used used -
17 M = linearstep (¥) used used used --— - atr used used -
18 M = macs (Ma,Mb) -~ -— bus prev prev atm - -
19 M = macb (Ma,Mb) used used used used used used used used -
1C M = vectprod (Ma,Mb) used used 2x16 used sign used used used -
1D M = complex (Ma,Mb) used used 2x16 used sign used used used -
1E M=nop
1F M = halt

(*) = optional Mb operand for Range Unit: () or (Mb)

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.4 Description of the multiplier operations

7.4.1 Operands for the multiplier

The two input values for the multiplier are referred to as Ma and Mb, the result is referred to as M. We use sub
indices to distinguish between the 3 different word sizes. Single 32 bit words have no sub indices, double 16 bit
words have the sub indices H and L, and the quadruple 8 bit words have sub indices 3,2,1 and 0. The 4x4 matrix
functions use two 4x4 sets of internal registers to provide operands: the P (Pipeline) registers and the c
(coefficient) registers. These registers are enumerated with super indices: ¢ and P*. Each of these contain four
bytes which are enumerated with sub indices. Some examples:

single 32 bit:Ma = Ma(31,,o) P? = P2(31,,o)
double 16 bit: May = Ma(31__16), Ma,. = Ma(15__o)
quad 8 bit: Mb; = Mb(31__z4), Mb, = Mb(7..0) ¢ = C3(23..16)

The intermediate internal multiplication results are defined by Mi. The Sub indices are applied in a similar way,
with the exception that the intermediate results have a word length 1.5 times the input size: 12, 24 and 48 bits.
Some examples:

Miy = Mi(47..24), Mi; = Mi(as..24), Mi, = Mi(11..0)
The value of the individual bits depends on the operand size as well as the operand type (Integer, Fixed point).

7.4.2 Basic operations

The multiplication functions from the basic set are defined as follows:

single 32 bit:M = Ma.Mb
double 16 bit: My = MaH.MbH, M. = Ma..Mb.
quad 8 bit: M; = Maa.Mbs, M. = Maz.sz, M, = Ma1.Mb1, M, = Mao.Mb,

Additional parameters are given within the instruction (fixed, integer..., unsigned, two's complement, mixed).

7.4.3 8 bit Matrix functions: Quad Inproduct

M = inproduct(Mb): Correlation and convolution, interpolated scaling and affine transformation.

The four 8 bit data words come from the Mb input steps as a four byte column from left to right through the
multiplier array via the data pipeline registers. The values in the coefficient registers are constant (they are the
four times four coefficients for the four inproducts).

M; = c%.P3%5 + ¢3.P% + ¢3.PY; + ¢30.P%
M, = C23.P32 + C22.P22 + 621.P12 + Czo.Poz
M; = ¢'.P3 + ¢',.P? + ¢'1.PYy + ¢'o.P%
Mo = c%.P3% + ¢%.P?% + ¢%.P' + c%.P%

The Quad Inproduct Pipeline Flow through:

P33=P23, P23=P13, P13=P03, (P03==Mb3),
P32=P22, P22=P12, P12=P02, (P02==Mb2),
P31=P21, P21=P11, P11=P01, (Po1==Mb1),
P30=P20, P20=P1o, P10=Poo, (Poo==Mbo),

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.4.4 8 bit Matrix functions: 8 bit Matrix Vector multiplication

M = matrixvec (Mb): Colour Space Conversion, DCT, iDCT, Interpolated Scaling and Affine Transform

M; = 033.Mb3 + Csz.sz + 031.Mb1 + C30.Mbo
M. = ¢%.Mbs + ¢%.Mb; + ¢?.Mb+ + ¢%.Mb,
M, = C13.Mb3 + C12.Mb2 + C11.Mb1 + C1o.Mbo
Mo = c%.Mbs + c%.Mb; + ¢%.Mb+ + c%.Mb,

7.4.5 8 bit Matrix functions: 8 bit Blend function

M = blend(Ma, Mb): Transparency, Non rectangular copies

M; = C30.Ma3 + 031.Mb3

M, = Czo.Maz + C21.Mb2

M, = C10.Ma1 + C11.Mb1

Mo = Coo.Mao + Co1.Mbo

Coefficients used during the blend operation

0 BLEND_CONSTANT coefficient® coefficient’® coefficient' coefficient’

1 BLEND_ZERO 0.00 0.00 0.00 0.00

2 BLEND_ONE 1.00 1.00 1.00 1.00

3 SRC_COLOR Mas/255, Ma./255, Ma/255, May/255

4 INV_SRC_COLOR 1- Mas/i255, 1-Maz/255, 1-Mas/255, 1-Mao/255

5 SRC_ALPHA Mas/255, Mas/255, Mas/255, Mas/255

6 INV_SRC_ALPHA 1- Mas255, 1-Mas/255, 1-Mas/i255, 1-Mas/255

7 DST_ALPHA Mb3/255, Mb3/255, Mba/255, Mb/255

8 INV_DST_ALPHA 1- Mbs/255, 1-Mbs/255, 1-Mbs/255, 1-Mbs/255

9 DST_COLOR Mbs/255, Mb./255, Mb./255, Mbo/255

10 INV_DST_COLOR 1- Mbs/i255, 1-Mb2/255, 1-Mb4/255, 1-Mb/255

11 SRC_ALPHA_SATURATE 1.00 alpha_sat alpha_sat alpha_sat

12 BOTH_SRC_ALPHA source: SRC_ALPHA destination: INV_SRC_ALPHA

13 BOTH_INV_SRC_ALPHA source: INV_SRC_ALPHA destination: SRC_ALPHA
alpha_sat = min (Maa/255, Mba/255)

7.4.6 Data Pipeline initialisation:

The loading of the MAC data pipeline to initialise matrix functions.

M = loadpipe(Ma, Mb)

Before the execution of matrix type functions, the internal data pipeline registers and or coefficient registers need
to be filled. The loadpipe instruction services this purpose. No actions take place except for the loading of the
coefficient registers and the pipeline registers. The action depends on the contents of the Pipe field of the MAC
control register no 1. The output of the last stage of the pipeline is visible via control register cr21.

7.4.7 Accumulator file access

The accumulator ram file stores words which are twice as wide data sized used: 8 bit multiply results are
accumulated in 16 bits, and 16 bit inputs in 32 bits and 32 bit multiply results become 64 bits. The read_ram and
write_ram functions offer a facility to store and load these wider words from the accumulator ram file. The 64
bits accumulator register provides a wide data port to the accumulator ram file. The total accumulator file size is
128 words of 64 bits.

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.4.8 Reading data from the accumulator file

M = read_ram Data can be loaded directly from the accumulator file into the 64 bit accumulator register.
The accumulator register is available as control register MAC_Accu0 and MAC_Accu1. This function provides a
facility to read the wider data words within the accumulator. The read_ram instruction takes five cycles like all
MAC instructions. The actual transfer to the control register takes place at cycle 4 of the MAC instruction (which
started at cycle 1). A block of data can be read from the accumulator at one cycle per read action if the delay is
taken into account.

7.4.9 Writing data to the accumulator file

M = write_ram Data can be stored directly to the accumulator file from the 64 bit accumulator register. The
accumulator registers are available as control register MAC_Accu0 and MAC_Accu1. This function provides a
facility to store the wider data words into the accumulator file. The write_ram instruction takes five cycles like
all MAC instructions. The actual transfer to the accumulator Ram takes place at cycle 5 of the MAC instruction
(which started at cycle 1). A block of data can be stored to the accumulator at one cycle per store action if the
delay is taken into account.

7.4.10 Incremental Functions

M = linearstep The width of the accumulators is used for incremental calculations: a constant value is
continuously added to a linear changing value. Second and higher order incremental calculations can be done in a
multi step procedure (N+1 steps are needed for an Nth order interpolation, except for a linear interpolation which
is a single step function). The quadruple 8 bit linearstep such as the colours in Gouraud shading can use the 16
bit double length accumulation to work with 8 bit accuracy behind the binary point. The Accumulator is used to
add the accumulator register contents with an incremental value from the accumulator file.

7.4.11 The MAC functions: multiply accumulate (scalar)
M = macs(Ma, Mb) The multiply accumulate executes the latest executed multiply instruction from the

basic set again and accumulates the result to the accumulator register. It does not use any information of the
MAC control register.

7.4.12 The MAC functions: multiply accumulate (block)
M = macb(Ma, Mb) This instruction is a super set of the scalar multiply accumulate (macs(Ma, Mb)). It

can read values from the accumulator file and write the results back again with optional incremented addresses.
It uses the write, read and accu field from the MAC register.

7.4.13 16 bit vector product

M = vectprod(Ma, Mb) Mathematical definition:

The result My represents: the internal or dot product of the two vectors M, and M, where the H word corre-
sponds with the X size and the L word corresponds with the Y size.

The result M, represents: the external or cross product of the same two vectors.

My = Mau.Mby + Ma..Mb,
M. = Mau.Mb. - Ma..Mbyu

7.4.14 16 bit complex product

M = complex(Ma, Mb) Mathematical definition:

The H words represent the real parts and the L words represent the imaginary parts in the operands as well as in
the results. The ability to perform complex multiplications in a single cycle gives the Imagine excellent
performance figures in many DSP tasks, most notably in Fast Fourier and other related Transformations

My = Mau.Mby - MaL..Mb,
M. = Mau.Mb. + Ma..Mby

Imagine Processor

Imagine 2 Multi Media Processor

7.5 Multiplier / accumulator operand formats.

7. Multiplier / Accumulator

7.5.1 Multiplier input and output format definitions.

unsigned integer

8 bit min 0 max 255

16 bit min 0 max 65.535

32 bit min 0 max 4.294.967.295

two's complement integer

8 bit min -128 max +127

16 bit min -32.768 max +32.767

32 bit min -2.147.483.648 max +2.147.483.647

unsigned normalised fixed point

8 Dbit min 0.000 max 255/256

16 bit min 0.000 max 65.535/65.536

32 bit min 0.000 max 4.294.967.295 / 4.294.967.296
two's complement normalised

8 bit min -1.000 max +127/128

16 bit min -1.000 max +32.767/32.768

32 bit min -1.000 max +2.147.483.647 / 2.147.483.648
unsigned fixed point

8 bit min 0.0 max 255/16

16 bit min 0.0 max 65.535/256

32 bit min 0.0 max 4.294.967.295 / 65.536
two's complement fixed point

8 bit min -128/16 max +127/16

16 bit min -32.768 / 256 max +32.767 /256

32 bit min -2.147.483.648 / ... max +2.147.483.647 / 65.536
unsigned graphics data type

8 Dbit min 0.000 max 255/255

16 bit min 0.000 max 65.535/65.535

32 bit min 0.000 max 4.294.967.295 / 4.294.967.295
two's complement graphics data type

8 bit min -1.000 max +127/127

16 bit min -1.000 max +32.767/32.767

32 bit min -1.000 max +2.147.483.647 / 2.147.483.647
7.5.2 Internal format definitions

unsigned integer

8 > 16 bit min 0 max 65.536

16 > 32 bit min 0 max 4.294.967.295

32 = 64 bit min 0 max 281.474.976.710.655

two's complement integer

8 > 16 bit min -32.768 max +32.767

16 = 32 bit min -2.147.483.648 max +2.147.483.647

32 > 64 bit min -2°63 max +2763 -1

unsigned normalised fixed point

8 > 16bit min 0.000 max 65.535/65.536

16 = 32 bit min 0.000 max 4.294.967.295 /4.294.967.296
32 > 64 bit min 0.000 max (264 - 1)/ (2764)

two's complement normalised fixed point

8 > 16 bit min -1.000 max +32.767 /32.768

16 = 32 bit min -1.000 max +2.147.483.647 / 2.147.483.648
32 > 64 bit min -1.000 max +(2°63 -1)/(2763)

unsigned fixed point

8 > 16bit min 0.000 max 65.535/256

16 = 32 bit min 0.000 max 4.294.967.295 / 65.536

32 64 bit min 0.000 max (2764 - 1)/ (2°32)

two's complement fixed point

8 > 16 bit min -2048 /32 max +32.767 /256

16 = 32 bit min -8.388.608 /2.048 max +2.147.483.647 / 65.536

32 > 64 bit min -140.737.488.355.327 /. max +(2763 - 1)/ (232)

unsigned graphics data type

8 > 16bit min 0.000 max 65.535/65.535

16 = 32 bit min 0.000 max 4.294.967.295 /4.294.967.295
32 > 64 bit min 0.000 max (2764 -1)/(2764-1)

two's complement graphics data type

8 > 16 bit min -1.000 max +32.767 /32.767

16 = 32 bit min -1.000 max +2.147.483.647 / 2.147.483.647
32 > 64 bit min -1.000 max +(2"63 - 1)/ (2763 - 1)

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.6 The range clip unit

7.6.1 Operation

The Range control unit operates on the internal 64 bit results of the Multiplier/Accumulator. It compares the
result with two values given by two 64 bit registers: MAC_LoLimit0..1 (= cr22,cr23) and MAC_HiLimit0..1 (=
cr24,cr25) to check if the MAC output is within a predefined range. The values of MAC_LoLimit and
MAC_HiLimit normally are 64 bit constants set via control register write operations. Alternatively they can be
loaded with the values from MAC_LoLim32 (= cr26) and MAC_LoLim32 (= cr27). These 32 bit control registers
contain both limits in 32 bit values compatible with the input and output format of the Multiplier / Accumulator
and are expanded from 32 to 64 bit before stored in MAC_LoLimit and MAC_HiLimit. The third alternative is to
load any or both 64 bit compare registers with the expanded Mb operand in order to obtain a variable limit.

7.6.2 Range clip activation

The Range Unit can be used by the extended multiplier operations and is activated by writing a logical ‘1’ in the
RU bit of control register MAC_Control1 (= crl7). This bit activates the functions which are controlled by the
Range control fields in control register MAC_Control2 (= crl8)

7.6.3 Data size and data Type

The results of the MAC can have any of three data sizes, single 64 bit, double 32 bit and quad 16 bit. The results
can be unsigned, signed and "balanced" signed. The Range Control Unit operates on all combinations of these
types. The data type is always inherited from the MAC result. The compare registers have the same format as the
MAC output: single 64 bit, double 32 bit or quad 16 bit. The compare operation provides four compare flags
The result is Inside if the MAC output is higher or equal to the lower limit and lower or equal to the higher limit
The result is High if it is higher than both range limits and it is Low if it is lower than both range limits. The
result is Wrong if it is both higher than the higher limit and lower than the low range limit.

7.6.4 Range clip output

If the Range Controller is activated with the RU bit in MAC_Control1 then it provides a range check on the
value(s) from the Multiplier/Accumulator. If the Clip flag in MAC_Control2 is a logical ‘1°, then the MAC result
is clipped to one of its limits. If the MAC output is too High it is replaced with the value in the high-limit
register, if too Low it is replaced with the value from the low-limit register. If the result is Wrong then it always
is replaced with the ‘Higher limit’. If the Clip flag is ‘0’ then the MAC output is passed unchanged.

7.6.5 The status word: ALU_RC_Status (=cr15)

The result of the comparisons is made available in the

Status register of the I.magine: control .register cr15: The Compare flags:

Range Controller provides four of the eight flags assigned

to each byte in the Status register: flags 4,12,20,28: MAC output Inside Range
If the condition is false then the flags are reset to logical flags 5,13,21,29: MAC output too High

‘0’. Each of the four bytes in the Status words has eight flags 6,14,22,30: MAC output too Low
flags: four from the ALU and four from the Range flags 7,15,23,31: MAC output Wrong
Controller.

Status bits can be selected by operations in the Register File and independently in the Range Mask generator.
These units select the four bits belonging to the same test (inside, higher, lower, wrong). The size of the result is
taken into account during this selection. If the mode is quadruple 8 bit, then all the flags provided are
independent and can all be different. In Single 32 bit mode all four fields will be identical (all four Inside flags,
all four High flags etc.). In double 16 bit mode the highest two and the lowest two flags are identical.

ALU_RC_Status: cr15: Status flags from the ALU and Multipler / Accumulator

W3|L3(H3|I3|S3|C3|M3[Z3|W2|L2|H2|I2(|S2|C2|M2|Z2(WI|L1|HI|[I1]|S1]|C1{MI1{Z1]|WO]|LO[HO|I0|SO]|CO|MO|ZO

31[30]29]28]27]26]25] 242322 [2120 19]18]17[16] 15[1413|1211]10] 08 7]6[s5]4[3]2]1]0

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.6.6 The range mask generator

The Range Mask generator is another unit in the Imagine processor where selected range clip status flags can
used to assemble a mask for masked vector writes to the Image memory. Four data lines and a strobe can
transport the generated result to the Range mask generator each cycle. For each 16 bit word of the 64 bit result
data, one of the four status flags is selected: Inside, Higher, Lower or Wrong.

The flag selection is done with three bits from the MAC_Control2 (cr18). Two bits select one of the four flags
while the third bit can be used to invert the flag. The cycle which follows the comparison is used to transport the
four selected values (one for each byte) to the Range Mask Generator. The activation of the Range Unit is the
sign for the Mask generator to load the four flags into its Range Mask registers, Up to 64 results can be loaded in
these registers. The Range Mask registers can be used as a (2D) mask for writing pixels into external Image
Memory. A logical ‘1’ is defined as write enable, a logical ‘0’ as a write disable. The four bits are sent to the
Range Mask generator in the cycle after the one which writes the contents of the M-bus register and the status
register to the Range Unit.

7.6.7 Balanced signed compares

Balanced Signed compares can be used when there are only a small number of MSB bits available for over and
underflow detection. This is the case with normalised numbers. The number of bits available depends on the
Output shift factor: X1_OUT, X2_OUT, X4_OUT or X8_OUT. In these cases we have 0, 1, 2 or 3 bits available
above the bits which will be placed on the M bus output of the Multiplier. Pixel values are given by one or more
8 bit values for grey scale or colour images. The 8 bit value represents an unsigned normalised fixed point value
with a range from 0 to 1. Many calculations require multiplications with coefficients which can be both positive
and negative. The result value will be in two's complement normalised fixed point format. This implies the need
for a conversion from signed to unsigned representation which is handled during the output stage to the M bus
register. (X2_OUT) This conversion is nothing more than a shift left by one position to shift out the sign bit. A
negative result can be caused by negative overflow (underflow) but also by positive overflow.

A Balanced signed compare divides the area outside 0.0 and 1.0 in two equal parts for underflow and overflow.
A signed number with one extra upper bit can represent values between -1.0 and +1.0. This is the default case for
a signed normalised number. It can not detect overflow > 1.0. The balanced signed compare however can detect
underflow between -0.5 and 0.0 and overflow between +1.0 and +1.5 Small negative numbers are considered to
be the result of underflow while large negative numbers are considered to be caused by positive overflow. This
method will correctly handle under- and overflows of up to 50%. Larger overflows and underflows can be
handled by shifting out more bits to the left after the compares when converting the 4x16 bit intermediate values
back to 4x8 bit values. The option X2_OUT performs a one bit shift appropriate for the sign conversion
mentioned above while the options X4_OUT and X8 OUT shift out 2 and 3 bits. These options can be
programmed in MAC_Control1 (cr17). The balanced sign mode combined with X4_OUT will correctly handle
under- and overflows of up to 150%. While The balanced sign mode combined with X8_OUT will correctly
handle under- and overflows of up to 350%. The balanced signed compare approaches the normal signed
compares when there are more and more MSB bits available. It becomes equal to signed compare for fixed and
integer numbers.
Unsigned, Balanced signed and Signed mode ranges:

L4 -3 -2 -1 0 1 2 3 4 5 6 7
| | | | | | |

[X2_OUT: Unsigned
[— | X2_OUT: Balanced Signed

I — X2_OUT: Signed
[T X4_OUT: Unsigned
I | X4_OUT: Balanced Signed
[—— | X4_OUT: Signed

g P
T < 8_OUT: Unsigned NN

[[T X8_OUT: Balanced Signed

[— X8_OUT: Signed
Underflow clipping Unclipped: between 0.0 ..1.0 Overflow Clipping

Imagine Processor

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.7 Overview of the multiplier control registers

cr16: MAC_Mbus: Multiplier Bus Registers

32 bit M bus result data (4x8, 2x16 or 1x32)
[31:0]

31|30|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9|8|7|6|5 |4\ 3]2 |1 |o\

cr17: MAC_Control1: The Multiplier / Accumulator Control register
‘0] AW [0’ AR ‘0’ MSIZE |MTYPE[MA[MB| <0’ RN RU|[0’| 0" |PC| PP
[1:0] [1:0] [1:0] | 1oy [sign|sign AC%MU S[Pzﬂ(f]T .

31[30]29]28]27]26]25] 242322 [21]20] 19]18]17[16] 15[14131211]10[087]6[5]4[3]2]1]0

cr18: MAC_Control2: The Blending and Range Clip unit control register
. i Blend Ma [Blend Mb Coef 00000000’ SD|BS|ML M Mask_sel |CL
00000000 Coef [3:0] [3:0]

31[30]29]28]27]26]25] 242322 [2120 19] 18] 17[16] 15[14131211]10f 087]6[s5]4[3]2]1]0

cr19: MAC_RamPtrs:
BA[BB <0000’ : - 5 :
B[Tl?(f)l])E o 0000 Coef Write Coef Read Vector register ram write Vector register ram read

Address [3:0] | Address [3:0] | 0 Address [6:0] ‘0’

Address [6:0]

31[30[29]28]27]26]25] 242322 [21]20] 19] 18] 17[16] 15[14131211]10] 9[8[7]6[5]4[3]2]1]0

cr20: MAC_Coef: Coefficient entry
8 x sign extension 8 higher coefficient bits 8 bit coefficient value 8 lower coefficient bits
(8 x bit[23] when read) [7:0] (7:0] [7:0]

31[30[29]28]27]26]25]24]23]22[21]20] 19] 18] 17[16] 15[1413 1211 [10] 0 [8[7]6[5]4[3]2]1]0

cr21: MAC_Pipe: Output of the 8 bit data pipeline
Pipeline register P, Pipeline register P*, Pipeline register P*, Pipeline register P*,
[7:0] [7:0] [7:0] [7:0]

31[30]29]28]27]26]25] 242322 [2120 19]18]17[16] 15[14131211]10] 08 [7]6[5]4[3]2]1]0

cr22,cr23: MAC_LoLimit0, MAC_LoLimit1 64 bit lower limit register

64 bit Low Limit Registers [63:0] M

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\
[

cr24,cr25: MAC_HiLimit0, MAC_HiLimit1, 64 bit lower limit register

64 bit High Limit Registers [63:0] M

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\
[

cr26,cr27: MAC_LoLim32, MAC_HiLim32, 32 bit limit registers

32 bit Low and High Limit Register M
[31:0]

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\
[

cr28,cr29: MAC_Accu0, MAC_Accu1, Accumulator register

Accumulator Register M
[63:0]

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\
[

Imagine Processor

Imagine 2 Multi Media Processor

7. Multiplier / Accumulator

7.8 Multiplier accumulator control register 1

cr17: MAC_Control1: The Multiplier / Accumulator Control register
‘0] AW [0’ AR ‘0’ MSIZE |MTYPE(MA[MB| <0’ RN RU[‘0’ [0’ [PC|PP
[1:0] [1:0] [1:0] | [10] [sizn|sign AC%MU S[le}g]T T

31[30]29]28]27]26]25] 242322 [21]20] 19]18]17]16] 15[14131211]10] 9[8[7]6[5]4[3]2]1]0

7.8.1 The vector ram read / write control

These fields control reading and writing to the Accumulator
vector RAM file. The read and write address are two
independent seven bit fields in control register cr19. These
address fields can be optionally post-incremented after a
read or write access for vector processing.

7.8.2 The operand Data Size field

The Data Size field is set by the Operand Mb input if any of
the basic multiplier operations is executed. A number of
extended functions refer to this field for the Data Size of the
operation.

7.8.3 The Data Type control field.

The Data Type field yields the same information as is
provided by the 16 basic multiplication instructions. The
four bits are set by the four bits from the multiplier function
field in the instruction code of the basic operations. They
select the multiplier operand type and select between
unsigned, two's complement and mixed mode operation.

7.8.4 The Accumulator input selection

In all modes the adders have the choice of two out of three
possible inputs: AC: The accumulator contents, RM: the
read data the Ram and MU: The multiplier result. The result
of the accumulation is stored into the accumulator register
and can be written from there in to the Vector Ram. The RN
bit will add 2 LSB to the multiplier result. (relative to the
M bus output, for multiplication only)

7.8.5 Output shift factor

The Output selection takes 32 bits from the total of 64 bit
Accumulator register for output on the M bus. The internal
word size is twice the normal word size (4x8->4x16,
2x16>2x32, 32>64). The Data type determines the
selection. Integer selects the lowest part of the result, Fixed
point the middle part and Normalised the high bits. The
output shift factor allows extended functions with extra
selection options: x1, x2, x4 and x8 scaled output.

These options select the output bits from 0,1,2 or 3 bit
positions lower in the 64 bit result data. This results in an
extra scale factor of x1, x2, x4 or x8. The x2 scale factor
can be generally used to shift out the sign (MSB) bit of
signed normalised results and thereby converting them to
unsigned normalised values.

Imagine Processor

AW: Accumulator Ram Write control
00: WwR_RAM_NOP: Disable write
10: WR_RAM: Write to Ram
11: WR_RAM_INCR: Write, incr pointer
AR: Accumulator Ram Read control
00: RD_RAM_NOP: Disable Read
10: RD_RAM: Read from Ram
11: RD_RAM_INCR: Read, incr pointer

Msize: multiplier operand type:

00: QuUAD_BYTE
01: DOUBLE_SHORT
10: SINGLE_WORD
MTYPE: multiplier operand type:
00: INTEGER_FORMAT
01: NORMALISED_FORMAT
10: FIXED_PNT_FORMAT
11: GRAPHICS_FORMAT
MA: Ma operand sign definition

0: UNSIGNED

1: SIGNED

Mb operand sign definition
0: UNSIGNED

1: SIGNED

ACRMMU: Accumulator Inputs

000: CLEAR_ACC
001: MULTIPLY
010: MAC_RAM
011: ADD_RAM_MULT
100: ACCUMULATOR
101: ACCUMULATE_MULT
110: ACCUMULATE_RAM
RN: Round multiplication result
0: NO_ROUND
1: ROUND
SHIFT: Shift in output selections
100: x1_out
101: x2_out
110: x4_out
111: Xs_out

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

The x4 and x8 options are useful to provide 1 or 2 bit extra for overflow /underflow testing. A 4x16 bit internal
result may be defined as containing values between 0.000 to 8.000 or -4.000 to + 4.000 to allow larger over and
underflows which can be detected and clamped by the Range Clip unit in the final stage of the Multiplier /
Accumulator. A x8_ouT converts these values back to a 0.000 to 1.000 range.

RU: Range Unit activation flag
. . L 0: NO_CHECK

7.8.6 The Range clip unit activation flag . 1: RANGE_CHECK
Enables or disables the Range Clip unit. The fields which
control the behaviour of the range clip unit can be found in e Coofficiont reaist

: oefficient registers
MAC_Control2 (cr18)I 0- HOLD_COEF

1: LOAD_COEF

7.8.7 The pipeline control field

The plpelme' contr'ol field controls the Fiata transpprt thrpugh Bp 8 bit Data Pipsline registers
the 4x4 matrix registers The two sets of internal registers in the 0 HOLD PIPE
MAC are laid out in a 4x4 configuration (see the drawing on LOAD_PIPE
the next page). The data pipeline registers shift 4x8 bit data
from the right to the left. The coefficient registers may shift 4x8
bit data from the bottom to the top for the 8 bit transpose |PTT Transpose control
(stippled arrows). Shifting is performed by the loadpipe |000: RESET_TRANSPOSE
function which uses the 'pipe' field in the MAC control 1005 SET_TRANSPOSE(0)
register and by the inproduct function which shifts the data 101: SET_TRANSPOSE(1)
S e S . 110: SET_TRANSPOSE(2)
plpgllne. The last data pipeline register is visible via control | 441. SET_TRANSPOSE(3
register cr21.

N

7.8.8 Transposer operation

8 bit matrix transposition can be performed with the loadpipe function and the PTT[2] bit set to a logic 'l".
Data is copied from the coefficient register set to the data pipeline register set once every four loadpipe
operations. The two bit counter within the MAC control register is used in this function. The transfer takes place
when the two bits PTT[1:0] are zero. These two bits are post incremented during a loadpipe if PTT[2] is logic 'l".

to Accu-
mulator.

to Accu-
mulator.

<
to Accu-
mulator.
[31:16]
i Mb[158]
to Accu- H
mulator. 0 0
[15:0] C, 230 part. [C’, 23:0]
H A mult] A
3 i 0 { Mb[7:0]
cr21[7:0] [[7:0] < 0[7:0] 4—
Ma[31:241] Ma[23:161] Ma[15:8] | Ma[7:0] |

Imagine Processor

Imagine 2 Multi Media Processor

7.9 Multiplier accumulator control register 2

7. Multiplier / Accumulator

cr18: MAC_Control2: The Blending and Range Clip unit control register

. i Blend Ma |Blend Mb Coef
00000000 Coef [3:0] [3:0]

00000000” SD|BS|ML M MASK SEL [CL

31[30]29]28]27]26]25] 242322 [2120 19] 18] 17] 16 15[14131211]10] 08 [7]6[s5]4[3]2]1]0

7.9.1 blend coefficient selection

Two 4 bit fields select the blending coefficients to be se-
lected for the Ma and Mb input data of the multiplier. Op-
tions O through 10 implement all Open GL options while
option 15 uses fixed coefficients

7.9.2 range unit: 32 or 64 bit compares

The SD flag selects between the 32 bit limit registers and
the 64 bit limit registers. The 32 bit options expands the 32
limit registers to 64 bit according to the used data Size, the
selected data Type, and the selected Shift value. The ex-
pansion is the inverse operation of the 64 = 32 selection at
the end of the multiplier before the result is placed in the 32
bit M bus register. The expanded results are placed in the
64 bit Limit registers.

7.9.3 range unit:

Balanced signed compare:

Balanced signed compares divide the overflow and under-
flow range in two equal parts in cases where there are only
few MSB bits available for overflow and underflow
detection. Which is the case for normalised format
operations. The three cases below have 1, 2 and 3 bits for
overflow and underflow detection:

-signed normalised format + X2 OUT: - +/- 50% range
-signed normalised format + X4 OUT: - +/- 150% range
-signed normalised format + X8 OUT: = +/- 350% range
Balanced signed compares approaches normal signed com-
pares when there are more and more MSB bits available. Is
equal to signed compares for Fixed and Integer operations.

7.9.4 range unit:

Dynamic Limits
The 64 bit Limit registers can be dynamically loaded with

the Mb input data which is expanded to 64 bits first. Both
Limit registers are individually controlled by ML and MH.

7.9.5 range unit:

Range Mask selection

The results of the Compares are stored in the
ALU_RC_Status control register (cr15). The field MASK_SEL

Imagine Processor

The blend coefficients

0000: BLEND_ZERO

0001: BLEND_ONE

0010: SRC_COLOR

0011: ONE_MINUS_SRC_COLOR
0100: DST_COLOR

0101: ONE_MINUS_DST_COLOR
0110: SRC_ALPHA

0111: ONE_MINUS_SRC_ALPHA
1000: DST_ALPHA

1001: ONE_MINUS_DST_ALPHA
1010: SRC_ALPHA_SATURATE
1111: BLEND_CONSTANT

SD: Single / Double width Compares

COMPARE_32
COMPARE_64

- O

BS: Ballanced Signed Compares

UNBALANCED
BALANCED

- O

ML MH: Mb operand to Limit registers

00: HOLD_LIMITS
01: LOAD_HILIMIT
10: LOAD_LOLIMIT
11: LOAD_LIMITS

MASK_SEL: Status Flags > Mask Generator

000: RANGE_INSIDE
001: RANGE_HIGHER
010: RANGE_LOWER
011: RANGE_WRONG
100: RANGE_NOT_INSIDE
101: RANGE_NOT_HIGHER
110: RANGE_NOT_LOWER
111: RANGE_NOT_WRONG

Imagine 2 Multi Media Processor

selects the four status bits which are send to the Mask
Generator where they can be assembled into the 64x4 bit
Range Mask.

7.9.6 range unit:

Output clipping
The CL flag determines if the output is either passed

unmodified to the M bus output register or that is clipped to
the Higher or Lower Limits if it is to large or to small.

Imagine Processor

7. Multiplier / Accumulator

CL:

0:
1:

Clip MAC output data

NO_CLIP
CLIP

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.10 Multiplier accumulator pointer control register

This control register contains read and write pointers for the Vector register Ram and the coefficient registers.
Most extended functions may access the vector register ram. These registers are typically used for vector
accumulation, temporary vector storage and differential engine operations. The coefficients are used for three
different 8 bit functions: inproduct(), matrixvec() and blend(). These functions support convolution, color space
conversion, YUV to RGB conversion, discrete cosine transformations, bicubic scaling, blending, mixing et
cetera. The data words are 8 bit in these operations but the coefficient must be more accurate. The 16 coefficients
(4x4) of the multiplier provide 16 bit accuracy.

cr19: MAC_RamPtrs:
BTYPE s‘?/’; S*?B 0000 Coef Write Coef Read N Vector register ram write | Vector register ram read
[1:0] [Sten|sien Address [3:0] | Address [3:0] | 0 Address [6:0] 0 Address [6:0]

31[30[29]28]27]26]25]24]23]22[21]20] 19] 18] 17[16] 15[1413 1211 [10] 0 [8[7]6[5]4[3]2]1]0

7.10.1 Vector register ram read and write pointers

The vector register is accessed in parallel to an extended multiplier operation. The read data will arrive at the
same time by the accumulator as the multiplication result. The result of the accumulation will be written to the
write address. Both pointers can work in post-increment mode to support vector operations.

Typical usage: vector accumulation:

Several vectors are accumulated into one vector. An operation is used for convolution (filtering), correlation,
alpha blending, et cetera. Example: A 3x3 convolution is accomplished by two vector reads and one vector read/
write. The vectors undergo the M = inproduct() function and are accumulated in the Vector register ram. The
resultant vector is written back to image memory. The result vector contains 64 x 4 = 256 pixels. The whole
operation takes 1.2 microseconds at 200 MHz. The range clipper is used to clip the pixels into the right range.

7.10.2 Coefficient read and write pointers

The coefficients used in for example the convolution operations mentioned above should be written via control
register MAC_Coef (cr20) to the right locations given by the coefficient read and write pointers. These pointers
always operate in post-increment mode. The read and write order is:

c°o—) 0019 0029 c°3—) C109 C119 C129 C139 C209 C219 sze C239 0309 C319 0329 0339C009

7.10.3 The data type and signs used for macs()

The simplest extended function is macs() which is used to sum a number of consecutive multiplier results. The
data type and signs given in the start multiplication are store in BTYPE, BA and BB and used for the following
macs() operations. These fields are updated by every basic multiply operation and are used exclusively by the
function macs(). Example:

AB =rd(r20,r30) -> mult (A,B, iss); /" iss " is stored in cr19
AB =rd(r21,r31) -> macs(A,B);

AB =rd(r22,r32) -> macs(AB);

AB =rd(r23,r33) -> macs(A,B);

AB =rd(r24,r34) -> macs(AB) -—---- > wr(r40)

Imagine Processor

+116/32x

Imagine 2 Multi Media Processor 7. Multiplier / Accumulator

7.11 Multiplier accumulator coefficient register entry

The coefficients are used for various 8 bit functions: inproduct(), matrixvec() and blend(). The coefficients are
24 bit. The sign bit (bit 23) is extended to bits [31:24] when a coefficient is read back. The functions mentioned
above are used for convolution, color space conversion, YUV to RGB conversion, discrete cosine transforma-
tions, bicubic scaling, blending, mixing et cetera. The data words are 8 bit in these operations but the coefficient
must be more accurate. The 16 coefficients (4x4) of the multiplier provide more bits accuracy:

cr20: MAC_Coef: Coefficient entry
8 x sign extension 8 higher coefficient bits 8 bit coefficient value 8 lower coefficient bits
(8 x bit[23] when read) [7:0] [7:0] [7:0]

]31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10| 9 |8] 7 |6 |5 \4| 3 |2 |1 |0

The drawing below shows which bits are significant in the partial 24x8 bit multiplication and how they result in a
16 bit value which goes to a 16 bit fraction of the accumulator. (The 16 bit shown here are summed together with
three similar 16 bit results and this result then goes to the 16 bit accumulator fraction)

(This drawing will be removed later)

[23[22]21]20]19]18]17]16]15] 14 13[12]11]10] o[8[76]5]4[3][2]1]0

[23]22]21]20]19]18]17]16]15] 1413] 121110l 9o |8 [765]4]3]2]1]0

[23]22]21]20] 1918 17]16] 15[14 13] 121110 987 6543]2]1]0

| +-64 /128 x| [23]22]21]20 10 18] 17 16 1514 13] 2] i1]iof o[8[7 6 [543 2]1]0]

|256x

[23[22]21]20]19]18[17]16]15] 14131211]10] o[8[7654 [3[2]1]0

These bits are truncated these bits are summed and go to a 16 bit fraction of the These bits are truncated

PRI Py

The coefficients used in for example the convolution operations mentioned above should be written via control
register MAC_Coef (cr20) to the right locations given by the coefficient read and write pointers. These pointers
always operate in post-increment mode. The read and write order is:

0009 0019 0029 c°3—) C109 C119 C129 C139 C209 0219 sze C239 0309 0319 0329 0339C009

7.12 Multiplier accumulator 8 bit data pipeline output

The last four bytes of the 8 bit 4x4 data pipeline are visible as an output in this control register. Usage is typically
a transpose or delay operation.

cr21: MAC_Pipe: Output of the 8 bit data pipeline
Pipeline register P, Pipeline register P*, Pipeline register P*, Pipeline register P*
[7:0] [7:0] [7:0] [7:0]

31]30]29]28[27]26]25]24[23[22212019 18] 17[16]15]14] 3] 1211]10] o[8[76 [5]4[3]2]1]0

7.13 The state save and restore register

This single 32 bit register should be saved an later restored during interrupts it can be read and written like any
normal control register. (MAC_Save, cr30)

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

Chapter
8. UNARY FUNCTION UNIT

The Unary Function Unit

The UFU performs various single operand functions. Besides these functions found
in the basic set, an extended set is supplied for IEEE 754 single precision floating
point conversions. Fixed point and integer conversions as well as range checking
can be done over the entire dynamic range as defined by the 32 bit floating point
standard.

FIRST DRAFT

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit
fig. unary function unit

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.1 UNARY FUNCTION UNIT

The basic Unary functions except the IEEE-754 functions work on a single 32 bit word, double 16 bit words or
quadruple 8 bit words. The wordsize is inherited from the source of the operand and passed to the destination
functional unit together with the result on the U-bus. Four basic operations can be applied on both the A bus and
the F bus. The operand size which is used in these functions is inherited from the selected source bus (A bus or F
bus).

The conversion functions handle IEEE 754 single precision floating point to integer/fixed point conversion and
vice versa. It supports the exponent handling and error detection of basic operations like addition, subtraction
and multiplications. All five IEEE 754 32 bit float point types are supported: normalised, denormalised, zero, +/-
infinity and "not a number".

8.1.1 The result register of the UFU

The results of the Unary function unit are available in the U bus register which can be used by other functional
units, The register file or the I/O units This register is also accessible as a control register (UFU_Ubus, cr32)

Cr32: UFU_Ubus: Unary Function Unit Bus Registers
32 bit U bus result data ~ (4x8, 2x16 or 1x32)
[31:0]
31[30]29]28]27]26]25]24 [232221] 20 19] 18] 17[16] 15[14 13] 12]11]10[9[8[76 s[4]3]2]1]0

8.1.2 The instructions of the UFU

The four bit field in the instruction word decodes the following 16 different instructions:

IC

62:59 Mnemonics function cycles size
0 U = noop no operation 1 Asz
1 U = pass(A) pass value, init IEEE conversions 1 Asz
2 U = unary(A) binary to unary conversion 1 Asz
3 U = binary(A)unary to binary conversion 1 Asz

4 U = integer(Ad) IEEE float 32 - integer conversion 2 32

5 U = fixed(Ad) IEEE float 32 - fixed point conversion 2 32

6 U = float(Ad) integer - |IEEE float 32 conversion 2 32

7 U = floatFP(Ad) fixed point > IEEE float 32 conversion 2 32
8 U = abs(A) absolute value of A 1 Asz
9 U = sign(A) sign of A (A<0: U=-1, A=0: U=0, A>0: U=1) 1 Asz
A U = notzero(A) set bits if Al=0 1 Asz
B U = swap(A) swap bits (A31->U0, A30->U1, A29->U2,...) 1 Asz
C U = abs(F) absolute value of F 1 Fsz
D U = sign(F) sign of F (F<0: U=-1, F=0: U=0, F>0: U=1) 1 Fsz
E U = notzero(F) set bits if F =0 1 Fsz
F U = swap(F) swap bits (F31->U0, F30->U1, F29->U2,...) 1 Fsz

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.2 The basic unary functions

The following functions all operate on the three basic formats of the Imagine processor: single 32 bit words,
double 16 bit words and quadruple 8 bit words. They are all executed within a single cycle.

8.2.1 Binary to Unary conversion: U = unary(A)

This function expects 1,2 or 4 two's complement number(s) U = unary(A)

and converts them to a unary representation: negative -1 > 00000000 3 - 00000111
numbers always result into 0, and a number equal to and 0> 00000000 4 - 00001111
larger than the number of bits in a word (8, 16, 32) always 1> 00000001 5 > 00011111
results into "all 1s". 2> 00000011 2t (?etgr: 11111

8.2.2 Unary to Binary conversion: U = binary(A) (priority encoder)

This function expects 1, 2 or 4 unsigned value(s) and

returns the position(s) with the first non-zero bit. It is the 00000000 9U0= binary(A) 000010 > 4
inverse function of the Binary to Unary conversion. The 00000001 > 1 000100 > 5
lowest result value is 0 and the highest result value is the 0000001 > 2 001xxXXXX > 6
number of bits in a word, 000001xx > 3 01XXXXXX 2> 7
(8, 16 or 32). et cetera.
8.2.3

Absolute value: U =abs(A), U = abs(F)

The Absolute value function expects 1, 2 or 4 two's complement numbers. It returns the absolute value(s) of these
number(s). An exceptional case are the maximal negative values which do not have a corresponding positive
value. These will map to themselves.

8.2.4 Sign function: U =sign(A), U =sign(F)
This function expects 1, 2 or 4 two's complement number(s) and returns +1, 0 or -1 depending on the sign and the
zero test.

8.2.5 Not zero function: U = notzero(A), U = notzero(F)
Returns 00, 0000 or 00000000 in case of X=zero and FF,FFFF FFFFFFFF in case of X=not zero, depending on

the wordsize.

8.2.6 Swap bits function: U =swap(A), U =swap(F)

Swap bit reverses the bit order of the bits in an 8, 16 or 32 bit word.

msb - Isb, msb,; 2 Isb.;, msb, 2 Isb.,, ..., Isb > msb.

The highest bit will end up in the lowest place and the lowest will end up in the highest place. This operation is

useful for bitmap and bitmask operations and FFT address calculation.

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.3 IEEE 754 floating point operations

8.3.1 Handling of floating point numbers:

The Imagine handles the 32 bit IEEE-754 floating-point operations with the aid of a small specialised conversion
unit and it's standard integer ALU and Multiplier. This method proves to be only 1.5 to 2 times slower for general
C programs compared to costly pipelined floating point hardware. A typical mix of instructions shows a mean
execution time of 10 cycles/ floating point operation. The majority of C programs contain in general to much data
dependencies to be handled efficiently by pipelined floating point hardware. The omission of pipelined floating
point hardware in the Imagine however only applies to this version and is based purely on economy
considerations.

The small conversion unit handles the right conversion from and to floating point numbers. It checks for floating
point exceptions like overflow, underflow, not_a number and it handles the exponent calculations for addition,
subtraction and multiplication. It is used also to implement some more elaborated floating point operations like
the 3D homogeneous coordinate transformation in a very efficient way. The basic floating point operations take
the form of small macro routines which can either be called by, or included within, the program. The operations

support all 5 formats defined by the IEEE-754 floating point standard.

8.3.2 |EEE 754 32 bit floating point definition

sign exponent mantisse value
format 1: not a number: don't care 255 not 0 not a number
format 2: +/- infinity: +or - 255 0 +/- infinity
format 3: normal number: +or- 0 <exp <255 0..7FFFFF (-1)¥ex2°%12x 1. mant
format 4: very small number: +or- 0 0..7FFFFF (-1)¥Ex2°%126x 0. mant
format 5: zero: +or- 0 0 +/-0

8.3.3 IEEE 754 32 bit floating point macro functions

32 bit Floating Point Macro functions
Mnemonics operation - result cycles
int_sf() float - integer 1
float_sf() integer to float - float 1
abs_sf() absolute value - float 2
neg_sf() negate - float 2
add_sf() float + float - float 9
addint() float + int - float 10
add3_sf() float + float + float - float 11
sub_sf() float - float - float 9
subint_sf() float - int - float 10
rsubint_sf() int - float - float 10
mul_sf() float x float - float 12
mulint_sf() float x int - float 13
mul3_sf() float x float x float - float 17
div_sf() float / float - float 26
divint_sf() float / int - float 27
rdivint_sf() int / float - float 26
matrix_4x4_sf() full 4x4 matrix times vector multiplication - float 30
homogenous_tr_sf() homogenous transform + perspective division - float 60

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.4 IEEE 754 floating point operation support register cr33
Cr33: UFU_IEEE floating point operation control register

E|O|u|N|[m H exponent Fix to Float offset Float to Fix offset

v UH|EX | EL i)
R|FF N L [7:0] [7:0] [7:0]

31[30]29]28]27]26]25]24 [232221] 20 19] 18] 17[16] 15[14 13] 12]11]10[9[8[76 [543]2]1]0

8.4.1 Float To Fix offset. cr33 [7:0]

Used in the function U = fixed(A). This offset either is added to the floating point exponent before conversion
(EL="0") or replaces the exponent before conversion, (EL=="1").

8.4.2 Fix To Float offset. cr33 [15:8]

Used in the function U = floatFP(A). This offset either is added to the floating point exponent after conversion
(EX='0") or replaces the exponent after conversion, (EX='1"). Details can be found in the examples on the
following pages.

8.4.3 The H exponent. cr33 [23:16]

The H(idden) exponent is used to calculate the exponent during addition, subtraction and multiplication.
Addition/ Subtraction: The H exponent is replaced whenever one of the functions, U = pass(A), U =
integer(A) or U = fixed(A) is performed and the value in the exponent field of the A data (A23..A30) is larger
than the current highest exponent.

Multiplication: The H exponent is calculated with: H exponent = H exponent + A_bus[31:23] - 127

This action takes place during the functions U = pass(A), U = integer(A) and U = fixed(A).

8.4.4 EL: exponent offset usage in U = fixed() (see the Float to Fix offset)
8.4.5 EX: exponent offset usage in U = floatFd() (see the Fix to Float offset)
8.4.6

UH: Use H exponent

If this flag is true ('1'), the H Exponent field is used for the calculation of the exponent during floating point
addition, subtraction and multiplication.

8.4.7 MUL: Use H exponent for add or multiply

If this flag is true ('1'), the H Exponent field is used for the calculation of the exponent of a product of 2 or more
floating point values. otherwise it is used to calculate the sum (subtraction) of 2 or more floating point values.

8.4.8 NAN: Not a Number error flag

This error flag is set together with the ERR flag if a IEEE NAN value (Not A Number) is converted from float to
integer or fixed.

8.4.9 UNF: Underflow error flag

This error flag is set together with the ERR flag if a fixed number is converted into a floating point value which
is smaller then the smallest representable floating point value, with the exception of the integer value 0.

It is set without the ERR flag as a warning only in case of a float to integer or fixed value which is smaller the
smallest representable integer value.

8.4.10 OVF: Overflow error flag

The overflow flag is set together with the ERR flag if a overflow occurs during any of the conversions.

8.4.11 ERR: Floating point error flag

The error flag is set whenever an error occurs in any of the conversions. This value is one cycle later visible in
the sequencer status and control register where it can be tested for conditional jumps, calls, returns etc.

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

8.5 |EEE-754 floating point conversions

8.5.1 The pass instruction

U = pass(A)

The value of the A bus is passed to the U bus register and is available on the U bus one cycle later. The operand
size from the A bus is passed unchanged to the U bus. The pass operation has one side effect: The A bus bits 23
to 30 represent the biased exponent in IEEE 754 single precision floating point numbers. These bits are
compared with the contents of the highest exponent field from control register cr33. When they are higher the
‘highest exponent' is replaced by the exponent of A.

8.5.2 The IEEE 754 conversion instructions

U = integer(A)
U = fixed(A)
U = float(A)
U = floatFP(A)

These instructions take two cycles before they produce their result. They operate pipelined so a new conversion
function may be launched each cycle The first cycle leaves the U bus register unchanged. The second cycle
outputs the result via the U bus register. (It overwrites the result of any 1 cycle function executed in the same
cycle) The first cycle of the conversion function is non interruptable which means that an interrupt service routine
does not need to save the internal state of this unit

8.5.3 IEEE 32 bit floating point to integer

U = integer(A)
The function performs IEEE floating point to integer conversion. It will produce the right results for Normalised
Numbers, the Normalised Zero. The so called NANs (Not A Numbers) are not supported.

8.5.4

IEEE 32 bit floating point to fixed

U = fixed(A)

This instruction is a superset of the U = integer(Ad) instruction. An 8 bit two's complements offset in register
UFU_IEEE (cr33) is added to the exponent before the conversion takes place. This function can map an
arbitrary floating point value into a useful fixed point range. The offset may also replace the exponent itself
(when cr33 [24]: EL="1") (see the examples). If the UH flag is set, then the H exponent is as the exponent for
conversion

8.5.5 Integer to IEEE 32 bit floating point

U = float(A)
Integer to Floating point conversion. The result is a Normalised floating point number as defined on the
following page.

8.5.6 Fixed to IEEE 32 bit floating point

U = floatFP(A)

This instruction is a superset of the U = float(Ad) instruction. An 8 bit two's complement offset in control register
UFU_IEEE (cr33) is added to the biased exponent at the end of the conversion. The offset can also replace the
exponent (when cr33 [25]: 'EX' ="1")

(see the examples). If the UH flag is set, then the H exponent is added to the exponent of the resultant floating
point value.

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit
8.5.7 Some examples of floating point to integer conversions

¢ IEEE 32 bit floating point to integer.
+ [EEE 32 bit floating point to fixed point with a programmable offset.
¢ IEEE 32 bit floating point to fixed point with a programmable offset without the exponent.

IEEE 32 bit floating point format

Numerical value of the floating point representation = (-1)¢",(0.1mantissa).2°'2¢
Numerical value of the floating point representation = 0 if exponent = 0 and mantissa = 0
NANs (Not A Number) are not supported

sign 8 bit exponent 23 bit mantissa

o]

Floating point to integer / fixed point conversions (3 options):

Extracted integer if (exponent - 128) =29
Extracted fixed point number if (exponent - 128 + offset) = 29
Extracted fixed point number if (offset) =29
| sign | !sign| 23 times: sign * mantissa | '0000000' |
— [716] [o]
Extracted integer if (exponent - 128) =21
Extracted fixed point number if (exponent - 128 + offset) = 21
Extracted fixed point number if (offset) = 21
| 9 times: sign | !sign| 22 times: sign * mantissa |
— o]
Extracted integer if (exponent - 128) =13
Extracted fixed point number if (exponent - 128 + offset) = 13
Extracted fixed point number if (offset) = 13

17 times: sign Isign 14 times: sign * mantissa

— o]
xtracted integer if

(exponent - 128) =5

Extracted fixed point number if (exponent - 128 + offset) =5

Extracted fixed point number if (offset) =5

| 25 times: sign | !sign| 6 x: sign * mantissa |
[1[5] *— [o]
Extracted integer / fixed point if (exponent == 0 and mantissa == 0)

| 32 times: zero
o]

The Fixed point to floating point conversions (3 options):
The absolute value of an input number, shown below in the drawing, will be converted to:

S =sign mantissa = MANTISSA' << (22-E) exp=E+128

S =sign mantissa = MANTISSA' << (22-E) exp = E + 128 + offset

S =sign mantissa = MANTISSA' << (22-E) exp = 128 + offset

| '0...0’ | T | 'mantissa’ |

T2 (1] -« o

The value of zero will in all three conversions be converted to: S ='0', mantissa ="0', exp =0

Imagine Processor

Imagine 2 Multi Media Processor 8. Unary Function Unit

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

Chapter
9. DATA /O UNIT

T he Data I/O unit handles the 32 bit bidirectional databus to perform load and

store accesses to memory via the Data Cache or the Internal Peripheral Bus.

The Imagine Data 1/O unit can perform accesses to bytes, 16 bit shorts and 32 bit
words, both signed and unsigned. It supports linear addressing, with optional post
and pre address increment or decrement, 2D addressing and 3D addressing.

The Data I/O unit is closely coupled with the 3D graphics pipeline to read
perspective corrected textures

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

fig. data /o unit

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

9.1 general

The Data I/O unit handles random accesses to memory via the Data Cache or the Internal peripheral bus. It is
split into a Data Access Unit which handles data addresses and a Data Transfer Unit which handles data Loads
and Stores. It provides all access mechanisms needed for C generated code as well as special graphics and image
processing functions. The Imagine can perform accesses to bytes, 16 bit shorts and 32 bit words, signed and
unsigned. Words are always aligned to addresses with the two lowest address bits zero, and shorts are always
aligned to even addresses. (The alignment hardware ignores the address bits.). There is direct support for 2D and
3D memory access and memory organisation. Both cache and the memory paging system is optimised for 2D and
3D pixel accesses in the associated memory modes.

9.1.1 Data memory organisation

The Data I/O unit can access all external memory (SGRAM or SDRAM) memory via the Cache. It can view
memory as linear, 2 dimensional (8 modes) or 3 dimensional (8 modes). The eight 2 dimensional modes differ in
the numbers of "bytes per row" which varies from 256, 512, ...32768. The eight 3 dimensional modes provides a
selection of useful volumes with different X, Y and Z sizes.

There are sixteen different banks each of which can have a programmable dimension: 1D, 2D or 3D. This
effectively means that memory is structured to optimise accesses for a certain data type. 2D structured memory
accesses are single cycle within a certain rectangle but incur a penalty if the rectangle's border is crossed. 3D
structured memory accesses are single cycle within a 3D volume but incur a penalty if the volume's boundaries
are crossed.

The IPB bus is located in the high end of the 32 bit memory space. The internal Multi Media I/O units are
located in I/O space 0. External I/O units which are connected to the 8 bit external peripheral bus are located in
I/O space 1. The external EPROM which is also connected to the external peripheral bus can be accessed via I/O
space 3.

Description Access ID Address Address organisation Access memory
or I/O space offset range types page size
Programmable memory: ID=0.7 0000.0000 16 Mb 2D or 3D 1D, 2D, 3D 64k byte
0100.0000

Sixteen banksof I6Mb |
each with programmable |

dimension (1D,2Dor3D) |
and AccessID | ...

0e00.0000

000.0000
IPB: multi media units I/O space[0] f000.0000 64 kb linear 1D none
IPB: external I/O I/O space[1] f001.0000 64 kb linear 1D none
IPB: external EPROM I/O space[3] 1002.0000 128 kb linear 1D none

9.1.2 Data memory address types

The Data Memory address can be linear: byte oriented, internally 32 bit. All memory banks can be accessed via
linear addresses independent of the are structured in a 1D, 2D or 3D way. The Data I/O unit also accepts 2D and
3D addresses which are provide with 2x16 bit words (2D) and 4x8 bit words (3D)

9.1.3 Internal data representation

The Imagine has three basic internal data formats: single 32 bit word, double 16 bit word and quad 8 bit word.
These are all stored and loaded as 32 bit words in the Data memory and are stored on aligned addresses.

(The Vector I/O unit memory can do single cycle non-aligned accesses in vector mode.) Bytes and half words
exist in memory. Inside the Imagine they are converted from and to 32 bits words during load and store opera-
tions to avoid explicit conversions in mixed mode operations and to consistently use status flags for conditional
branching and calling. A byte loaded from external memory is loaded internally in the 8 least significant bits. An
unsigned byte has the highest 24 bits set to zero while a signed byte has the highest 24 bits set to its sign bit. A
half word from external memory is loaded in internally in the 16 least significant bits. The highest 16 bit are set
to zero or one depending on the word type (signed/unsigned) and the sign bit itself.

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

9.2 Data Access function

The unit which controls the access of external data devices (address output) is relatively independent of the unit
which handles the data transfers. It is controlled by a three bit field in the instruction code (Ic54..56) and can
perform eight address operations. It selects an address from one of three internal busses and defines if the access
is a READ or a WRITE access. The actual access will take place in the next cycle.

The Address can be taken from either the A bus, the F bus or the M
bus. The A bus can provide an address directly from a register. The
F bus provides the calculated addresses if one or more address
pointers and offsets need to be added together.

The addresses provided by the M bus are more likely to be 2D or 3D
addresses. 2D addresses are formed by a 2x16 bit word (Y,X) and
3D addresses are formed by a 4x8 word (Z,Y,X). The lower three
bytes provide the co-ordinates. These accesses use the cache to
archive a better performance

The DA = extended operation provides extra access functionality.
It enables the use of the 3D graphics pipeline and supports auto
increment and auto decrement modes for vector accesses. Both Post
and Pre increment/decrement is supported

9.2.1 The use of the 3D graphics pipeline

The application of the DA = extended function with the Use_PAG flag set (cr37 bit 30: use Perspective
Address generator) enables the use of the 3D graphics pipeline to generate perspective correct 1D, 2D or 3D read
addresses into external memory. These modes bypass the cache and have their own highly optimised interface
with the external memory controller. These modes can effectively load up to 4 pixels (texels) per cycle needed
for bilinear, trilinear and quad linear interpolation. This mode also supports a wide range of texel format
translations from 1 to 8 bit pseudo colors and 16 bit colors to 32 bit true color atRGB.

9.3 The Data transport function

The Unit which controls the data input and output transfers is controlled by a three bit field in the instruction
word (Ic53..Ic51). The Unit can perform Loads and Stores from bytes, half words (16 bit), and words (signed and
unsigned).

9.3.1 The data store functions

The STORE functions transfer internal data to an external device: the data memory or an I/O port. The STORE
function is given in the same cycle as the data write access function. Otherwise it is not recognised as a STORE
function.

The data is placed into a register (D bus

register), from where it is written to the The Data Store functions
cache and simultaneously send to the
memory write buffer. Byte and half words |53:51 Mnemonic Data transfer operation size
are aligned to the right byte positions
depending on the two lowest address bits, | 0 D=D no operation Dsz
(DAQ,DAL). The four byte write enable 1 D=word(F) store word from the F bus 1x32
. « x =
lefsse (WRO..WR*3) take care that only 2 D=word(M) store word from the M bus 1x32
. . . 3 D=word(V) store word from the V bus 1x32
bytes are modified which contain the
byte or half word data. Examples: 4 D=long(B) future store long from B bus
5 D=word(B) store word from the B bus1x32
DA = wrAd(A), D = byte(B); 6 D=short(B) store half word from the B bus 1x32
DA = wrAd(F), D = word(M); 7 D=byte(B) store byte from the B bus 1x32

DA = Again, D = short(B);

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

The data to be stored in memory can be taken from either the B, the F, the V or the M bus. The B bus is meant
for typical Register to Memory transfers and used by the C compiler which makes use of the type conversions.
The F, M and V busses are used more for graphics and Image processing.

9.3.2 The data load functions

The LOAD function takes data from the Data Input register and loads it into the D register. 'Load' includes zero
or sign extension of bytes and shorts which

53:51 Data load function size
The LOAD function is executed when
the Data input register contains read 0 D=D no operation Dsz
data from a read access and no
write operation is performed in the same 1 D=word(ul) load unsigned word from input 1x32
cycle. some examples: 2 D=short(ul) load unsigned short from input 1x32
3 D=byte(ul) load unsigned byte from input 1x32

DA = rdAd(A) --> D = short (ul);
DA = rdAd(F) --> D = byte (sl);
DA = Again --> D =word (sl);

D=long(sl) future load long from input

D=word(sl) load signed word from input 1x32
D=short(sl) load signed short from input 1x32
D=byte(sl) load signed byte from input 1x32

~No o b

The input data from the cache (directly
or after a cache line read from external
memory in case of a miss) is processed
by the data transfer unit depending on
the type of load instruction and the
address used to access the data:

Byte alignment: The bytes and half words are aligned to the least significant byte positions: Byte -> bit0..7, Half
word -> bit0..15.

Sign Extension: The most significant bits above the loaded data are cleared or set depending on the datatype
(signed/unsigned) and the sign bit of the loaded data.

The data is loaded into the D bus register from where it is available to other units in the Imagine.

9.3.3 The internal zero and sign extend functions

The Internal sign extension function is executed if neither a Write access nor a Read access is executed:
- No Write: Current DA instruction is either Nop, AD = rdAd(X) or AD = extended (read).
- No Read: No Read Data is waiting in the

53:51 zero and sign extend functions size
The Load instruction performs all the
operations needed on the standard data 0 D=D no operation Dsz
types stored in data memory: byte, half

word and word both signed and 1 D=zextword(B) (zero extend) word from B bus 1x32
unsigned. When 8 or 16 bit data is read 2 D=zextshort(B) zero extend short from B bus 1x32
into the 32 bit processor, then the higher 3 D=zextbyte(B) zero extend byte from B bus 1x32
§4 (;;1 16Db 1tts aIr/e(:)s1gn.tor ;;ro e.Xte;lded 4 D=long(B) future copy long from B bus

y the Data VD umt. 1he SIg/ZEI0 | 5 pzgextword(B) (sign extend) word from B bus 1x32
extension mechanism is also available 6 D=sextshort(B) sign extend short from B bus 1x32
for internal operations. This function 7 D=sextbyte(B) sign extend byte from B bus 1x32

can be used for register variables which
are defined as byte's and short's as a
preparation for certain instructions.
some examples:

D = zextbyte(B);
D = sextshort(B);
D = sextshort(B);

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

9.4 Data I/O control registers
9.4.1 The D bus register

The D bus register contains results of read and internal sign/zero extend operations for bytes and shorts. It is
accessible as a control register to simplify state save and restore operations.

Cr36,:DIO_Dbus, 32 bit D BUS register

32 bit D BUS register
[31:0]

31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10| 9 |8| 7 |6 |5 |4| 3 |2 |1 |o

9.4.2 The DIO_Control register

The extended functions of the DIO are controlled by this register
It support four sets of extended access operations:

- 2 Dimensional and 3 Dimensional accesses

- Linear accesses with post increment, pre-increment and post decrement, pre-decrement options
- Texture read accesses via the 3D graphics pipeline

- Scratch pad operations where part of the data cache is used as scratch pad.

See the paragraphs further on for a detailed explanation.

Cr37: DIO_Control: The Datatransfer Control register
‘0 E:E WR 0000 . ‘00” vol & | or ‘0" | size | Z Coor Size| Y Coor Size| X Coor Size ‘0000
[1:0] [3:0] [3:0] [3:0]

31 |3o |29 |28| 27 |26 |25 |24| 23 |22 |21 |20| 19 |18 |17 |16| 15 |14 |13 |12| 11 |10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

9.4.3 The DIO_Address register

The address register contains the latest address used and is applied in incremental address modes. The address
can be pre-incremented , post-incremented pre-decremented or post-incremented or left unmodified for fifo and
I/O accesses.

Cr38: DIO_Address, 32 bit Data address register

32 bit bit Data address register
[31:0]

31[30[29[28]27[26 [25[24] 23 [22 [21 [20] 1918 [17]16] 15 [1a |3 12] 11 0] o[8[76 [s[4[3]2]1]0

9.4.4 The DIO_offset register

The DIO recognises 2D and 3D addresses by the data size used for the address. 2D addresses are recognised by
their 2x16 bit size and 3D addresses by 4x8 bit size. These values represent XY and XYZ co-ordinates in a
rectangle or volume which origin is defined by a linear offset given in the DIO_Offset register. The address in
the offset is used by the memory management hardware to select how memory is structured (Linear, 2D or 3D)
and what the Image stride is (number of bytes from one row to the next). Bits [27:24] select between 16 different
areas of 16Mb in the 256Mb virtual memory space. The organisation of the virtual memory is governed by
standard memory allocation function. (Malloc, Free for linear memory, CreateSurface for 2D et cetera) the
programmer can rely on the memory pointers and additional parameters returned by these functions).

Cr39: DIO_Offset, 32 bit Address offset register

32 bit Address offset register
[31:0]

31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|]2|11|10|9|8|7|6|5 |4| 3 |2 |1 |o\

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

9.5 Data access unit: detailed operation description

9.5.1 Selected Address

The address can come from either one of three busses can be selected to provide the Data Address: bus A, bus F
or bus M. The data size of the selected bus (32,2x16,4x8) determines how the 32 available data bits are translated
into an address. A 32 bit word will be interpreted as a linear address. The 32 data bits are directly used as the
address. The 3D graphics pipeline can supply perspective correct addresses for 1D, 2D and 3D textures in
combination with the DA = extended function.

9.5.2 Higher dimensional addressing via the cache

Double 16 bit addresses words and quad 8 bit addresses words are handled differently as 1x32 bit addresses.
They are used for two and three dimensional addressing. Firstly an area is allocated in the Memory which will be
used to store 2D and 3D data. In 2 Dimensional addressing the two 16 bit words are used as an X and Y address
pair. While the 3D addressing uses the lower 3 bytes as the X, Y and Z co-ordinates. These modes use the
DIO_Offset control register as the pointer to the origin (0,0 or 0,0,0) of the 2D or 3D structure. The
DIO_Control register provides masks for the X, Y and Z co-ordinates which limit the number of bits which can
be used for these co-ordinates (1..15) The size[1:0] field is used (after the mask function) to translate the X
coordinate into a byte address. The size can by byte (00), 16 bit short (01) or 32 bit word (10).

A bus, F bus or M bus with data size 2x16: 2D address
16 bit Y coordinate 16 bit X coordinate
[31:16] [15:0]

31|3o|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9|8|7|6|5 |4\ 3]2|1 |o\

A bus, F bus or M bus with data size 4x8: 3D address
Not used 8 bit Z coordinate 8 bit Y coordinate 8 bit X coordinate
[31:24] [23:16] [15:8] [15:0]

31|3o|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9|8|7|6|5 |4\ 3]2|1 |o\

Cr37: DIO_Control: The Datatransfer Control register
0’ [Use ‘0000’ ‘00’ ‘0’| size Z Coor Size Y Coor Size X Coor Size ‘0000’
PAG WR SP PO| IR | DR [1:0] [3:0] [3:0] [3:0]

\31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10|9|8\ 7 |6|5 \4| 3 |2|1 |0\

o/

Z, Y and X Coordinate sizes:

Data size (X Coordinate)
size =0 Coordinate is 1 bit

size=00 8bhitData = || .
size =01 16 bit Data size = 13 Coordinate is 14 bit
size =10 32 bit Data size =14 Coordinate is 15 bit
size =15 Coordinate is 16 bit

Cr39: DIO_Offset, 32 bit Address offset register

32 bit Address offset register
[31:0]

]31|30|29\28|27|26|25|24‘23|22|21\20|19|18|17|16‘15|14|13\12|11|10|9|8]7 |6 |5 \4| 3 |2|1 |0‘

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

9.5.3 The use of the 3D graphics pipeline with the extended function

The 3D graphics pipeline can read perspective MIP mapped texture data from external memory via it's own
interface to the Memory Bus Controller. The Data Cache is bypassed and up to four pixels can be loaded per
cycle as is needed for Bi linear interpolation. The 3D graphics pipeline supports many extra functions. It can
translate almost any pixel format into the 32 bit aRGB values which are used internally for calculation. Fog and
lighting coefficients calculated in the 3D graphics pipeline can be applied to the read texture data.

The memory accesses of the 3D graphics pipeline are controlled by Data I/O instructions. The addresses are not
supplied directly by the programmer but are generated in the 3D perspective address generator of the 3D graphics
pipeline. The function DA = extended starts the read access whenever the UsePAG flag (Use Perspective
Address Generator: bit 30) is set and the WR flag (Write: bit 29) is zero.

Texture read accesses take longer than accesses to the data cache which take one cycle to generate the address,
one cycle to read from the cache ram and one to translate the data. The external SDRAM or SGRAM memory
itself will need at least 6 cycles when it is operated at half the clock speed in interleaved mode. The Memory Bus
Controller needs a number of cycles and we want to fill the address fifo in the controller with at least a number of
request to avoid bubbles (empty slots) in the pipeline which degrade performance. The optimal delay is in the
order of 10 to 12 cycles. Reads are completely pipelined so one address can be send each cycle in vector mode.

DA =rdAd(A) --> D =word (ul) -> Wr(ri++, D);
3DA = extended(A) ------------ > 3D = word (ul) -——-> Wr(ri++, D);

The function D = word(ul) is used to load the data into the D bus register it takes 4 cycles to translate one of 15
different Texture pixels into 32 bit aRGB, apply bilinear interpolation, lighting and fog calculations. The use of
the keywords 3DA and 3D instead of DA and D is only to inform the assembler about the different behaviour of
these instructions. Both options generate the same code.

Cr37: DIO_Control: The Datatransfer Control register
o I‘j/ig R 10000° & 00" moll iz lleR 0| size | 7 Coor Size| Y Coor Size| X Coor Size 0000°
[1:0] [3:0] [3:0] [3:0]
31[30]29]28]27]26]25] 242322 [2120 19]18]17[16] 15[14131211]10] 08 [7]6[5]4[3]2]1]0

T LWR = 0: Read Operation

UsePAG = 1: Use Perspective Address Generator

Imagine Processor

Imagine 2 Multi Media Processor 9. Data I/O unit

9.5.4 Vector accesses with the extended function

The DA = extended function can be used to load and store Vectors (Streams of data) without the need for
explicit supply of new addresses each and every access. These Vectors are elementary in the programming
philosophy of the Imagine. Another use of these functions are the common Stack Push and Pop operations.

The 24 lowest word address bits, (bit 2 through bit 25, are (pre- or post) incremented / decremented each time
when the function DA = extended is executed with a linear address (data size = 1x32) and one of the IR/DR
bits in the DIO_Control control register, cr38, is set to a logical '1'. The PO bit selects between post- (PO=1)
and pre- (PO=0) functionality. The WR flag determines the direction of the access (Read or Write)

Cr37: DIO_Control: The Datatransfer Control register
0’ [Use ‘0000’ Ser_| ‘00’ ‘0’| size Z Coor Size Y Coor Size X Coor Size ‘0000’
PAG WR Pad PO| IR | DR [1:0] [3()] [30] [3:0]

]31|30|z9]28|27|26|25|24\23|22|21]20|19|18|17|16\15|14|13]12|11|10|9 | 8] 7 |6 |5]4| 3 |2 |1 |0 \
A
IDR =1 Linear Address Decrement

IR =1 Linear Address Increment

WR =0 Read Operation
WR =1 Write Operation

PO =0 Pre-Increment / Decrement
PO =1 Post-Increment / Decrement

Cr38: DIO_Address, 32 bit Data address register
address register 24 bit Linear address incrementer / decrementer fixed
[31:26] fixed [25:2] [1:0]

]31|30|z9]28|27|26|25|24\23|22|21]20|19|18|17|16\15|14|13]12|11|10|9|8]7 |6 |5]4| 3 |2|1 |0\

9.5.5 Scratch pad accesses

The SP (Scratch Pad) flag (DIO_Control, bit 24) disables cache operation if set and uses the on chip cache ram
simply as on chip memory. Write operations to memory are not written trough to external memory and
subsequent read operations can take place directly from these cache lines which are marked witch a 'scratch' flag.
A 'cache line scratch flag clear' signal is send to the cache when bit 24 in DIO_Control is reset.

Cr37: DIO_Control: The Datatransfer Control register
‘0’ | ‘0000’ ‘00’ ‘0’ i ‘0000’
E ;eG WR SP po| IR |DR ?1120? Z Coor Size Y Coor Size X Coor Size
' [3:0] [3:0] [3:0]

31[30[29]28]27]26]25]24 [23 22]21]20] 19] 18] 17[16]15] 14 13] 1211]10[9[8[76543]2]1]0

SP =0 Normal Cache operation

SP =1 Scratch Pad operation

This function is useful in for instance vector operations which already read and / or write from memory via the
vector I/O unit and which need temporary scratch memory via the Data I/O unit. Scratch Pad accesses do not
degrade the bandwidth available to external memory.

Imagine Processor

Imagine 2 Multi Media Processor 10. Vector I/O unit

Chapter
10. VECTOR I/O UNIT

T he Vector 1I/0O unit handles vector type accesses to and from external memory. It

can handle incoming and outgoing data at the same time. It can convert 8 bit
pseudo color and various 16 bit hi-color pixel data to an internal 32 bit aRGB
value. The data is made visible on the internal V bus. It can select data from any of
the eight internal data buses for vector output and convert the internal 32 bit
ARGB to external 8 bit pseudo color or 16 bit hi-color using advanced dither and
error propagation techniques. An transparent color range can be defined which sets
the alpha value to 0 for input conversions while the (OpenGL) alpha test can be
applied which is linked to the write enable signal of the pixels. The result of the
Alpha test can also be applied by the Mask Generator. The output alpha value can
be applied for transparency dithering in the 8 bit pseudo color mode. The unit
contains a byte selector to swap byte channels on the fly during input and output
operations.

Imagine Processor

Imagine 2 Multi Media Processor 10. Vector I/O unit

fig. image i/0 unit

Imagine Processor

Imagine 2 Multi Media Processor

10.1 Image I/O function select

The operation of the Vector I/O bus is controlled with the
Vector /O instruction field, together with the Vector /O
control registers. This unit Itself does not start read and
write operations to image memory. These are initiated with
a multiple cycle Vector Access instruction before I/O
instructions are executed. Up to 128 input and /or output
instructions can be executed in vector mode after a single
Vector Access function. A single Input or Output function
is executed in combination with a Scalar access function.
See chapter 12 for more details.

10.2 Output operation

Any of the eight internal busses can be selected for the
output operation. Several functions can be applied on the
output data.

- Output bus selection

- Byte selection

- True color to 16 bit color conversion with error diffusion
- True color to 8 bit conversion with advanced dithering

- True color to 8 bit alpha transparency dithering

- Alpha Tests

10.2.1 Output source selection

OSOURCE[2:0] Image data output source. Data from any
internal bus can be used for vector write operations to
external memory.

10.2.2

Byte selection

Output byte selection is used if the SO flag (Select Output
Bytes) of the VIO_Control1 control register is set (cr45,
bit 8) This feature can be used to reorder color formats,
duplicate bytes, extend 8 bit to 16 bit pixels et cetera. There
are four byte selectors BY0, BY1, BY2 and BY3. These
four 2 bit words select between the four bytes in the 32 bit
selected output word. BYO determines the output of bits
0..7 while BY3 selects the output for bits 24..31. The value

'0" selects the lowest byte while the value '3' selects the
il 4 Llax ot

10. Vector I/O unit

INSTRUCTION CODE FIELD

58-57 Mnemonics Vsize
00 {no op} hold
01 V=feedback Vsize
10 V=input Vsize
11 V=output Vsize

OUTPUT BUS SELECTION

VIO_Control1 [15:13]

OSOURCE selected bus
000: A_BUS select A bus
001: B_BUS select B bus
010: Q_BUS select Q bus
011: F_BUS select F bus
100: M_BUS select M bus
101: U_BUS select U bus
110: D_BUS select D bus
111: V_BUS select V bus

SELECT OUTPUT BYTES
SO VIO_Control1 [8]

0: BYTE_SELECT_DIS
1: BYTE_SELECT_EN

no byte select
select bytes

example: color reformatting:
(aRGB -> RGBa or aBGR)

example: duplication:
(aRGB -> aooa)

example 8 bit pixels to 16 bit
(xxAB > AABB)
(xAxB > AABB)

Imagine Processor

BYTE SELECTION

VIO_Control1 [7:0]
operation for each byte

00: 0 select byte 0 (bits 7:0)
01: 1 select byte 1 (bits 15:8)
10: 2 select byte 2 (bits(23:16)
11: 3 select byte 3 (bits(31:24)

Imagine 2 Multi Media Processor

10.2.3 True color to 16 bit error diffusion:

Error diffusion can be selected individually on each of the
four bytes. It is enabled with the DE flag (Diffuse Enable
flag) of the VIO_Control1 control register (cr45, 24). The
Error diffusion works on bytes. One of four different
diffusion sizes can be individually set for all four bytes.
E.g.: 5 bit error diffusion means that the lowest 3 bit of the
previous value are added to the new 8 bit value. The DB
flag (Diffusion Begin flag) should be set to '0' if you start a
diffusion operation. It disables diffusion for the first output
after which it is set automatically to 'l'

10.2.4 True color to 16 bit color conversion:

After the Bus selection function, Byte selection function
and the Error diffusion comes the Color format conversion.
Among the formats supported are: Targa 16 bit HiColor,
XGA 16 bit HiColor and a symmetric format with four
components of 4 bit for tRGB. There is an extra 0555
format where bit 15 does not have any relation with alpha
(which becomes always 0xff when read) and a 565 format
where red and blue are swapped. Both these formats are
Microsoft Direct3D HEL supported texture types.

COLOR_TARGA

la] Rri721 | G721 | B2l |
COLOR_XGA

| R[72] | G[7:1] | B[72] |
COLOR_RGBA4

| Al73] | R(73] | G[73] | B[73] |
COLOR_0555

o] R721 | 6721 | B[72] |
COLOR_r565

| B[72] | G[7:1] | R[72] |

10.2.5 True color to 8 bit pseudo color

The Imagine 2 contains sophisticated logic to translate 32
bit True color to 8 bit pseudo color in a way which is
relatively independent of the color look up table. A 384
entry reversed table is used with extra information for error
correction. The conversion is enabled by setting the PO
flag (Pseudo Output Conversion) in the VIO_Control2
control register (cr46, bit 30)

10.2.6 True color to 8 bit dithering

The CD flag (Color Dithering) in the VIO_Control2
control register (cr46, bit 28) must be set to enable the True
color to pseudo color dithering process

Imagine Processor

10. Vector I/O unit

HICOLOR ERROR DIFFUSION ENABLE
DBDE: VIO_Control1 [25:24]
00: DITHER_DIS no error diffusion

01: DITHER_EN start diiffusion
11: DITHER_EN_BUSY continue diffusion

ERROR DIFFUSION

VIO_Control1 [23:16]
operation (per byte)

00: DIT8 no error diffusion

01: DIT6 6 bit error diffusion
10: DITS 5 bit error diffusion
11: DIT4 4 bit error diffusion

TRUE COLOR TO 16 BIT COLOR
OCOL: VIO_Control1 [28:26]

000: COLOR_PASS no hicolor conv.

001: COLOR_TARGA 8:8:8:8 > 1:5:5:5

010: COLOR_XGA 8:8:8:8 > 0:5:6:5

011: COLOR_RGBA4 8:8:8:8 > 4:4:4:4

101: COLOR_0555 8:8:8:8 > 0:5:5:5

110: COLOR_r565 8:8:8:8 > 0:5:6:5
(red €-> blue)

PSEUDO COLOR CONVERSION ENABLE
PO: VIO_Control2 [30]

0: PSEUDO_DIS
1: PSEUDO_EN

no conversion
conversion enabled

PSEUDO COLOR DITHER ENABLE
CD: VIO_Control2 [28]

0: DITHER_DIS
1: DITHER_EN

no color dithering
color dithering enabled

Imagine 2 Multi Media Processor

10.2.7 True color to 8 bit dither matrix

There are two options for the dither matrix which can be
used for true color to pseudo color generation. One is the
well known ordered dither matrix. The size of the dither
matrix used is 16 by 16 which is significantly larger then the
more common 4x4 format. The ordered matrix has the
disadvantage of showing visible '+' and 'x' structures in the
rendered image. This is much less the case with the
improved version which has a more random appearance The
MT flag in VIO_Control2 (bit 25) selects between both
options

10.2.8 True color to 8 bit error correction

The pseudo color table stores pseudo colors based on a
3+3+3 bit rgb entry address. The errors of the pseudo color
compared to its red, green and blue entry is also stored in
the table. This error value can be used to correct output
colors. The EC flag in VIO_Control2 (bit 27) controls
this feature .

10.2.9 Alpha Compare Test

The result of this test can be used to disable the writing of
the pixel into external memory or to replaces the output
color with the transparency color. The result (pass =1) also
goes to the mask generator where it can be added to the
range mask to disable e.g. the writing of the corresponding
Depth value. The alpha value of the output color is
compared with the reference alpha in control register cr47:
VIO_Alpha bits [31:24]. The result

10. Vector I/O unit

PSEUDO COLOR DITHER MATRIX
MT: VIO_Control2 [25]

0: ORDERED_DIT
1: IMPROVED_DIT

standard matrix
improved matrix

PSEUDO COLOR ERROR CORRECTION
EC: VIO_Control2 [27]

no error correction
correction enabled

0: ERR_CORR_DIS
1: ERR_CORR_EN

ALPHA COMPARE TEST
A_CMP: VIO_Control2 [30:28]
000: GL_NEVER

001: GL_LESS
010: GL_EQUAL

passes never
alpha < ref.alpha
alpha == ref.alpha
011: GL_LEQUAL alpha <= ref.alpha
100: GL_GREATER alpha > ref.alpha
101: GL_NOTEQUAL alpha != ref.alpha
110: GL_GEQUAL alpha >= ref.alpha
111: GL_ALWAYS passes always

can disable the writing of the pixels if it fails the test. It can be replaced with the transparent color value: cr49
VIO_Transparent if it fails the test The transparent color replaces the result from any color conversion,

dithering error-diffusion et cetera

10.2.10 Alpha Dithering

The result of this test can be used to disable the writing of the pixel into external memory or to replace the output
color with the transparency color. The alpha value of the output color is compared with an 8 bit dither value.
Writing is disabled or the transparency color is selected if the alpha is smaller compared to the test value or if the

alpha value is zero.

10.2.11 Write Disable

Writes to external memory can be disabled via various test
These test are selected with the WRdis field (Write
Disable) in control register cr47: VIO_Alpha bits [19:16].
Bit 16 set to '1' determines that a failed alpha test disables
writing, Bit 17 set to '1' disables writing if alpha is zero and
bit 19 set to 1' disables writing if the alpha is smaller then
the dither value or zero.

10.2.10 Transparency color

The transparent color can replace the actual internal color
during writes to external memory via various test These test
are selected with the TCout field (Write Disable) in
control register cr47: VIO_Alpha bits [19:16]. Bit 12 set
to 1 selects the transparent color when the alpha test fails
Bit 13 set to 'l' selects the transparent color when alpha is
zero and bit 15 set to 1' selects the transparent color when
the alpha is smaller then the dither value or zero.

Imagine Processor

WRITE DISABLE TESTS
WRDIS[3:0] VIO_Alpha[19:16]
bit 0: use Alpha test

bit 1: use Alpha zero
bit 3: use Alpha dither

TRANSPARENT OUTPUT COLOR
TCOUT[3:0] VIO_Alpha[15:12]
bit 0: use Alpha test

bit 1: use Alpha zero
bit 3: use Alpha dither

Imagine 2 Multi Media Processor
10.3 Input instruction.

The input instruction loads the external data available on
the Image bus into the V bus register/driver. Several
functions can be applied on the incoming data before it is
stored in the V-bus register:

- 16 bit color to 32 bit true color format conversion
- 8 bit pseudo color to 32 bit true color conversion
- Alpha generation with color key range

- Byte selection

- Data size definition

10.3.1 16 bitinput c

olor conversion:

Incoming 16 bit colors can be expanded to 32 bit true color
ORGB. The color format is defined by bits [31:29] of the
VIO_Control1 control register (see table above). The
lower bits which are added during the expansion are copied
from the most significant bits of the 1, 4, 5 or 6 bit color
components. This ensures that the 8 bit results components
are spread evenly over the entire range of 00 to FF.

10.3.2 8 bit input color conversion

8 bit pseudo colors can be translated to 32 bit true color via
the 256 entry Color Look Up table. This option is enabled
by setting the Pl flag: VIO_Control2[31].

10.3.3 Alpha generation by color key range

10. Vector I/O unit

TRUE COLOR TO 16 BIT COLOR
ICOL: VIO_Control1 [31:29]

000: COLOR_PASS no hicolor conv.

001: COLOR_TARGA 8:8:8:8 ¢ 1:5:5:5

010: COLOR_XGA 8:8:8:8 < 0:5:6:5

011: COLOR_RGBA4 8:8:8:8 €« 4:4:4:4

101: COLOR_0555 8:8:8:8 < 0:5:5:5

110: COLOR_r565 8:8:8:8 < 0:5:6:5
(red €-> blue)

PSEUDO COLOR CONVERSION ENABLE
Pl: VIO_Control2 [31]

0: PSEUDO_DIS
1: PSEUDO_EN

no conversion
conversion enabled

SELECT INPUT BYTES
S| VIO_Control1 [9]

0: BYTE_SELECT_DIS
1: BYTE_SELECT_EN

no byte select
select bytes

A 32 bit, 16 bit or 8 bit color which is translated to 32 bit dRGB can be tested on a aRGB transparency range.
This feature is particular useful for 16 bits colors who do not have any alpha information. 8 bit pixels are
converted via the color look up table which itself already allows an alpha to be assigned to each individual
pseudo color. The lowest and highest transparent value for red, green and blue (and alpha are contained within
control registers cr50 and cr51: VIO_ColorKeyLo and VIO_ColorKeyHi. The individual color components
can be enabled by the four ColorKeyEn flags in the VIO_Alpha[11:8] control register. The Alpha value is

passed unchanged is none of the four flags is set. If 1 or

more is set then the alpha is set to zero if the enabled color
components are within their transparency range otherwise
the alpha is set to 0xff (opaque). The Edge Alpha value in
VIO_Alpha[7:0] can replace the alpha values of non-
transparent pixels which come directly before or after a
transparent pixel. Edge Alpha must be Oxff to disable
this function.

10.3.4 Byte selection:

The byte selection field from the image 1/O control registers
can be applied by the input instruction to perform a byte
swap operation on the bytes coming from the Color Format
Conversion unit. Each byte of the V-bus register can be
loaded with each of the four input bytes.

10.3.5 Data Size definition:

The two bit word size information which will be attached to
the input data and stored in the V bus register is determined
by Size:

Imagine Processor

BYTE SELECTION

VIO_Control1 [7:0]
operation for each byte

00: 0 select byte 0 (bits 7:0)

01: 1 select byte 1 (bits 15:8)
10: 2 select byte 2 (bits(23:16)
11: 3 select byte 3 (bits(31:24)

DATA SIZE DEFINITION
VSIZE: VIO_Control1 [11:10]
00: QUAD_BYTE

01: DOUBLE_SHORT
11: SINGLE_WORD

4x8 Dbits data
2x16 bits data
1x32 bits data

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.4 Feedback instruction

The feedback instruction does not perform any communication with the outside world. It uses the capability of
the image 1/O port to select any of the eight internal databuses and to perform a Byte Selection in the same way
as the output instruction. The result is visible after one cycle in the V bus register.

10.5 Simultaneous input and output

The Imagine2 can perform simultaneous in and output. The program below reads 32 bit data from memory, does
a table look up operation in the register file and writes the result back to external memory. The read data comes
from the input fifo while the write data is stored in the output fifo and then passed to external memory. The
external memory bus speed is twice as high as the VIO speed so the complete operation can be finished within a
single vector.

repeat, graph (table_look_up);

table_look_up:
V = input => genad(A) => A = rd4x8(ri) => V = output;

10.6 Setting up the translation tables

The VIO contains two tables for the conversion between pseudo color to 32 bit true color and visa versa. Both
tables can be accessed via control register: VIO_Control2 the table addresses are given by bits [8:0] and the
selection between the two tables is made by TS (bit 9) '0' selects the 256 entry pseudo color to true color
conversion table while '1' selects the 384 entry true color to pseudo color table. These tables can be read if the
RD flag (bit 10) is set. This flag needs to be '0' if the tables are used in normal operation. The read and write
operations use control register cr48: VIO_PseudoData as the entry point. Both read and write operations are
auto incremental. Write but also Reads can be done in vector mode. A modification of the table index or the TS
flag when the RD flag is set or setting the RD flag itself will initiate a two cycle pre-load mechanism to read
entries two entries in advance.

10.6.1 The contents of the pseudo color to true color table.
This table contains 256 entries with alpha, red, green and blue values for each of the 256 possible palette entries.

Bits [31:24] = Alpha [7:0]
Bits [23:16] Red [7:0]
Bits [15:8]| = Green [7:0]
Bits[7.0 | = Blue [7:0]

10.6.2 The contents of the true color to pseudo color table.

The table which contains information to translate true color information to 8 bit pseudo colors. It has 384 entries
based on a 3 bit Red, 3 bit Green and 3 bit Blue index. The table index used during translation is given by Red +
8 x Green + 64 x Blue. This limits the number of blue entries to 6. The number of entries per color component is
given by REDNO[2:0], GREENNOJ[2:0] and BLUENOJ[2:0] in control register cr46: VIO_Control2. Each
entry contains the best fitting pseudo color. The error value for red, green and blue compared to the ideal values
based on the entry address: RED_error[5:0], GREEN_error[5:0] and BLUE_error{5:0] plus three left/right
neighbour field for red, green and blue: RED_next[1:0], GREEN_nexi[1:0] and BLUE_next[1:0]. The
format of the errors is signed 2.4 where the binary point separates entry numbers and sub entry values. Values
higher then binary 1.1111 and lower then binary (minus) -10.0000 must be clamped to these values. The
neighbour bits detect if the neighbour above (in the red or green or blue direction) or below has a red, green or
blue component which is identical (or nearly identical) to the one of this entry. Bit 1 corresponds to the entry
above while bit 0 corresponds with the entry below.

Imagine Processor

Imagine 2 Multi Media Processor

10.7 The control registers of the VIO

10.6.1 The Vector I/0O Control register no. 1

10. Vector I/O unit

Cr45:

VIO_Control1:

The Vector I/O Control register no. 1

16 bit Input Color
ICOL =0 Non 16 bit color input
ICOL =1 1555 color input
ICOL =2 0565 color input
ICOL = 3 4444 color input
ICOL =5 0555 color input

ICOL =6 0565 color input (r - b)

16 bit Output Color
OCOL =0 Non 16 bit color output
OCOL =1 1555 color output
OCOL =2 0565 color output
OCOL =3 4444 color output
OCOL =5 0555 color output

OCOL =6 0565 color output (r— b

Byte Selection Function

BYx=0 Select bits [7:0]
BYx =1 Select bits [15:8]
BYx =2 Select bits [23:16]
BYx =3 Select bits [31:24]
BY3[1:0] Alpha channel [31:24]
BY2[1:0] Red component [23:16]
BY1[1:0] Green component
[15:8]
BYO0[1:0] Blue component [7:0]

B =1 Diffusion Begin Flag set

Diffusion enabled

DE =1 Error Diffusion enabled

SO =1 Select Output bytes enabled

Sl =1 Select Input bytes enabled

l v A 4 A 4

v vV VY v
ICOL OCOL DT3 DT2 DT1 DTO [OSOURCE |0’ | VSIZE BY3 | BY2 | BYl1 BY0
[2:0] [2:00 |PB[DE| [ro} | (1o} | (0] | 0] | [2:0] [1:0] | SU[SO| (o) | (o} | (1o} | [1:0]

31[30[29]28]27]26]25] 242322 [21]20] 19] 18] 17[16] 15[14131211]10] 9[8[7]6[5]4[3]2]1]0

A A
16 bit HiColor Error Diffusion
DTx=0 No error diffusion
DTx=1 6 bit error diffusion
DTx=2 5 bit error diffusion
DTx=3 4 bit error diffusion
DT3[1:0] Alpha channel [31:24]
DT2[1:0] Red component [23:16]
DT1[1:0] Green component
[15:8]
DTO[1:0] Blue component [7:0]

Imagine Processor

A

Size used for Input Data

VSIZE = 0 quad 8 bit word
VSIZE =1 double 16 bit word
VSIZE = 2 single 32 bit word

Output Bus Selection

OSOURCE =0
OSOURCE =1
OSOURCE =2
OSOURCE =3
OSOURCE =4
OSOURCE =5
OSOURCE =6
OSOURCE =7

Select A bus
Select B bus
Select Q bus
Select F bus
Select M bus
Select U bus
Select D bus
Select V bus

Imagine 2 Multi Media Processor

10.6.2 The Vector I/0O Control register no. 2

10. Vector I/O unit

‘ Crd6: VIO_Control2: The Vector I/O Control register no. 2
Pl =1 Input RD =0 Read Access disabled (Normal Operation)
Pseudo Color REDNO: Red entries RD =1 Read Access enabled (Table state save)

PO =1 Output
Pseudo Color

GREENNO: Green entries

TS =0 Pseudo - True Table
TS =1 True > Pseudo Table

!

BLUENO: Blue entries

A A Vv ¥
‘0’ ‘0’ REDNO | GREENNO| BLUENO ‘0’ Pre_Id TAB_ADDR
PL| PO CD (EC MT| [2:0] [2:0] [2:0] [1:0] [RD|TS [8:0]

\31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10|9|8\ 7 |6|5 \4| 3 |2|1 |0\

i

MT =0 Ordered Dithering
MT =1 Improved Dithering

EC=1

Error Correction Enabled

¥ y

Table read pre-load [1:0]
(read only status)

No read pre-load
Pre-load busy
Pre-load ready

1
2

TAB_ADDR [8:0]

CD =1 Color Dithering Enabled

0..255 for Pseudo = True color Table
0..383 for True - Pseudo color Table

10.6.3 The alpha test and alpha generation control register

‘ Cr47: VIO_Alpha: Alpha test and Alpha generation Control register
ALPHA COMPARE 'WRDIS[2:0] Write disable INPUT COLOR KEY TEST

A_CMP =0 GL_NEVER bit 0: use Alpha test ColorKeyEn[3] Enable Alpha
A_CMP =1 GL_LESS bit 1: use Alpha zero ColorKeyEn[2] Enable Red
A_CMP =2 GL_EQUAL bit 2: ColorKeyEn[1] Enable Green
A_CMP =3 GL LEQUAL bit 3: use Alpha dither ColorKeyEn[0] Enable Blue
A_CMP =4 GL_GREATER
A CMP =5 GL_NOTEQUAL
A CMP =6 GL_GEQUAL
A CMP =7 GL_ALWAYS

TEST ALPHA ‘0’| A cMmP ColorKeyEn EDGE_ALPHA

[7:0] [2:0] WRdis[3:0] CKout[3:0] [3:0] [7:0]

31 |30|29\28|27|26|25|24 23 22[21 \20| 19[18|17|16\ 15]14[13\12| 11 |10|9 | 8] 7 |6 |5 \4| 3 |2 | 1 |0

T

TCOUT]|2:0] Transpar.out
bit 0: use Alpha test

TEST _ALPHA [7:0]
Alpha value used as a reference in
the Alpha compare Test

bit 1: use Alpha zero
bit 2:
bit 3: use Alpha dither

EDGE_ALPHA [7:0]
Alpha used for pixels adjacent
to transparent pixels

Imagine Processor

Imagine 2 Multi Media Processor 10. Vector I/O unit

10.6.4 The pseudo < - true color conversion tables entry

| Cr48: VIO_PseudoData: The Vector Pseudo €-> True Color Table Data
The Pseudo Color - True Color Table's Data format
ALPHA component RED component GREEN component BLUE component
[7:0] [7:0] [7:0] [7:0]

31[30]29]28]27]26]25]24 [2322 21]20] 19] 18] 17[16] 15[14 13] 12]11]10[9[8[76 [543]2]1]0

The True Color = Pseudo Color Table's Data format

PSEUDO color RED RED GREEN| GREEN BLUE BLUE
[7:0] next error [5:0] next error [3:0] next error [5:0]
[1:0] [1:0] [1:0]
31[30]29]28]27]26]25]24 [232221] 20 19] 18] 17 [16] 15[14 13] 1211]10[9[8[76 [543]2]1]0

COLOR NEIGHBOUR COLOR ERROR

bit [1] indicates that the higher neighbour (in format: signed 2.4

the direction of higher color intensity) for the
. - +
specific component has an equal or an from 10‘00.00 to Q1 1111
. where the binary point sepa-
almost equal color component. Bit[0]
rates table entry values and

indicates the same for the lower neighbour
sub entry values

10.6.5 The transparent output color

Cr49: VIO_ColorKeyOut: The Output Color Key
Alpha or Pseudo output Red low output Green low output Blue low output
color key [7:0] color key [7:0] color key [7:0] color key [7:0]
31[30[29]28]27]26]25]24 [23 22]21]20] 19] 18] 17[16]15] 14 13] 1211]10[o[8[76543]2]1]0

10.6.6 The transparent color input range

Cr50: VIO_ColorKeyLo Lowest Transparent values of the Input and Output
Alpha or Pseudo low level Red low level Green low level Blue low level
color key [7:0] color key [7:0] color key [7:0] color key [7:0]

31[30[29]28]27]26]25]24 [23 22]21]20] 19] 18] 17[16 15[14 13] 1211]10[o[8[76543]2]1]0

Cr51 VIO_ColorKeyHi Highest Transparent values of the Input and
Alpha or Pseudo high level Red high level Green high level Blue high level
color key [7:0] color key [7:0] color key [7:0] color key [7:0]

31]30]29]28[27]26]25]24[23[222120 19] 18] 17[16]15]14] 3] 1211]10] o[8[76 [5]4[3]2]1]0

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

Chapter
11. THE PROGRAM SEQUENCER

T he Program Sequencer

is responsible for the control flow of a program running on the IMAGINE. It is
optimised for both high level language processing and specialised assembly code. It
handles Jumps, Calls, Returns and Repeat functions. Together with the ALU, all C
language expressions like A==B, A!=B, A>B, A>=B, A<B, A<=B, are handled
with a single ALU function and a single control flow function.

The IMAGINE can control complex Multi Media systems. It handles Interrupts and
return from interrupts for many real time functions like Video 1/O, Audio I/O, and
several communication channels.

Imagine Processor

Imagine 2 Multi Media Processor

11. The Program Sequencer

11.1 The program sequencer instruction word

The Program Sequencer instruction determines the value of the 24 bit instruction address pointer. The instruction
address points to 64 bit wide instructions so the 24 bits cover an address range of 128 Mbyte.

(The current instruction set allows future 32 bit addresses)

Instruction code Ic[63:50]

Sequencer: |Funct| Address | Condition

‘1100’ group | mode select

not
con

\63\62|61|60|59|58|57|56\55\54|53|52|51 |50|

Instruction code I¢c[23:0]: jump, branch, call, subr

[23:0]

Absolute or Relative Address Offset

23[22]21]20] 19 18] 17]16] 15[14 13]12] 11 f10] o [8]7 6543]2]1]o0

Instruction code I¢c[23:0]: continue, push, pop, jump_reg, branch_reg,
call reg, subr reg, call int, return, access IC

FLAG VALUE FIELD

UF
0

Fl I I FLAG MODIFICATION FIELD
viAlR|W ‘0000’ MI | MI[<0’ |0’ |0’ | UF| UF
S| I1|D]|R 2 1 2|1

MI | MI
211

0

0’

<0’ [UF [UF
2|1

UF
0

23[22]21]20] 19 18] 17]16] 1] 14 13]12] 11 f10] o[8[76]s[af3]2]1]o0

Instruction code I¢[23:0]: repeat instruction for vector processing

| Startrepeat zone
g [5:0] ‘00’ [5:0]

[NeN-"]

Last in repeat zone

Fixed repeat count option
[7:0]

23[22[21[20]19]18]17[16] 1514 13]12]1if1of o[8[76 [s[4[3]2]1]o0

Function group field (Ic58..59)

One of four major groups of instructions can be selected with instruction
bits IC[59:58] The jump, call and return are familiar instructions which
will be specified in detail in this chapter. The repeat function plays an
important role in vector processing type operations, including vectors with

variable length.

Address Mode field (Ic55..57)
The Sequencer instructions select from seven address modes to
obtain a destination address (see table)

The Instruction word can provide a 24 bit absolute address or
signed offset. This is the type of instruction which is mostly used
for code generation: the destination address is known during
compilation time. Within a program, the jumps and calls should
always use relative addresses to be re-locatable. The address
register can also provide a 24 bit absolute address or signed offset
for the cases where the destination address is not known during
compilation. This occurs frequently in C programs with calls using
pointers to functions. The function to be called is given during run-
time and not known during compilation time. A calculated goto
instruction is used by optimising compilers to implement fast
switch statements. In this case the jump instruction should be
executed with the calculated destination address stored in the
address register.

Imagine Processor

Function group:

WN =0

jump instructions
call instructions
return instructions
repeat instruction

~NoO O~ WNO

Sequencer Address Modes

PC
PC
PC
PC
PC
PC
PC

=PC + 1

:= Interrupt table register
:= Top of (Internal) Stack
:= Address register

:= PC + Address register
:= Immediate Address

:= PC + Immediate Offset

Imagine 2 Multi Media Processor 11. The Program Sequencer

The fifth way of obtaining an destination address is using the interrupt table register. This option is provided to
enable high speed real time processing in Multi Media applications.

Ranging from medium to complex systems with many different simultaneous interrupts from both video and
audio I/0O. A number of interrupts coming from different real time tasks can be handled in a single pass of circa
1.0 microsecond without the need of saving and restoring the processor state over and over again. The interrupt
table register contains the start of the interrupt service routine table in its highest bits (23:8). The lower bits are
defined by the interrupt waiting to be serviced (see description further on).

The Conditional Execution Field
Allows the program sequencer instruction to be condi-
tional depending on status information from the ALU or

Conditional control flow options:

. | Pos. Condition Neg. Condition
the sequencer control/status register. The contents of the
following registers are set conditionally: the Program | o if (always) if not (always)
Counter, the Internal Micro StackPointer, the Flags in
the sequencer control register and the Address Regis- User flags
ter. 1 if (user_flag0) if not (user_flag0)
2 if (user_flag1) if not (user_flag1)
3 if (user_flag2) if not (user_flag2)

The Condition field (Ic51..54)
The actual condition to be used by the jump, call or ALU flags
return function is selected with this field. It selects

4 if (zero) if not (zero)
between the individual status bits coming from the ALU | 5 if (negative) if not (negative)
or status bits from the Sequencer status register. 6 if (carry) if not (carry)
7 if (sgncmp) if not (sgncmp)
The 'Not' field 1C50). Vector Processing flags ------------------
If an instruction (jump, call, return) is executed | 9 if (repeat_smaller) if not (repeat_smaller)

conditionally, then the value of the status bit used for the |10 if (im_mask_empty) if not (im_mask_empty)
conditional instruction can be used as it is, or can be |11 if (im_access_busy) if not (im_access_busy)
inverted with the use of the “Not’ field. If the status bit is

not inverted the instruction will be executed if the | .~ Floating Point flag

instruction is true. Otherwise, when the status bit is in- 12 if (float_error) if not (float_error)
verted, the instruction will be executed if the condition Interrupts

is false. N 14 if (interrupt1) if not (interrupt1)
Not ='0" Execute if (condition), (cond.='1") 15 if (interrupt2) if not (interrupt2)

Not="1" Execute if not (condition)

C Language compatibility

A C compiler or an assembly code programmer can .
implement all conditional jumps and calls like X==Y, X!=Y, C compare functions:
X>Y, X>=Y, X<Y, X<=Y for both signed and unsigned

numbers with just two instructions: a single ALU and a single Fauation: ALY Condition

Sequencer instruction. The table specifies the individual [X == X-Y if (zero)

cases. X =Y XY if not (zero)

The Vector Processing Flags signed: _

These flags are typically used in assembly code programs. [X>=Y XY if (sgncmp)

The Image mask can be checked to see if any of the up to 256 X<=Y X-Y-1 if not (sgncmp)
. . . X >Y X-Y-1 if (sgncmp)

pixels covered by it, needs to be written to the frame buffer X <Y XY if not (sgnomp)

(im_mask empty/im_mask filled). The entire Vector write
may be skipped if empty. The Image Bus Access test is used |ynsigned:

to wait for the end of a Vector read or write operation. X>=Y X-Y if (carry)
X<=Y X-Y-1 if not (carry)

The Interrupt pending flags X >Y X-Y-1 if (carry)

These are typically used during interrupt service routines with (X <Y X-Y if not (carry)

provisions for advanced Multi Media systems.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.2 Sequencer control registers

SEQ_Status:

I
A
B

cr52:
1|1
P|P|O
201

Sequencer status / control

R
R |0
S

M u|lu|U
I ‘000’ F|F|F
1 21110

m o =
NZ —~ |
o=

[\S)

[1s[ia]is[i2ii]io]o[8[7[6]s5]4]3][2]1]0]|

SEQ_PrCounter:

cr53: Program Counter

Program Counter
[23:0]

\23|22|21\20|19|18|17|16\15|14|13\12|11|10|9|8\ 7|6|5 \4| 3 |2|1 |0\

cr54: SEQ_Address:

The Address register

Address register
[23:0]

]23|22|21\20|19|18|17|16\15|14|13\12|11|10|9|8\7|6|5\4| 3 |2|1 |0\

The Address micro stack, sixteen levels deep
Address stack
[23:0]
’23|22|21’20|19|18|17|16‘15|14|13’12|11|10|9 |8‘ 7 |6 |5]4| 3 |2 |1 |0 \
[

cr55: SEQ_Interrupt: The Interrupt Routine Pointer
Interrupt Table Address E Interrup‘? ? 00’
[230] v Vector [3 0] H

23[22]21 201918 1716 15[4] 13 12]1tif10] o[8[7]6[s5]4]3]2]1]0

cr56: SEQ_Repeat: The Repeat Count
Vector Length
[15:0]
[15[14[3]i21i]iofo 8] 7]6]s5]4]3]2]1]0]
cr57: SEQ_MaxRepeat: The Max Repeat Count

Vector Stride
[7:0]

Loefa]ela]2]t]o]

ICA_Low, ICA_High:

cr60 and cr61: The Instruction Cache access registers

Instruction Cache data for low level cache access
[31:0]

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1

control assembly code REGISTER FUNCTION word size byte access default
register name b3 b2 bl b0 at reset
cr52 SEQ Status Status and Control Register 16bit - ro 10 0x00C0
cr53 SEQ PrCounter Program Counter 24 bit --- 10 10 10 0x000000
cr54 SEQ Address Address Register 24 bit -—- ITW ITW ITW 0x000000
cr55 SEQ Interrupt Interrupt Table Register 24 bit --- I'W I'W 10

cr56 SEQ Repeat Total Vector Length 16bit - W Irw 0x0000
cr57 SEQ MaxRepeat Vector Stride 8bit - - - ™w 0x3F
cr59 SEQ Test Sequencer Test Register 30 bit r0 IO IO Io

cr60 ICA Low Instruction Cache Low 32 bit W W I'W ITW

cr61 ICA High Instruction Cache High 32 bit W IW I'W W

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.3 The control register functions

SEQ_Status: The Status / Control Register cr52

The Status and control Register contains a number of flags which are related to the program flow of the Imagine.
The Interrupt handler provides/uses 4 flags. There are 3 user flags. The repeat count, the Image Mask generator,
the Floating point handler and the Vector access unit also provide flags.

SEQ_PrCounter: The Program Counter _cr53

The Program counter holds the address which is used to access the Instruction memory. The Jump, Call, Return
and Repeat instructions use this register to control the program flow. The register is read-only for control register
accesses. The PC contents leads the actual executed instruction by two cycles. This means that any change of the
PC due to a Jump, Call or Return happens to be two cycles before the instruction is loaded and being executed.
These two cycles are called branch delay cycles, and are typical for RISC processors. The Instructions they
execute are called branch delay instructions. 1t is clear that another Jump, Call or Return is not recommended in
a branch delay cycle.

SEQ_Address: The Address Register cr54

The Address Register is readable and writable by external access. The contents can be used as an absolute
address or a signed offset for Jumps and Calls. This feature is used to Jump and Call to destination addresses
which are not known during compilation time. The Address Registers Internal Stack access function: A value in
the Address Register can be Pushed to the Stack and vice versa: the Top of Stack value can be Popped to the
Address Register (see PUSH and POP). The Control Flag Restore function: Bits [7:0] can be restored to the
corresponding control flags of the Control/Status register. The Instruction cache access function: The Address
register contains the Instruction address during low level read/write accesses to the Instruction cache.

The Micro Address Stack

The Imagine contains a small 16 entry internal stack to temporary save Program Counter addresses. It can be
used by interrupt service routines, Assembly code and (not excluded) by optimising compilers. The Programmer
can access the Stack with the use of the Address register. A value in the Address Register can be Pushed to the
Stack while the Top of Stack value can be Popped back into the Address Register. This feature is used by high
level language function calls to save the return address on an external stack and to restore it at the end of the call.

SEQ_Interrupt: The Interrupt Service Routine Pointer _ cr55

This register contains the start address of the Interrupt to be served. The highest 16 bits (23:8) are writable by
external access. The lowest 8 bits are provided by the pending interrupt: The Interrupt level and the Interrupt
Vector. The least significant Table Entry address bit indicates if the actual branch to the service routine is done
by hardware or software. Software Interrupt Jumps and Calls can be applied to handle several waiting interrupts
in one pass without the need to Save and Restore the Processor state for each interrupt.

SEQ_Repeat: The Repeat Register cr56

This register is used by the Repeat function and by Vector accesses to external Memory. The Value defines the
total (variable) Vector Length. The Repeat function catches instructions in a socalled repeat catch range and
repeats these functions a programmable number of times (in a range from 1 to 256 times). This enables variable
length vector processing (all Interrupts are disabled during both catching and repeating). The maximum repeat
value is 32768 (stored as N-1 = 32767).

SEQ_MaxRepeat: The Maximum Repeat Count Register cr57
This register is used to split long vectors into vectors with length ([cr57] + 1) plus a final (smaller) 'tail' vector.
This is the socalled Vector Stride. Register cr57 is set to its default value of 0x3F (repeat=64) during reset.

ICA Low and ICA High: The Instruction Cache access registers cr60.cr61

The 64 bit value contained in both registers can be written to the Instruction cache memory. This is typically used
in the boot process where a small on chip boot rom will load the boot program from an external EPROM into the
instruction cache. These registers are also used for low level reads from cache ram.

Imagine Processor

Imagine 2 Multi Media Processor

11.4 The control flow instructions

11.4.1 The jump instructions

The JUMP Instruction

The 24 bit address in the instruction word is used for the new address. In
case of an absolute address JUMP, the value replaces the current value of
the program counter. The jump will be effectuated after the two branch
delay instructions. If the jump is relative the 24 bits value from the
instruction word is added to the instruction address of the last branch
delay instruction: the current instruction address plus two. Within
programs the relative jumps should be used while absolute jumps should
be used for system functions. The mnemonics differentiate between the
two: relative jumps are called branches while absolute jumps are simply
referred to as jumps.

The JUMP REGISTER Instruction

The 24 bit address register, (SEQ_Address: cr54), is used for the new
address. In case of an absolute address JUMP REGISTER, the value
replaces the current value of the program counter. The jump will be
effectuated after the two branch delay instructions. If the jump is relative
the 24 bits value from the address register is added to the instruction
address of the last branch delay instruction: the current instruction address
plus two. It can be combined with the flags() function: The 24 bit data
field can be used independently to set/reset any number of flags in the
status/ control register.

The JUMP INTERRUPT Instruction

Provided together with the Call Interrupt for quick response interrupt
service processing in complex Multimedia designs. The jump can test the
pending of a second interrupt while servicing one. The jump has the same
effect as a serviced interrupt but has the advantage that the state of the
processor does not have to be saved and restored between these interrupts.

11. The Program Sequencer

Mnemonics:

jump (label);

branch (label);

if (condition), jump (label);
if (condition), branch (label);
if not (cond.), jump (label);
if not (cond.), branch (label);

Mnemonics:

jump_reg;

branch_reg;

if (condition), jump_reg;
if (condition), branch_reg;
if not (cond.), jump_reg;
if not (cond.), branch_reg;

Mnemonics:

jump_int;
if (condition), jump_int;
if not (cond.), jump_int;

The 24 bit interrupt table register (SEQ _Interrupt: cr55) is used for the new address. The Interrupt table address
(bits [23:8]) is combined with information from a pending interrupt: interrupt level and interrupt vector. The
'least' significant bit (bit2) is set to '1' which means that the software entry for the interrupt is used. The resulting
address replaces the current value of the program counter. The jump will be effectuated after the two branch
delay instructions and is always absolute. It can be combined with the flags() function: The 24 bit data field can
be used independently to set/reset any number of flags in the status/ control register.

The CONTINUE Instruction

. Mnemonics:
This is the default sequencer instruction: a dummy JUMP instruction. It
uses the address mode: PC+1 and it’s mnemonics continue is optional. It |[continue]
should be used when you want to modify the (timings-critical) bits in the |flags(....);

flags_restore;
if (condition), flags(...);
if not (cond.), flags(...);

status and control register. (The equivalent dummy instructions for the
CALL and RETURN functions are: PUSH STACK and POP STACK.)

Imagine Processor

Imagine 2 Multi Media Processor
11.4.2 The call instructions

The CALL Instruction

The 24 bit address in the instruction word is used for the new address
while the contents of the Program Counter + 1 is pushed on the small
internal Stack which holds eight words. This address can be used by the
function call handling software for a future return. Highly efficient
assembly code can use the tiny Stack for function calling without
overhead in timing critical inner loops (up to six levels with two levels
reserved for interrupts). In case of an absolute address Call, the value
replaces the current value of the program counter. The call will be
effectuated after the two branch delay instructions. If the call is relative
then the 24 bits value from the instruction word is added to the instruction
address of the last branch delay instruction: the current instruction address
plus two. Within programs the relative jumps should be used while
absolute jumps should be used for system functions. Absolute calls are
simply calls while relative calls are referred to as subrs.

The CALL REGISTER Instruction

The 24 bit address register (SEQ_Address: cr54) is used for the new
address while the contents of the Program Counter + 1 is pushed on the
small internal Stack which holds eight words. The CALL REGISTER
Instruction is identical with the normal CALL instruction. The Call can be
absolute and relative. It is used in situations in which the destination
address is not known during compilation time. A common example are
function calls which use the pointer to a function to execute the call. The
software determines during Run time which version of a certain function
will be used. A function may have several versions because it drives
different devices. Another reason may be a 'global' parameter which
defines various quality levels of rendering. This function can be combined
with flags().

The CALL INTERRUPT Instruction

Is provided together with the Jump Interrupt for quick response interrupt
service processing in Multimedia designs with two or more display
formats. The call can test the pending of a second (Line-) interrupt while
servicing one. The call has the same effect as a serviced interrupt but has
the advantage that the internal state of the processor does not have to be
saved for the second time.

The 24 bit interrupt register (SEQ_Interrupt: cr55) is used for the new addrefif not (cond.), call_int;

Counter + 1 is pushed on the internal Stack. The Interrupt table address (2
from a pending interrupt: interrupt level and interrupt vector. The 'least' sig

11. The Program Sequencer

Mnemonics:

call (label);

subr (label);

if (condition), call (label);
if (condition), subr (label);
if not (cond.), call (label);
if not (cond.), subr (label);

Mnemonics:

call_reg;

subr_reg;

if (condition), call_reg;
if (condition), subr_reg;
if not (cond.), call_reg;
if not (cond.), subr_reg;

Mnemonics:

call_int;
if (condition), call_int;

means that the software entry for the interrupt is used. The resulting address replaces the current value of the
program counter. The jump will be effectuated after the two branch delay instructions. The CALL on
INTERRUPT is by definition an absolute call. This function can be combined with flags().

The PUSH STACK Instruction

This instruction does not influence the program flow. The Address
Register is pushed onto the internal Stack (16 deep) instead of the
Program Counter. High level Function calls use it to return to an
externally saved return address.

Imagine Processor

Mnemonics:

push, [flags()];
if (condition), push, [flags()];
if not (cond.), push, [flags()];

Imagine 2 Multi Media Processor 11. The Program Sequencer
11.4.3 The return instructions

The RETURN Instruction

The return mechanism is used to continue operation from the point [Mnemonics:
on which a function call or an interrupt became effective. The Top
Of Stack is popped from the tiny internal stack and placed into the [return [, flags()];

Program Counter. The Return will be effectuated after the two [if (condition), return [, flags() I;
branch delay instructions. The program will continue at the address if not (cond.), return [, flags() J;
which is popped from the Top Of Stack to the Program counter. C
code which uses pointers to functions for run-time depended
function calling should use the return mechanism for this type of
function calls. If the return is used to return from an Interrupt the
Reset function should be applied

to reset the interrupt mask in the status register of the corresponding
level.

Mnemonics:
The POP STACK Instruction .

pop [, flags()];

This instruction does not influence the program flow. The Address |[if (condition), pop [, flags()];
Register instead of the Program Counter is popped from the internal if not (cond.), pop [, flags() J;
Stack. High level Function call's use it to obtain the return address
to save it on an external stack. This function can be combined with
flags().

11.4.5 The repeat instruction

The REPEAT Instruction

This instruction is used by for vector (stream) processing. Mnemonics:

Processing continues normally until the repeat range is reached.
Instructions within the repeat range are catched and repeated a
variable number of times. The last instruction of the repeat range |repeat, graph (label);

also holds the program counter. Two 6 bit values define the range |repeat, range (label1,label2)

which may start at any instruction from 3 cycles up to 67 cycles [repeat_fixed (N), graph (label);
after the repeat instruction and end at any other in that same range ([repeat_fixed (N), range (lab1,lab2);
provided that the last instruction is equal to or after the first
instruction. as the target instruction. The assembler has four ways of
obtain.ing the start and end 0ff§ets: The graph option uses a single repeat, after (W):

¥abel in the assembly vyhere it expectg to ﬁgd a graph. The last repeat, label (label);
instruction of the graph is also the last instruction of the range. The repeat_fixed (N), after (W);
range options requires two labels for both the first and the last |repeat_fixed (N), label (label);
instruction of the range. The after option defines a single instruction
range (start == last) and requires the actual number of instructions |N =1..256, W =3..67
between the repeat and the instruction which should be repeated. The
label option also defines a single instruction range but uses the label
of this instruction to calculated the offset.

Multiple Instruction catch range:

Single instruction catch range:

The target instruction will be repeated for a given number of times. The repeat function is limited to a maximum
of 2562 cycles. During both waiting and repeating all interrupts are masked. The repeat count can be hard coded
as immediate data within the instruction word or it can be taken as a run_time variable from the repeat count
register (SEQ_Repeat: cr56) where it can be stored by software (if SEQ Repeat == 0 then the instructions are
executed 1 time: they are 0 times repeated). A simple mechanism is provided to operate on vectors of arbitrary
length: A long vector is subdivided in vectors of the length defined by SEQ MaxRepeat: cr57 and a smaller 'tail’
vector at the end. This maximum repeat count is the Vector Stride. Higher values in the repeat count register (up
to 32768) will be replaced by this maximum repeat count. The repeat register is decremented by the maximum
repeat count each time a conditional sequencer instruction refers to the RRS flag of the SEQ_Status register. This
flag (Repeat Register Smaller) can be used to test if the contents of the repeat register is still larger than the
maximum repeat count before decrementing it. In this case another repeat is needed. The Repeat function is
always executed unconditionally.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.5 Sequencer usage

11.5.1 The branch delay slots in the instruction address generation

The Imagine has a branch delay of 2 instructions. This means that a Jump, a Branch or a Call becomes effective
after two more instructions following the instruction which caused the branch. These two instructions are called
the branch delay instructions. They fall into the branch delay slots. Branch delay slots are typical for RISC
processors. The number of delay slots is an indication for the level of pipelining in the instruction address
generation and fetching.

The Timing figures below show that the current instruction (= fetched instruction) trails the value of the Program
Counter by two cycles. These two cycles are used to output the instruction address, to access the instruction
cache and to load the instruction into the instruction register. (The instruction is called currently executed
instruction or fefched instruction when loaded into the instruction register.)

clock Contents of Currently Instruction ~ Fetched
cycle Program Executed cache addr. Instruction
Counter Instruction registers
170 N-1 instr(N-3) (continue)
171 N instr(N-2) (continue) N-1
172 N+1 SUBTRACT(A,B) N instr(N-1)
173 N+2 JUMP X IF ZERO N+1 instr(N) =JUMP X
174 X instr(N+1) (b_delay 1) N+2 instr(N+1) delay 1
175 X+1 instr(N+2) (b_delay 2) X instr(N+2) delay 2
176 X+2 FIRST X instruction. X+1 instr(X) = First X
177 X +3 instr(X+1) (continue) X+2 instr(X+1)

11.5.2 The usage of the internal program counter stack

The Internal stack consists of eight registers: a TOS (Top Of Stack) and seven further registers. It handles
subroutine calls on high level (C language) and low level assembly code. High level calls use the TOS register as
the place where the return address can be found to continue after exiting a C function. The return is executed by
writing the externally saved value from TOS register back and performing a Return function.

Low level calls in the inner loops of assembly library functions can use the Tiny Stack for function calling
without any overhead.

The Program Counter can be saved up to Six levels (the two remaining levels are reserved for interrupt calls).
The TOS is obtained by the POP STACK function which moves the TOS register to the Address register. It can
be restored with the PUSH STACK function which moves the Address register to the TOS.

Interrupt handling is the third task of the internal Stack. An Interrupt causes the Program Counter to be saved on
the Internal Stack. The contents of the Interrupt table register is placed in the PC. A return from interrupt pops
the value from the TOP register back to the Program Counter. A number of very frequent interrupts can be
handled completely without state save and restore because of the internal micro stack..

11.5.3 Using the Imagine's ALU status for conditional control flow

The example above shows how status information from the Imagine ALU can be used for conditional control
flow. The chapter on the ALU in the Imagine device specification manual shows how all typical C equations like
A==B, A!=B, A>B, A>=B, A<B and A<=B for both signed and unsigned data types can be

translated into a combination of one ALU function followed by a conditional control flow instruction. If there are
any other functions between the ALU function and the Control flow function, then the ALU should execute Nops
to preserve the Status information.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.5.4 The usage of the immediate data in the instruction field

Instruction code I¢[23:0]: jump, branch, call, subr

Absolute or Relative Address Offset
[23:0]

23[22[21[20]19]18]17[16] 1514 3] 2] 1if1of o[8[76 [s[4[3]2]1]o0

Instruction code Ic[23:0]: continue, push, pop, jump_reg, branch_reg,
call_reg, subr_reg, call_int, return, access_IC

rlili]1 FLAG MODIFICATION FIELD FLAG VALUE FIELD
V|IA|R|W ‘0000’ MI[Mi<0°[<0’[<0’JUF[UF[UF[MI[MI]<0’[<0°] <0’ [UF| UF [UF
S|{r|p|RrR 2|1 2111021 21170

23222120 19] 18] 17]16] 15[14] 13 2] 11]1of o [8] 76 [s5]af3]2]1]o0

Instruction code Ic[23:0]: repeat instruction for vector processing

.| Start repeat range Last in repeat range | Fixed repeat count option
g [5:0] ‘00’ [5:0] [7:0]

[NeN-"]

23[22[21[20]19]18]17[16]1s[1a13] 2] tifrof o[8[7]6[s[4[3]2]1]o0

Option 1

The 24 bit dataword is either a 24 bit absolute address or a 24 bit signed offset depending on the addressing
mode.

Option 2

The control flags (bits 0..7) in the control/status register can be individually modified with this option. A 'l" in the
Flag Modify Field allows the corresponding control flag [7:0] in the SEQ_Status register to be changed to the
value in the Flag Value Field. Another way to modify the control flags and the state flag is the use of the
corresponding 8 least significant bits of the SEQ Address register. This option is typically used to restore the
control flags before a return from interrupt. This option is selected with FVS ='1". The 8 control flags are set
with the values of the corresponding bits in the address register as is the value of the State Flag which also is
saved in case of an interrupt.

A modification with the Flag Modify/Value fields has the highest priority so all nine control/state flags may be
restored from the address register while individual flags are set with higher priory in the same instruction.

Option 2 contains a three bit field which is used for direct read and write operations in the instruction cache ram.
(IAL IRD, IWR) The use of this field is explained elsewhere.

Option 3
This option defines the repeat range:
If RCS: (Repeat Count Select) ='0" then SEQ_Repeat used during a repeat operation. If the repeat count is

larger than then SEQ MaxRepeat (cr57) then this value is used instead.
If RCS: (Repeat Count Select) ='1' then bits [7:0] of the Instruction Code are used during a repeat operation.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.6 The program sequencer mnemonics

THE JUMP FUNCTIONS fun, mode
jump (label) Jump Absolute to the address in the Instruction word 00 110
branch (label) Jump relative, Add Instruction word offset to PC 00 111
jump_reg Jump Absolute to the address in the address register 00 100
branch_reg Jump relative, Add Address register offset to PC 00 101
jump_int Software Jump to Interrupt 00 010
[continue] 'Default Dummy Jump' to PC+1, can be combined with flag modification 00 000
THE CALL FUNCTIONS fun, mode
call (label) Call Absolute to the address in the Instruction word 01 110
subr (label) Call relative, Add Instruction word offset to PC 01 111
call_reg Call Absolute to address in the address register 01 100
subr_reg Call relative, Add Address register offset to PC 01 101
call_int Software Call Interrupt 01 010
push Push Address register to the internal Stack 01 000
THE RETURN FUNCTIONS fun, mode
return Return from Subroutine, Pop PC from Internal Stack 10 011
pop Pop Address register from the Internal Stack 10 000
THE REPEAT FUNCTIONS fun, mode
repeat Repeat instruction (Variable length Vector operations) 11 000
THE INSTRUCTION CACHE ACCESSFUNCTIONS fun, mode

set_IC_address Place the contents of the Address register on the Instruction Address Bus 01 100
access_IC Read \ Write the Instruction word on the selected location and continues. 10 011
ORTHOGONAL OPERATION: DEFINE CONDITION FIELD

if (condition), Condition field: can be combined with any instruction except the repeat function
if not (condition), negated Condition field: can be combined with any instruction except the repeat function

ORTHOGONAL OPERATION: SET ADDRESS/DATA FIELD (IC0..23)

option 1

(label) Define Contents of 1c0..23 as Address field or Relative Address offset,
Can be combined with Jump, Branch, Call and Subr.

option 2

, flags (flags) Define Contents of Ic8..15 as a Flag Modify Field and 1c0..7 as the Flag Value Field
flags: mask_int1, unmask_int1, mask_int2, unmask_int2, set_user_flag_0,
reset_user_flag0,set_user_flag1, reset_user_flag1,set_user_flag2,reset_user_flag2.

, flags_restore Bits [7:0] from SEQ_Address (cr54) are restored in SEQ_Satus (cr52) (Ic23="1")

_read Combined with access_IC: Read the Instruction code into the Imagine's user IC registers
_write Combined with access_IC: Write the Instruction code from the Imagine's user IC registers
++ Combined with access_IC: Increment the SEQ_Address register

option 3

_fixed (count) Define Repeat Count Field (Ic0..Ic4). This field is combined with the Repeat Instruction.

, after (count) Define Start Range and Last in Range fields of the Repeat instruction.(fields are equal)

, label (label) Identical to after but calculated as the difference of the instruction addresses.

, graph (label) Start range is defined by label. Last instruction in the graph becomes the Last in range.

, range (lab1,lab2) Start range is defined by label 1. Last in range is defined by label 2.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.7 Vector processing control flow

11.7.1 Variable length vector processing

The Imagine has powerful variable length vector processing facilities which are briefly described here. Vector
processing is implemented with the following properties of the Imagine:

¢ The Repeat Instruction of the Sequencer

¢ Vector processing functional units

¢ Vector type register and memory access

11.7.2 The repeat instruction

During the processing of a variable length vector, the same operation is repeated for a variable number of times.
A catch range can be defined where in instructions are catched and repeated. The repeat catch range is defined by
two 6 bit numbers in the instruction word. The range must lay betwee 3 and 67 cycles away from the repeat
instruction itself. The instructions in this range are executed from 1 to 256 times. Larger vectors can be
subdivided into smaller sized ones. The total Vector Length is defined in SEQ_Repeat while the vector stride is
defined in SEQ_MaxRepeat. The Program counter itself is repeated during the “Last in range” instruction. While
the other instructions hold their own instruction fixed during repeat time.

11.7.3 Vector processing functional units

All data processing units like the ALU, the Barrel shifter and the Multiplier/Accumulator can perform vector
operations. Each one can perform operations each cycle and the units are interconnected by a flexible bus
structure which allows a pipeline to be set up from the reading of the operands, trough various function unit to
the writing of the results.

16

17

nEEoE

genad(A) e e g g I I e e e e e)
V=input :I:I:I:I:I:I:I:I:I:I:I:I:I:I:I:I
A=rd4x8(r) e e e Jer_JeC e e e Jer_JeC_JaC_JeC_Jer_Jer)
T oM 0T B e e e e e i e i i s i S ,
: ge”ad(B)mmmmmmmmmmmmmmmm_

Brd4x8(M) | [JeC JsC 8L JsC IC L JRC oL I WC SC W oL o o
i F=add(M.B) —ur e e e e e e e e e e e e e e)
I e e e

3[19]20]21]22023{24

The pipelined prdceséing above isr genératéd by therfollbwin'g aséembly code Vprogramrz
repeat, graph (merge_ARGB);;;

merge_ARGB:
genad(A)=>V=input,A=rd4x8(ri)=>M=mult(A,V,nuu)===>genad(B)=>B=rd4x8(ri)=>F=add(M,B)=>V=output;

11.7.4 Vector type data storage access

All types of data storage known to Imagine have a vector access mode. There are four types of data storage:

¢ The Vector access memory unit One vector can be read and one can be written simultaneously.
¢ The Data access memory. unit One vector can be read or written.

¢ The three port register file. 2 vectors can be read and 1 can be written simultaneously

4 The Multiplier/Accumulator register file. One vector can be read and one can be written simultaneously

All these units can operate simultaneously.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.8 The multimedia interrupt handler in the Imagine 2

11.8.1 Programmers view:

The status of a pending Interrupt of level 1 or level 2 is visible with the IP1 and IP2 (Interrupt Pending) bit in the
SEQ_Status register. The servicing interrupt causes the MI1 or MI2 (Interrupt Mask) bit in the sequencer status
register of the Imagine to be set. It prohibits other interrupts of that level and lower priority levels from causing
interrupt calls. These status bits can be set and reset by software.

A 'l1' for IP1 or IP2 means that the interrupt of that level is detected, acknowledged and that the interrupt vector
belonging to this interrupt is loaded and visible in bits 3..7 of the interrupt table register.

The two bits are mutually exclusive. It is possible that IP2 belonging to the lower priority level 2 interrupt is
temporary overruled by a later arrival of a level | interrupt before it gets the chance to be handled (which is just
what we want). The IP2 becomes temporary '0' and bits 3..7 of the interrupts now show the interrupt vector of the
level 1 interrupt. The state of the suppressed level 2 interrupt will be restored at the moment the level 1 interrupt
service call has been made and no other level 1 interrupt has shown up in the meantime.

The Interrupt address is assembled within the interrupt table register. Bits [23:8] of this register contain the base
address of the interrupt table. The lowest eight bits of the address for the interrupt call are depending on the
Interrupt Vector provided by the served interrupt requesting device. Bit 7 is depending on the level of the
interrupt. Bit3..bit6 are replaced with the interrupt vector. Bit 2 depends on the way the interrupt routine is
called: by hardware or by software. The lowest two bits are always zero.

SEQ_Interrupt[7] : Level 1: 'LEV:=0', Level 2: 'LEV:=1'
SEQ_Interrupt[6:3] : Interrupt Vector:
SEQ_Interrupt[2] : Hardware: 'S/H:=0', Software: 'S/H:=1".

When the sequencer detects a pending interrupt which is not masked and not disabled by functions like Vector
memory operations and Repeat functions, and the current instruction is not a sequencer instruction, then it
executes a call to the interrupt service routine. The Program Counter of the previous instruction is pushed on the
tiny internal Stack and the contents of the Interrupt table register is copied to the Program Counter:

SEQ PrCounter - Top of Internal Micro Stack, and
SEQ _Interrupt - SEQ PrCounter

The two instructions PC-1 and PC which were already in the instruction pipeline are disabled and discarded.

The opposite process takes place during a Return from interrupt operation. The return address is popped back
from the tiny Stack, placed into the Program Counter and the Instruction address output register. This return
should reset the MIn control flag of it interrupt priority level which was set by the hardware at the start of the
interrupt service routine call.

Example:

return, flags (unmask_int1);

Imagine Processor

Imagine 2 Multi Media Processor

11. The Program Sequencer

11.8.2 Multiple interrupts without repeated state saving and restoring:

The level 1 interrupts will typically come from video fifo, line
and raster interrupts for video output and input and DirectX
cache line requests. The interrupt allocation table has
reserved interrupts for two different simultaneous video
formats. Handling of all the interrupts should be possible
within 1.0 to 1.5 microseconds at most. The Vector access
generator has multiple display pointers with auto increment
capabilities to allow interrupt handling times of circa 100
nanoseconds to preserve as much time as possible for
graphics processing instead of interrupt handling. These
interrupts are fast because there is no need for state saving
and restoring.

Most of the other Multi Media /O interrupts and
communication interrupts need software interference and the
state of the processor needs to be saved at the start and
restored at the end of the interrupt. Multiple interrupts of
different sources can clash and can (once in a while) occur all
at the same time. Repeated state saving and restoring take to
much time and would degrade the real time performance of
the Imagine. However the processor is equipped with a
special mechanism which allows the handling of multiple
interrupts in one go.

The first interrupt is called by the hardware and therefor takes
the hardware entry in the interrupt table. This entry saves all
the state of the processor which is needed by any of the
interrupts. At the end of the routine and before restoring the
state of the processor a test is made if another (level 1)
interrupt is pending and if so a (software) jump is made to the
routine for this particular interrupt. The software entry for the
interrupt is now taken which points to exactly the same
routine but skips the initial state saving instructions.

This goes on until the last pending interrupt has been served
which will restore the processor state and do a return. This
procedure is demonstrated with a 'simulator' run which
demonstrates a link from an interrupt 6 to an interrupt 7.

CONTENTS INTERRUPT TABLE:

entry_int5_hardware:jump (int5h);;;;
entry_int5_software: jump (int5s);;;;
entry_int6_hardware:jump (int6h);;;;
entry_int6_software: jump (int6s);;;;
entry_int7_hardware:jump (int7h);;;;
entry_int7_software: jump (int7s);;;;

END CONTENTS INTERRUPT TABLE.

crss:

SIMULATOR RUN:
/* hardware interrupt 6 */

entry_int_6_hardware:
jump (int6h);
......... ; " branch delay 1
/* branch delay 2
intbh: /* save state of processor
I* save state
/* save state
[* save state
/* save state
int6s: /* Actual Interrupt service instr.
......... ; [*interrupt 6 code
[* interrupt 6 code
......... ; /*interrupt 6 code
[* interrupt 6 code
if (interrupt1), jump_int;
......... ; " branch delay 1
/[* branch delay 2
entry_int7_software:
jump (int7s);
[* branch delay 1
......... ; [* branch delay 2
int7s: /* Actual Interrupt service instr.
......... ; [*interrupt 7 code
[* interrupt 7 code
......... ; [*interrupt 7 code
[* interrupt 7 code

if (interrupt1), jump_int;

[* branch delay 1
......... ; [* branch delay 2

int7restore: /* no other interrupt

/* restore state.

/* restore state.

/* restore state.

/* restore state.

exint7: return, flags (unmask_int1)
......... ; " branch delay 1

/[* branch delay 2

......... ; /" interrupted instr.

END SIMULATION.

The Interrupt service Routine Pointer register

Interrupt Table Address
[23:0]

L | Interrupt |S

E . / ‘00’
- Vector [3:0] -

23[22]21]20] 1918 1716 15[4] 13 i2]1ifi0] o[8[7]6[s5]4]3]2]1]0

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.9 The status / control register

SEQ_Status

The Status and control Register contain a number of flags which are related to the program flow of the Imagine.
The Interrupt handler provides/uses the largest part, but Floating Point (FPE), the Image Mask generator (IMZ)
and the Vector Access unit (IAB) and the Sequencer (RRS) also provide flags.

The highest 8 bits reflect the status of the hardware, either the interrupts status or the status of some of the
working registers. These bits are read only. The lowest 8 bits are used for control purposes.

These flags can be read and written. The flags command which can be combined with a number of sequencer
instructions can be used to set selected individual flags with either immediate value in the instruction word or
run-time value coming from the corresponding bits in the address register. The instruction contains 8 bits which
can be set to enable the modification of individual flags and 8 bits which can contain the values to be given to the
flags. Alternatively the last 8 bits can come from the lowest 8 bit of the SEQ Address register. Writing directly
to the SEQ_Status register is not possible.

crS2: Sequencer status / control register

1|1 F|I|I|R M| M UlU|U
P|P|O|P|A[M|R|O|T]| T <000 F|F|F
2|1 E|B|z|S 2|1 2011]0
is[af3fi2f1if10fo |87 [6[s[4[3[2]1]0]

Read Only Status Flags:

These flags which can be consulted by the sequencer for conditional instructions reflect external and internal
status information. These flags do not need to be saved during interrupts since they reflect non changeable or
indirect (redundant) information (e.g. Image Mask zero).

The Interrupt Pending flags IP1 and IP2 are 'l' when an interrupt has arrived externally, has been Acknowledged
and an Interrupt Vector has been received and placed in bits [6:3] of the Interrupt table register.

The bits are reset when the Interrupt Service Routine is called by the hardware or when either the jump int or
call int functions are executed by software. The two bits are mutually exclusive because only one vector can be
placed in the Interrupt Table register. An interrupt of the higher priority level 1 can temporary overrule the IP2
flag. The IP2 flag will be temporary '0' and the contents of bits [6:3] of the Interrupt Table register will be
temporary replaced by the level 1 Interrupt vector.

The State of the level 2 interrupt is restored once the level 1 interrupt service routine is called.

IPn: ='1" No Interrupt Waiting.
IPn: ='0" Interrupt Waiting

Interrupts are acknowledged externally but stay pending when:
1 The MIn (Mask Interrupt flag) is set.
2 The IMAGINE executes non interruptable code.

The Image Data Access Busy flag: IAB indicates that the Image Memory Access Generator is Busy. It functions
as an Interrupt Mask to avoid Interrupts in the Middle of an Access.

IAB:="1" Access Busy.

IAB: ='0" Not Access Busy.

The Image Mask Zero flag: IMZ is high if the entire Image Mask is zero: all 4x64 bits are '0". This implies that
any write action to DRAM or VRAM is superfluous since no pixel will be written anyway.

IMZ:="'1" Image Mask Zero.

IMZ: ='0" Image Mask Not Zero.

Repeat Register Smaller: RRS

Used for the handling of long vectors (> 64..256). The length-1 of the vector is placed in the Repeat Register.
The RRS flag is true ('1") if the contents of the Repeat register is equal to or smaller than the maximum repeat
count.

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

Program example:

loop_label
repeat, graph (graph_label);
image_vector(write, quad_byte,image1, ...);

................................ y

graph_label: <repeated dataflow graph>;

branch (loop_label), ifnot(repeat_smaller);

The Repeat register is automatically decremented with the maximum repeat count each time a conditional
sequencer instruction refers to the RRS bit from the Control/Status register (the register is decremented
independent of the value of the condition, true or false).

Control Flags:
These flags are used in various real time control operations.

The Mask Interrupt flags: MI1 and MI2 are set to 'l' when an interrupt service call is effectuated. They inhibit
other interrupt requests from causing an unwanted call to an interrupt service routine. The MI2 flag masks level 2
interrupts while the MI1 flag masks level 1 and level 2 interrupts.

The flags can be set and reset by software.

If MI1 is set then level 1 interrupts are still externally acknowledged but no Interrupt call is made by the
sequencer. The level of such an interrupt is placed in the Interrupt table entry register and the IR1 flag in the
status register is set to 'l' so software can observe pending level 1 interrupts. Level 2 interrupts are not externally
acknowledged when MI1 is set.

MiIn: ='1"" Mask Interrupt.
Miln: ='0": Do Not Mask Interrupt.

UF2, UF1, UFO0: User Flags 2, 1 and 0.

All eight control flags can be modified by the (assembly code) programmer. Some of them are designated to
special functions while others are reserved for future purposes and should be left '0'. The three User Flags are left
to the user. They can be used in highly optimised innerloops to select between various options with minimal
overhead (example 1) or they can be used to temporary save the state of other flags and use the saved information
later for a conditional control flow instruction (example 2)

Example 1:

If (user_flag2), branch (module2a);

Example 2:

if (carry), flags (set_user_flag1);

Imagine Processor

Imagine 2 Multi Media Processor 11. The Program Sequencer

11.10 Direct read and write accesses to the instruction cache

A secondary activity of the sequencer is to handle low level read and write accesses of 64 bit instruction data
directly to the Instruction cache ram. The Data for the instruction memory stems from two 32 bit user registers on
the Imagine which can be freely read and written to: ICA_Low (cr60) and ICA_High (cr61). The Data stored in
these registers can be stored into the instruction cache ram and Instruction cache data can be read back into these
registers. Writing to the instruction cache happens typically after a reset / power up during the booting process
when the caches are not yet enabled. The instruction address on which the access takes place is provided the
SEQ_Address register (cr54). This address can be auto-incremented during the Instruction memory access.

Two Instructions are reserved for down(up)-loading of instruction cache data:

Set_IC_address_...;
IC_access_...;

These two instructions always have to be applied together, one after the other and unconditional.
Set_IC_address... places the Instruction code address which is stored in the address register in the PC and
saves the PC+1 on the internal Stack. The access can either be an Instruction read or an instruction write access:
Set_IC_address_read,

Set_IC_address_write

Using these mnemonics causes the flags IRD and IWR to be set in the instruction word (IC[21], IC[20]).

IC_access_.. outputs the control information which handles the transfer and pops the PC+1 back from the
internal register Stack. The last branch delay instruction is disabled because this instruction was loaded with the
use of an irrelevant instruction address.

IC_access can be accompanied with ++.

This causes the TAI flag to be set in the instruction word (IC[22]). IC_access++ copies the incremented PC
used for the read/write operation back to the address register where it can be used for the next transfer options:

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

Chapter
12. THE MASK GENERATOR

T he Image Mask Generator

contains a very powerful set of units to deal with a very wide range of graphics
primitives. A mask can define the outlines of characters, polygons, arbitrary shapes,
window borders etc. A drawing operation will very often need a combination of
several mask functions. A simple example shows the amount of code needed to draw
a single pixel, e.g.. A Textured triangle which is rendered in OpenGL: A pixel may
be drawn only if: It is inside a visible window. If it is inside the area confined by the
triangle. If it is in front of previously drawn pixels. If it is between the front and
back clipping planes. If the Polygon Stipple pattern for this pixel is 'I'. If the Alpha
value of the texture is not to low, et cetera . All These conditional operations
consume large amounts of instructions, and thus cycles, on standard processors.

The Imagine however can process up to four pixels per clock cycle!

The powerful mask generator plays a central role in this achievement in co-
operation with the HISC principles which are the base of the architecture.

Imagine Processor

Ima ces 12. rator

Overview of the Mask Generator

The Control Register
Read / write Bus

Window mask (Spanline mask \ , Complex mask \ Range mask

Spanline Y min / max
Spanline Delta Start Polygon Start entry
Spanline Delta End Polygon End entry Range
Spanline Length (-1) Polygon Coord entry ALU
Spanline Address Depth

Spanline 0 start & end I Complex mask 0 -I Range mask 0 I vio

B 1028818 18 LMY T 8 VA P31 [CUNMDICA TSR U [OO C IISK U

Spanline 1 start & end Complex mask 1 Range mask 1
T — e et | e e 1] T |
Spanline 2 start & end

Complex mask 2 Range mask 2
— o2 sar & end Complex mask? Range mask? 1

Spanline 3 start & end I Complex mask 3 I Range mask 3 I

Mask assembly unit

Transp. mask Opaque mask

Opaque mask 0

Transparent mask 0
e e)

Tt ek 1]

Transparent mask 1

[CUMDICX TIKISK]

Transparent mask 2

Opaque mask 1

[CUMDICX TIKISK]

Opaque mask 2

[CUMDICATISK Z

Transparent mask 3 I

[CUMDICA OIS K 2

Opaque mask 3 I

\ J J

To the Vector Access Unit

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.1 introduction

12.1.1 The image masks

The Image mask is applied used during write operations of the vector access unit. It corresponds to up to four
spanlines of up to 64 pixels. The mask is arranged in eight 32 bit registers with each bit representing a individual
pixel. There are several masks like this in the mask generator, two of them are result masks which are connected
to the vector access unit. The transparent mask bits are used as write enable for the pixels which are written while
the opaque mask bits can be expanded to the 32 bit databus.

64 long

¢~ Line 0
@ Line 1
@ Line 2
@ Line 3

12.1.2 The vector access unit

The capability possibility of this unit to access external memory in a vector mode ensures a high basic speed from
and to Images. One input word and one output word can be transferred per clock cycle. Internal fifos will read
the entire input vector first and then write the buffered output vector. A 200 MHz Imagine 2 with 100 MHz
external SGRAM reaches a 1.6 Gigabyte bandwidth for vector I/O accesses. Pixels within stored images can be
read or written in the form of vectors. These vectors can have sizes varying from 1 to 64 words. A vector covers
a horizontal strip in an image on the screen. The first word is at the left-most position of the strip, while the last
word is at the right-most side. Each word in a vector can contain one or several pixels. A 32 bit for example can
contain four 8 bit pixels which are on different vertical positions (line O ... line 3). The pixel with byte number 0,
which contains the eight least significant bits, is at the top position while the pixel with byte number 3 is at the
bottom position. This arrangement is consistent with the industry norms where the x-axis is increasing from left
to right while the y-axis is increasing from top to bottom. A very important feature of the Imagine is that is can
access these 2-dimensional vectors or stripes with the starting point at any X,Y location in the image. This unique
feature allows a straight forward implementation of a very wide range of graphics and image processing func-
tions.

12.1.3 The usage of the image mask

A strip drawn by a two-dimensional vector has a rectangular nature and only few graphics primitives are
rectangular. Characters, Polygons, Circles or arbitrary shaped objects cannot efficiently be drawn with rectangles.
In many cases a graphical primitive can obscure other ones partly or wholly. A classical example are the 3D
textured triangles which overlap the triangles behind them. A character can be drawn with its background or its
foreground set to 'transparent' so that it shows the image below it. Graphics standards like Microsoft's Direct
Draw define transparent colours, pixels which have a transparent colour are not written when the image is copied
(source transparency) or can be overwritten by another image (destination transparency).

12.1.4 The image mask and its construction

All previously mentioned drawing operations can be realised by introducing a (2-dimensional) Image mask.
Objects and graphics primitives are rendered with the aid of this mask which is stored in up to eight 32 bit
registers. The actual decision of pixels is

written or not to the destination is hold in the Image mask registers. The registers contain mask bits for a total of
64 times 4 pixels. The mask bits represent a Boolean decision related to many elementary situations listed below.
In practice the final image mask used to render a graphics primitive will be the result of several of these Boolean
decisions combined together.

The pixel is falling inside OR outside the area occupied by a polygon (which may be self intersecting)
The pixel is within a certain colour range OR falls outside the range.

The alpha value of a pixel is within a range OR falls outside the range.

The Z buffer value is before the closest pixel and behind the nearest visible point OR it is invisible.
The pixel belongs to the body of a character OR to the background of the character.

The pixel is within the window OR it falls outside the window.

The pixel is inside OR outside a scanline defined object.

* & 6 6 & o o

Imagine Processor

Imagine 2 Multi Media Processor

12. The Image Mask Generator

Example how the mask generator can be used to
draw Depth buffered Stippled Triangles

—(Window X min /max
Window Y min /max

The Spanline registers define
the outlines of the triangle

Spanline Delta Start

Spanline 0 Start/ End

Spanline Delta End

[——

Spanline 1 Start/ End

Spanline 2 Start/ End

Spanline 3 Start/ End
e ——

Spanline Y min/ max

Overlap

N triangle

v | T

v l

4

The Window is defined by
the Window registers

Imagine Processor

Spanline Length (-1)
Spanline Address

Range mask 0

Range mask 1

S

Range mask 2

The Range Mask contains the result of the
Depht buffer test (overlapping triangle)

Range mask 3

Complex mask 0

Complex mask 1

Complex mask 2

The Complex Mask is used in this example to
hold the Polygon Stipple pattern

[

Complex mask 3

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.2 The image mask control registers

13

2.1 The mask generation control registers:

These registors=de 2 he Lo ne : : atset Tegisters or
alternatively via Image Mask Generator Instructlons Wthh deﬁne the contents w1th the lower 32 bit of the
Instruction code.

12.2.2 The Window mask control registers

MSK_Window_X and MSK_Window_Y

These two registers contain the definition of the drawing window. They can be used to disable drawing outside a
particular rectangle. MSK_Window_X contains the minimum X co-ordinate in its highest 16 bits and the
maximum X co-ordinate (-1) in the least significant 16 bits. MSK_Window_Y does the same for the Y co-
ordinates. The 16 bit values are interpreted as signed integers. Negative X and Y co-ordinates do exist and are
handled correctly when compared with the contents of these registers. The Window registers should not contain
negative values. The valid co-ordinate range is defined from -32768,-32768 to +32767,+32767. The minimum
value contains the first pixel belonging to the window while the maximum points to the first pixel outside the
window.

12.2.3 The Spanline mask control registers

MSK_SpanStart, MSK_SpanEnd, MSK_SpanLines,

Two sets of four spanline registers contain the 32 bit values in signed 16.16 fixed point which represent the
startpoints and endpoints for four horizontal spanlines lines. MSK_SpanStart, MSK_SpanEnd provide post
incremental access to these registers which are indexed by the SPAN_RW_PTRJ[1:0] field in control register
MSK_Control1 [5:4] The control register MSK_SpanLines reads the 16 bit integer parts of both Start and End
value when read and writes the same fields when written. (The fractional parts are set to zero)

MSK_Spanline_Y

This register defines a vertical window for spanline objects . MSK_Spanline_Y contains the minimum Y co-
ordinate in its highest 16 bits and the maximum Y co-ordinate (-1) in the least significant 16 bits. This vertical
window is combined with the spanline start and end points to define a spanline object

MSK_DeltaStart, MSK_DeltaEnd

define 32 bit values in signed 16.16 fixed point format which can be added to 1, 2 or all 4 spanline Start registers
and corresponding spanline End registers. The instruction code spanlines++ will activate this function which
takes as many cycles as there are spanline Start / End register pairs which are incremented. The registers to be
incremented are selected with the MASK_MOD_MAP[2:0] field in control register MSK_Control1 [22:20] which
can select the four individual lines, line pair 0,1 or pair 2,3 or all four lines at once

MSK_SpanLength, MSK_SpanAddr

These two read only registers contain calculated values which can be copied directly into the SEQ_Repeat
control register (MSK_SpanLength) and bits [15:0] of the VAU Imagel control register (MSK_SpanAddr). The
first value represents the difference between the lowest spanline Start co-ordinate and the highest spanline End
co-ordinate of all the spanlines which are enabled by the MASK_MOD_MAP[2:0] field in control register
MSK_Control1 [22:20] This number is equal to the repeat count needed to write 1, 2 or 4 spanlines with a single
vector. The second value is equal to the lowest spanline Start co-ordinate and thus represents the start X co-
ordinate of the vector mentioned above. Remark: the lowest spanline Start co-ordinate and the highest spanline
End co-ordinate are selected by looking at the sign of the Start slope and the End slope which are defined by
MSK_DeltaStart, MSK_DeltaEnd This method is designed for (and thus limited to) triangles for 3D graphics
applications

Imagine Processor

12. The Image Mask Generator

Imagine 2 Multi Media Processor

cr88: MSK_Control1 Mask generator control register 1
I ‘00000000 MASKMOD| MASK | MASK | MASK ENABLES| €00’ CPLX ‘00" SPAN ‘00" MASK
M MAP SIZE [LWPTR 13:01 ASM RW-PTR RW-PTR
E [2:0] (101 | [10] |wMm SM RM CM [1:0] [1:0] [1:0]
31[30]29]28]27]26]25] 242322 [2120 19] 18] 17] 16 15[14131211]10] 08 [7]6[s5]4[3]2]1]0
cr89: MSK_Control2 Mask generator control register 2
00000000 RANGE INPUT RANGE[‘00’ | RANGE | R [RANGE[‘0'[CPLX [0'[sF LS
POINTER OP INPUT MAP | I SEL ALPHA [1:0] [1:0]
[5:0] [1:0] [2:0] o [0 [1:0]
31[30]29]28]27]26[25] 242322 [2120 19]18]17[16] 15[1413 1211 [10] 9[8[7]6[5]4[3]2]1]0
cr90: MSK_Window_X Window X minimum / maximum
WINDOW X CO-ORDINATE MINIMUM VALUE WINDOW X CO-ORDINATE MAXIMUM VALUE
[15:0] [15:0]
31 |30|29|28\27\26|25|24|23|22|21 |20\19\18|17|16|15|14|13|12\11 \10|9 | 8 | 7 | 6 | 5 |4\ 3 \2 | 1 |o \
cro1: MSK_Window_Y Window Y minimum / maximum
WINDOW Y CO-ORDINATE MINIMUM VALUE WINDOW Y CO-ORDINATE MAXIMUM VALUE
[15:0] [15:0]
31 |30|29|28\27\26|25|24|23|22|21 |2o\ 19\18|17|16| 15|14|13|12\ 11 \10| 9 | 8 | 7 | 6 | 5 |4\ 3 \2 | 1 |0 \
MSK_Spanline_Y Spanline Y minimum / maximum
SPANLINE Y CO-ORDINATE MAXIMUM VALUE

[15:0]

cro3:
SPANLINE Y CO-ORDINATE MINIMUM VALUE

[15:0]
31|30|29|28\27]26|25|24|23|22|21|2o\19]18|17|16|15|14|13|12\11]10|9 |8|7|6|5 |4\ 3]2 |1 |o\

Polygon Start Co-ordinate entry

MSK_PolyStart
POLYGON START CO-ORDINATE (16.16 FIXED POINT)
[31:0]

cro4:

Polygon End Co-ordinate entry

MSK_PolyEnd
POLYGON END CO-ORDINATE (16.16 FIXED POINT)
[31:0]

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9 |8|7|6|5 |4\ 3 \2 |1 |0

cr95:

31 |3o|29|28\27]26|25|24|23|22|21 |20\ 19]18|17|16| 15|14|13|12\ 11]10| 9 | 8 | 7 | 6 | 5 |4\ 3]2 | 1 |o \
Polygon Start & End co-ordinates
POLYGON END CO-ORDINATE (16 BIT FIXED POINT)
[15:0]

cr96: MSK_PolyCoord
POLYGON START CO-ORDINATE (16 BIT FIXED POINT)
[15:0]

31|30|29|28‘27’26|25|24|23|22|21|20‘19’18|17|16|15|14|13|12‘11’10|9 |8 | 7 | 6 | 5 |4\ 3]2 |1 |0 \
Spanline Start Co-ordinates (4 registers)

cro7: MSK_SpanStart
SPANLINE START CO-ORDINATE (16.16 FIXED POINT)
[31:0]

31|30|29|28\27\26|25|24|23|22|21|2o\19\18|17|16|15|14|13|12\11\10|9 | 8 | 7 | 6 | 5 |4\ 3 \2 |1 |0 \
Spanline End Co-ordinates (4 registers)

MSK_SpanEnd
SPANLINE END CO-ORDINATE (16.16 FIXED POINT)
[31:0]

cr98:

Spanline Start & End co-ordinates (4 registers)
SPANLINE END CO-ORDINATE (16 BIT FIXED POINT)
[15:0]

31|3o|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9|8|7|6|5 |4\ 3]2|1 |o\

cr99: MSK_SpanLines

SPANLINE START CO-ORDINATE (16 BIT FIXED POINT)
[15:0]

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |o\

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

cr100: MSK_DeltaStart Slope of the Spanline Start Co-ordinates
SLOPE OF THE SPANLINE START CO-ORDINATES (16.16 FIXED POINT)
[31:0]

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9 |8|7|6|5 |4\ 3 \2 |1 |0

cr101: MSK_DeltaEnd Slope of the Spanline End Co-ordinates
SLOPE OF THE SPANLINE END CO-ORDINATES (16.16 FIXED POINT)
[31:0]

31|3o|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9|8|7|6|5 |4\ 3]2|1 |o\

cr102: MSK_SpanLength Spanline Vector Length (-1)
'0000 0000 0000 0000' SPANLINE VECTOR LENGTH (-1) +32383..-32384
[15:0]

31|30|29|28‘27’26|25|24|23|22|21|20‘19’18|17|16|15|14|13|12‘11’10|9 |8|7|6|5 |4\ 3]2 |1 |o\

cr103: MSK_ SpanAddr Spanline Vector X Co-ordinate
SPANLINE VECTOR SPANLINE VECTOR X CO-ORDINATE SPANLINE VECTOR X CO-ORDINATE
[15:0] [15:0]
CO-ORDINATE

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\

cr104: MSK_CplxAlpha Complex Mask registers (4 x 2 registers)

COMPLEX MASK REGISTERS
4 times [63:0]

63|62|61 |60\59]58|57|56|55|54|53|52\51]50|49|48|47|46|45|44\43]42|41 |40|39|38|37|36\35]34|33|32\

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\

cr105: MSK_RangeClip Range Mask registers (4 x 2 registers)

RANGE MASK REGISTERS
4 times [63:0]

63|62|61 |60\59\58|57|56|55|54|53|52\51 \50|49|48|47|46|45|44\43 \42|41 |40|39|38|37|36\35\34|33|32\

31|3o|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9|8|7|6|5 |4\ 3]2|1 |o\

cr106: MSK_Transp Transparent Mask registers (4 x 2 registers)

TRANSPARENT MASK REGISTERS
4 times [63:0]

63|62|61 |60\59\58|57|56|55|54|53|52\51 \50|49|48|47|46|45|44\43\42|41 |40|39|38|37|36‘35‘34|33|32‘

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |o\

cr107: MSK_Opaque Opaque Mask registers (4 x 2 registers)

OPAQUE MASK REGISTERS
4 times [63:0]

63|62|61 |60\59]58|57|56|55|54|53|52\51]50|49|48|47|46|45|44\43]42|41 |40|39|38|37|36\35]34|33|32\

31|30|29|28\27\26|25|24|23|22|21|20\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.2.4 The Range mask control registers

MSK_RangeClip

The four times two range mask registers contain Boolean data for a rectangular block of 64x4 pixels which can
be used for the construction of the transparent and opaque image mask registers. This mask can gather status
information of the Range Unit in the Multiplier / Accumulator, status information from the ALU, results from the
Depth compare test of the 3D graphics pipeline or Alpha test information from the Vector I/O unit. The eight
registers are accessible via control register MSK_RangeClip. If the mask is defined as 64 bit then the incremental
order is: maskline 0 bits [31:0], then bits [63:32], then maskline 1 bits [31:0], then bits [63:32] et cetera and
wrapping back to the first register at the end. The maskline number is given by the MASK_RW_PNT[1:0] field in
control register MSK_Control1 [1:0] and the bits are selected by the MASK_LW_PTR field in MSK_Control1
[16]. If the mask is defined as 32 bit then the MASK_LW_PTR field is ignored

12.2.5 The Complex mask control registers

MSK_CplxAlpha

These registers contain typically 64 4-bit values which can be used in more complex mask calculations.
Alternatively it contains Boolean data for a rectangular block of 64x4 pixels similar to the range mask registers.
In its native operation mode it works with 4 bit

values which can be sums of line crossings for complex polygons according to either the odd/even rule or the
winding rule. The eight registers are accessible via control register MSK_CplxAlpha. If the mask is defined as 64
bit then the incremental order is: maskline 0 bits [31:0], then bits [63:32], then maskline 1 bits [31:0], then bits
[63:32] et cetera and wrapping back to the first register at the end. The maskline number is given by the
MASK_RW_PNT[1:0] field in control register MSK_Control1 [1:0] and the bits are selected by the
MASK_LW_PTR field in MSK_Control1 [16]. If the mask is defined as 32 bit then the MASK_LW_PTR field is
ignored

MSK_PolyStart, MSK_PolyEnd, MSK_PolyCoord

These write only registers serve as entry points for calculated coordinate data and are used to calculate the area
covered by complex polygons. The co-ordinates are translated to 64 bit coverage masks which are send to the
Complex Mask generator. The Polygon Start coordinate and Polygon End coordinate entries (MSK_PolyStart,
MSK_PolyEnd) expect significant coordinate data in the 16 most significant bits (signed integer). The lowest 16
bits are considered as the fractional coordinate parts are discarded. Alternatively MSK_PolyCoord can be used to
enter coordinate data. This entry expects both a Start and an End coordinate entry in compacted form. The 16
most significant bits should contain the Start point. These registers can not be read back.

12.2.6 The Result mask registers

MSK_Transp: The Transparent Image Mask registers

The transparent Image Mask contains the calculated Image Mask result for a rectangular block of 4x64 pixels.
This Mask can be used for write operations in which case the bits can inhibit writing of individual pixels. The
bits are sent 4 at a time to the Vector Access Unit which write pixel vectors to external memory.

MSK_Opaque: The Opaque Image Mask registers
The opaque Image Mask contains the calculated Image Mask result for a rectangular block of 4x64 pixels. This
Mask can be used for write operations in which case the bits can select the 32 bit colour/mask data which is
written to external memory via the Vector Access unit.

The two sets of eight registers are accessible via control registers MSK_Transp and MSK_Opaque. If the mask is
defined as 64 bit then the incremental order is: maskline 0 bits [31:0], then bits [63:32], then maskline 1 bits
[31:0], then bits [63:32] et cetera and wrapping back to the first register at the end. The maskline number is
given by the MASK_RW_PNTI[1:0] field in control register MSK_Control1 [1:0] and the bits are selected by the
MASK_LW_PTR field in MSK_Control1 [16]. If the mask is defined as 32 bit then the MASK_LW_PTR field is
ignored

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.3 The function specific mask generators

The final image mask is constructed by combining four major function specific mask generators:

* The Window Mask
L The Spanline Mask
¢ The Range Mask

¢ The Complex Mask

All these units calculate various masks in parallel, which are then combined together by the mask assembly unit.
If any of the input registers for the various mask units is changed this will result in an immediate change of the
image mask. However the image mask registers which are used for the rendering itself will only take over the
new Mask when it is instructed to do so. This will typically be after the end of a vector draw operation and before
the start on the next one which will use the image mask registers. This means that you can construct the new
Image mask while the previous one is used in the drawing operation.

12.3.1 The Window mask generator

Window systems in general restrict the locations where a program may render its graphics primitives to
rectangles or regions consisting of a list of rectangles. The window mask generator generates a mask with bits set
to 1 for pixels inside the window.The mask can then later be used to enable or disable writing. The term
scissoring is used if this technique is used to simplify 'software only' clipping.

The simplest polygon, a trapezium (two trapezia make
one arbitrary triangle) can intersect in 48 different
ways with a rectangular window. All these cases have
to be taken into account and calculations have to be @l
done with subpixel precision to avoid artefacts. These
extra calculations give a lot of overhead in the case of
smaller polygons. The window mask generator allows
to define a rectangular area to which all rendering
primitives are clipped by hardware. The software _
renders all pixels of the primitive anyway but the _ Window
actual writing into Image memory is inhibited by the

hardware. Handling all polygons by scissoring can E"

have counter effects (imagine a triangle with a surface [——— [)
100 times that of your visible window) You can use

the |

following practical method: Do a simple test to give an I

indication of the size of the polygon. If the size is big T

then calculating intersection points with the window

rectangle does not represent a significant overhead. If Te
it is small, do a test if the polygon is either totally V...
outside the window or partly or wholly inside the ™ Vector to be drawn

window. If the latter is the case you can render it
directly with the scissoring technique.

MSK_Window_X: bits [31:16]: X minimum / bits [15:0]: X maximum coordinate. (16 bit signed)
MSK_Window_Y: bits [31:16]: Y minimum / bits [15:0]: Y maximum coordinate. (16 bit signed)

The minimum co-ordinates point to the first location which is inside the window while the maximum co-ordinates
point to the first location outside the window. The window co-ordinates are compared to the Reference X and Y
co-ordinates found in control register VAU_Image1: Image address pointer 1. This register contains the top left
position of the vector to be drawn or read from the image memory. If the Window Mask generator is enabled,
then the pixels outside the window are masked during a vector write operation. The end result needed for the
construction of the Transparent and/or Opaque mask needs 4 x 64 bits representing 4 lines of 64 pixels. The 256
bit mask can be used in the Mask assembly unit in which it is combined with the result from the other mask
generators.

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.3.2 The Spanline mask generator

The purpose of Spanlines: Many basic graphics primitives including convex polygons, can be defined with a
Spanline representation. A spanline is a horizontal line with a start point and an end point. A spanline shape
defines a list of start and end points of horizontal lines on top of each other.

An arbitrary shape can be represented

with a single spanline shape if no The Spanline registers define

. MSK_DeltaStart the outlines of the triangle MSK_DeltaEnd
horizontal line contains disjunct areas. If
this is the case the shape can be o > D >

. . MSK_ SpanStart [0
represented by a combination of several nEnd [0] |

]
spanline shapes. A pixel belongs to a] [nEnd [1]

]

]

[
| MSK_SpanStart [1
[

spanline by definition when it lays on | MSK_SpanStart [2] [Ty

top of or after the start point and before [MSK_SpanStart [3 -W

the scan line's end point. The Image

Mask generation unit contains two sets

of 4 registers which each hold these start l
A

and end points for the 4 lines of the
Image mask. The Spanline Mask
generator combines these co-ordinates [

in combination with the Image address \ 4 | [
pointer (which points to the four 64 v l TU
pixel lines in Image memory which are Y| : v |
about to be updated and its special | ' v 'Y|
purpose hardware which of these 256 & y
pixels fall inside the defined spanline LT PP Oy PP R PRTSTTT RO >

shape. All the programmer has to do is
to supply the co-ordinates, and the

hardware does the rest!

The Image Mask is automatically updated for the next 4x64 pixels if you update Image Address pointer 1:
control register VAU_Image1. This means a significant reduction of overhead in the time critical inner loop of the
algorithm. An update of the X,Y reference address which points to the X,Y location from where data will be
written causes an immediate update of both the Window Mask and the Span Mask.

Defining the Spans: The Span Mask generator has two sets of four registers, one set for each horizontal line.
Each line has a 32 bit start point register and a 32 bit end point register, both expect signed 16.16 fixed point
values. The start point is the first point which is included in the span and is located at the left side. The end point
is the first point which is excluded from the span and is located at the right side. A top and bottom limit can be
dined with the MSK_Spanline Y control register which contains the minimum and maximum values.

Accessing the Spanline registers: The way to write to the Spanline register is to use the MSK_SpanStart and
MSK_SpanEnd control registers together with the SPAN_RW_PTR[1:0] index in MSK_Control1[5:4]. The index
select any of the the four spanlines and is auto-incremented after a read or a write. The control registers expect a
32 bit X co-ordinate in signed 16.16 format. (The lower 16 bit are fractional). The control registers
MSK_SpanlLines can read the 16 significant bit of both SpanStart and SpanEnd simultaneously or write the same
fields in a single write access. (zeroes file the fractional parts).

Incrementing the Spanline registers: The four SpanStart and SpanEnd registers can be incremented by the
Delta values stored in the MSK_DeltaStart and MSK_DeltaEnd control registers. One or more of the four
spanlines can be incremented depending of the contents of the MASK MOD MAP[2:0] field in

MSK_Control1[22:20]. The operations takes the same number of cycles as the number of spanlines which is
incremented.

Obtaining information for Vector processing: Two read only registers provide information for Vector
processing: MSK SpanAddr contains the Start X co-ordinate of a vector which contains one, two or four scan-
lines. This value can be moved to VAU_Image1. Control register MSAK SpanLength contains the value which
can be placed in the SEQ Repeat register and which defines the length of the vector from the start of the left
most Spanline start co-ordinate to the end of the right-most Spanline end co-ordinate. A "Bressenham Delta is
send to the 3D graphics unit to select between the two Delta value used for the Bressenham interpolation by this
unit The MASK_MOD_ MAP[2:0] field defines the Spanlines which are used for all these functions.

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.3.3 The Range mask generator

In the cases as described so far, the mask was derived from geometric information. Co-ordinates are translated to
individual bits in the mask registers. These masks then determine the shape of a graphics primitive. Another
important class of masks is represented by the Range mask generator. Here the contents of the mask is not deter-
mined by geometric information but by some properties of the contents of the individual pixel. The most simple
case is a character bitmap font. The bits in the bitmap control if the pixel is written or not, or if it is written in
either the foreground or the background colour.

The Range mask Generator

Range Unit —|

ik IFIagt IFlagt

Depth Unit —p»{ _'NPUL 1 Inpu

VIO —p Selector Function

—
¢ Line O
I~ Line 1
@ Line 2
¢ Line 3
Bit 0 Bit 63

Moving Window

The Range Mask generator has the ability to assemble the boolean results flags from vector operations into the
Range mask. Multiple results can be Or-ed or AND-ed together. The results from four different units can be
selected. The RANGE_SEL[1:0] field in MSK_Control2[9:8] determines which of the four is used.

1) The status flags from the Multiplier/ Accumulator (4x8, 2x16 or 32 bit)
Within the multiplier / accumulator you can select the following options:
Inside, Higher, Lower, Wrong, not Inside, not Higher, not Lower, not Wrong

2) The status flags from the ALU
Within the ALU you can select the following options: (4x8, 2x16 or 32 bit)
Zero, Minus, Carry, Sgncmp, not Zero, not Minus, not Carry, not Sgncmp

3) The results from the 3D graphics Depth buffer compares (2x16 signed/unsigned, 32 signed/unsigned/float)
Within the Depth Compare unit you can select the following 'Open GL' options for the Depth Test:
Never, Less, Equal, Less/Equal, Greater, not Equal, Greater/Equal, Always
(A parallel options is a compare with the front clipping plane)

4) The result from the Alpha test in the VIO (32 bit aRGB values)
Within the VIO unit you can select the following 'Open GL' options for the Alpha Test:
Never, Less, Equal, Less/Equal, Greater, not Equal, Greater/Equal, Always
(Parallel options are a test on Alpha not Zero and a compare of Alpha with a dither value)

The four bits from the Range Clip unit in the Imagine data processor can be written to a location in the Image
Mask register. The second Image mask control register contains a 6 bit counter: RANGE_INPUT_POINTER[5:0]
which can be set by writing to the control register or using an image mask instruction to modify the control
register. see MSK_Control2[23:18]. The value contained in the counter points to the location where the four
comparison result bits will be written. Valid values are in the range from 0 to 63. The pointer should start at 0
according to standard conventions which define the most significant bit in a word as the left-most pixel on the
screen. The counter is post-incremented after the bits are inserted. The fields RANGE_OP[1:0],
RANGE_INPUT_MAP[2:0] and RIO determine which operations are performed during the construction of the
Range mask. These fields can be found in MSK_Control2[17:10]

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

12.3.4 The Complex mask generator.

This unit can be used to generate pixel masks for complex, self intersecting polygons These polygons can for
instance represent scaleable Latin or Japanese characters, It is more complicated to determine which pixels fall
inside and which fall outside the body of the polygon. Two different definitions exist to specify the inside area of
a complex polygon: The Odd/Even rule and the Winding rule. The definitions for these two are as follows:

Odd/Even rule: A point belongs to the polygon if an infinitely long half line in any arbitrary direction with
its starting point in the tested crosses an odd number of edges.

Winding rule: A point belongs to the polygon if an infinitely long half line in arbitrary direction with its
starting point in the tested point crosses an unequal number of left winding and right winding edges.

Odd/Even rule Winding rule

All graphics standards can select between the two rules demonstrated above.

The Complex Polygon Mask generator resolves the membership question for 64 pixels on a horizontal line. The
programmer needs to provide the Generator with the crossing points of the edges and the infinite horizontal line
which contains the set of pixels under test. An entire 64 pixel line with 12 crossings can take as few as 6 cycles
to resolve.

Both the Odd/Even rule and Winding rule allow an infinite number of crossing points. The Winding rule

evaluation has the practical limitation that the sum of left and the sum of right winding edges may not differ more
than 15, which will not be the case in any practical situation.

Imagine Processor

Imagine 2 Multi Media Processor 12. The Image Mask Generator

The image mask generator instructions

INSTRUCTION WORD
‘1101 SET CA RC 1 1 T| O 1 1
CTRL | MASK | MASK |R | M| 1|1 |s]|s
(0] | o] | (o] [M{M|M|{M|L|P

63|62|61 |60\59\58|57|56|55|54|53|52\51 \50|49|48\

INSTRUCTION WORD: New control register contents for MSK_Control1

i 00000000’ MASKMOD| MASK | MASK [MASK ENABLES| <00' | CPLX | “00' | SPAN [<00' | MASK
M MAP SIZE | LWPTR [3:0] ASM RW-PTR RW-PTR
E [2:0] [1:0] | [1:0] WM SM RM CM [1:0] [1:0] [1:0]

31|30|29|28‘27’26|25|24|23|22|21|20‘19’18|17|16|15|14|13|12‘11’10|9 |8|7|6|5 |4\ 3]2 |1 |o\

INSTRUCTION WORD: New control register contents for MSK_Control2

00000000’ RANGE INPUT RANGE| <00’ RANGE | R [RANGE[‘0'| CPLX | <0' | SPAN | LINE
POINTER opP INPUT MAP| T | SEL ALPHA FUNCT | SIZE
[5:0] [1:0] [2:0] o | [1:0] [1:0] [1:0] | [1:0]

31|30|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9 |8|7|6|5 |4\ 3]2 |1 |o\

An Image Mask Instruction can be a combination of up to 8§ instructions separated by commas. The individual
instructions correspond with the 8 fields in the Instruction word bit [59:49]. The instructions of the Image Mask
Generator define Mask Assembly Instructions for the 2 result masks: Transparent and Opaque masks, Set/ Reset
instructions for Function Specific Masks, information for the 2 Image Mask control registers, et cetera.

List of assembly mnemonics:

IC[59:58]: mask_control1(option list) or mask_control2(option list)

IC[57:56]: reset_complex_alpha_mask or set_complex_alpha_mask or invert_complex_alpha_mask
IC[55:54]: reset_range_clip_mask or set_range_clip_mask or invert_range_clip_mask
IC[53]:mask_modification_map++

IC[52]:range_input_map++

IC[51]:make_transparent_mask

IC[50]:make_opaque_mask

IC[49:48]: spanlines++

SET_CTRL: Set contents of Control Registers:

Control register information can be written directly into
one of the two control registers of the Image Mask
generator. The definition of the parameters which can be
supplied with these functions is given in the paragraphs

SET_CTRL[1:0] = IC[59:58]

which describe the mnemonics of the control registers 00: noop (default
itself. The control registers are modified in the same cycle 01° mask controll (option list)
in which the instruction is executed. 10: mask_control2 (option list)

Imagine Processor

Imagine 2 Multi Media Processor

RC MASK and CA MASK

These fields enable some simple operations to be
performed on the Range Clip Mask and the Complex/
Alpha Mask The Range/Clip Mask and the
Complex/Alpha mask can be initialised to 0 or 1 or
alternatively they can be inverted (all 128 bits at once).
This action takes place at the same cycle in which the
instruction is issued.

IRM and IMM: Post Increment Fields

The control registers contain two fields which can be
incremented with the instruction word: The Range Input
Mapping and the Mask modification mapping. The
increment takes place one cycle after the instruction is
issued. IRM post increments the value of the
RangeInMap field (reg #09, bits 11..13) in the next cycle.
IMM post increments the value of the Mask Modification
Mapping field (reg #08, bits 20..22) in the next cycle.

The post-increment operations do not influence all the bits
in the field:

001: Do not modify any bit
01x: Modify only bit x
Ixx: Modify only bits xx

TIM and OIM Assemble the result masks

Both the Final Masks (the Transparent and Opaque mask)
can be assembled by the a Mask instruction. They are
assembled one cycle after the instruction is issued. This
means that a single instruction can set a control register,
initialise or invert any of the two input masks and then
generate the mask with the newly provided data. TIM
assembles the Transparent Image Mask in the next cycle.
OIM assembles the Opaque Image Mask in the next cycle.

ISL_(post) Increment the Span lines

The four Spanlines each have a Start X co-ordinate and an
End X co-ordinate. These values are defined as 32 bit
fixed point values with the binary point in the middle
(16.16) The increment function controlled with the ISL
flag will add a Start Delta value and an End Delta value to
all Spanlines which are selected with the MASK
Modification MAP (MSK_Control1[22:20]). This
post-operation does not influence the assembly of the
Transparent or the Opaque mask caused by the current
instruction

Imagine Processor

12. The Image Mask Generator

RC_MASK[1:0] =

00:
001
10
11

IC[55:54]

no op (default)
reset_range_clip_mask
set_range_clip_mask
invert_range_clip_mask

CA_MASK[1:0] =

IC[57:56]

00: no op (default)

01: reset_complex_alpha_mask
10: set_range_clip_mask

11: invert_complex_alpha_mask
IMM = IC[53]

0: no op (default)

1: mask_modification_map++

IRM = IC[52]

0: no op (default)

1:

range_input_map++

Imagine 2 Multi Media Processor
Detailed description of Image Mask control register 1. (cr88)

12. The Image Mask Generator

cr88: MSK_Control1
I €00000000' MASKMOD| MASK [MASK | MASK ENABLES| ‘00" | CPLX [‘00" | SPAN [‘00" | MASK
M MAP SIZE |LWPTR 13:01 ASM RW-PTR RW-PTR
E [2:0] [10] | [1:0] |wM SM RM CM [1:0] [1:0] [1:0]

31[30]29]28]27]26]25] 242322 [2120 19] 18] 17] 16 15[14131211]10] 08 [7]6[s5]4[3]2]1]0

The instruction mask_controll() needs a number of parameter, any of the following parameters may be given,
separated by commas, when this instruction is used. They parameters are optionally. The default value is used

when a parameter is omitted.

List of assembly mnemonics for MSK_Control1:

cr88 [31]: little_endian (default) or big_endian

cr88 [22:20]: make_lines_0123 or
make_lines_01 or make_lines_23 or
make_line_0 or make_line_1 or make_line_2 or make_line_3

cr88 [19:18]: masksize_64 (default) or masksize_32

cr88[15]: window

cr88[14]: spanline

cr88[13]: range or clip

cr88[12]: complex or alpha

cr88 [9:8]: straight (default) or odd_even or winding

cr88 [5:4]: spanline(0) (default) or spanline(1) or spanline(2) or spanline(3)
cr88 [1:0]: maskline(0) (default) or maskline(1) or maskline(2) or maskline(3)

(cr88 [16]==0)
(cr88 [16]==1)

maskline(0, 31:0) or maskline(1, 31:0) or maskline(2, 31:0) or maskline(3, 31:0)
maskline(0, 63:32) or maskline(1, 63:32) or maskline(2, 63:32) or maskline(3, 63:32)

MASK_RW_PTR()
MASK_LW_PTR()

Some mask register addresses have multiple registers for
multiple spanlines. The masks for different lines are

accessed with the use of two entry pointers: 000 maskline(0)
010 maskline(1)
Maskline_pointer = Mask Read/Write Pointer 100 maskline(2)
This field is used as a selector when any of the four mask |11 0 maskline(3)
register sets. are accessed. (Range mask, Complex mask, .
Transparent mask, Opaque mask). The field represents a 000 maskI!ne(O, 31:0)
two bit auto increment pointer which is used as a reference 010 maskline(1, 31:0)
100 maskline(2, 31:0)

for read and write accesses to the Complex registers, The

) . ” 110 maskline(3, 31:0)
Range registers, the Transparent image mask registers and

the Opaque image mask registers. The pointer is post- 001 maskline(0, 63:32)
incremented after an access to any of these registers. 011 maskline(1, 63:32)

101 maskline(2, 63:32)
Spanline_pointer Span line Read/Write Pointer 111 maskline(3, 63:32)

This field is used as a selector when the four spanline

line O bits[31:
line 1 bits[31:
line 2 bits[31:
line 3 bits[31:

line O bits[31:
line 1 bits[31:
line 2 bits[31:
line 3 bits[31:

line 0 bits[63:
line 1 bits[63:
line 2 bits[63:
line 3 bits[63:

MSK_Control1[1:0]
MSK_Control1[16]

0]
0]
0]
0]

0]
0]
0]
0]

32]
32]
32]
32]

registers are accessed. The field represents a two bit auto
increment pointer which is used during read and write

actions of the Spanline Coordinate registers. The pointer is SPAN_RW_PTR ()

post-incremented after a spanline register access or a

Polygon End Coordinate Entry access if the Entry function 00 spanl!ne(O)
(cr4l) has defined the Entry points as inputs for the 01 spanline(1)

. (ry p P 10 spanline(2)
Spanline register. 11 spanline(3)

access line 0
access line 1
access line 2
access line 3

MSK_Control1[5:4]

Imagine Processor

Imagine 2 Multi Media Processor

The Final Image Mask Assembly functions:

The final Image Mask which is represented by the
Transparent Image Mask and/or the Opaque Image Mask
is assembled from four function specific Mask assembly
Units. The Image Mask assembly function defines which
of these units are used and how they are used: Four bits,
one for each of the four function specific units defines if
the particular unit is used or not.

WM: Window Mask Enable.
SM: Span Line Mask Enable.
RM: Range Mask Enable.
CM: Complex Mask Enable.

'1": Use Mask, '0'do not use Mask.

Mnemonics

A mask is selected by adding its mnemonic to the
parameter list of the function mask_control1(). The
mask is deselected if it is omitted from the parameter list.

Complex Mask registers Usage

This parameter defines the use of the contents of the
complex/ alpha mask for the assembly of the Transparent
and/or Opaque masks. (The default value is 00) The
Complex Mask register contents can undergo an extra
processing step before it is used in the construction of the
final Image Mask. Four bits on equal bit positions in the
four registers are considered as a four bit data word. The
function defines how these four bits are mapped to the
four bits used for the final mask assembly. The straight
function uses the four Complex bits directly. This option
should be used if the mask is used for alpha plane
calculations or as a simple clip mask which is written
straight into the complex alpha mask. The odd_even and
winding functions are typically used during the rendering
of complex polygons. The odd_even function sets all four
bits to logical 'l' if the four bit input value is 'odd',
otherwise it resets all four bits to '0". The winding function
operates in a similar way: all four bits are set to 'l if the
four bit input value is 'not zero', otherwise it resets all
four bits to '0".

Mask Modification Mapping

This field determines which register from either the
Transparent Image Mask and the Opaque image mask are
updated. This field can be post-incremented with a bit in
the Image Mask Generation Instruction word. The post-
increment operation does not influence all the bits in the
field

Imagine Processor

12. The Image Mask Generator

WM = MSK_Control1[15]

0: do not use the Window Mask
1: window

SM MSK_Control1[14]

0: do not use the Spanline Mask
1: spanline

RM MSK_Control1[13]

0: do not use the Range Mask
1: range or clip

CM MSK_Control1[12]

0: do not use the Complex Mask

complex or alpha

00
01
10

CPLX_ASM[1:0] = MSK_Control1[9:8]

straight straight mask usage
odd_even complex odd/even rule
winding complex winding rule

000:
001:
010:
011:
100:
101:
110:
111:

MASK_MOD_MAP[2:0]
= MSK_Control2 [22:20]

none (default)
make_lines_0123
make_lines_01
make_lines_23
make_line_0
make_line_1
make_line_2
make_line_3

Imagine 2 Multi Media Processor 12. The Image Mask Generator

Detailed description of Image Mask control register 2. (cr89)

cr89: MSK_Control2
00000000’ RANGE INPUT RANGE ‘00" RANGE R [RANGE| ‘Q'| CPLX | <0' SF LS
POINTER (0)3 INPUT MAP | 1 SEL ALPHA [1:0] [1:0]
[5:0] [1:0] [2:0] O | [1:0] [1:0]

31[30]29]28]27]26]25] 242322 [2120 19]18]17[16] 15[14131211]10] 08 7]6[s5]4[3]2]1]0

The instruction mask_control2() needs a number of parameter, any of the following parameters may be given,
separated by commas, when this instruction is used. They parameters are optionally. The default value is used
when a parameter is omitted.

List of assembly mnemonics for MSK_Control2

cr89 [23:18]: range_pointer(0) (default) or range_pointer (1) or ... or range_pointer (63)
cr89 [17:16]: and_range_flags or or_range_flags or copy_range_flags
cr89 [13:10]: copy_to_0123 or

and2_to_01 orand2_to_23 or or2_to_01 or or2_to_23 or
and4_to 0 orand4_to_ 1 or and4_to 2 or and4_to_3 or
ord_to_0 orord_to_1 or ord_to_2 or ord_to_3

cr89 [9:8]: range_flags (default) or alu_flags or depth_flags or vio_flags
cr89[6:5]: data_inc (default) or data_dec or mask_incinc or mask_incdec
cr89[3:0]: do not use for new code (see Imagine 1 manual)

Complex/ Alpha Mask generation Function

This parameter defines what operation is executed in the Complex/Alpha mask when data is written to the
Polygon Entries. MSK_PolyStart (cr94), MSK_PolyEnd (cr95) and MSK_PolyCoord (cr96). These entries start
functions in the Complex / Alpha Mask generator. The Complex/Alpha mask ALU works on 64 nibbles of 4 bit
each. These nibbles can be set and reset with the instruction word and incremented and/or decremented with data
input. Two 64 bit masks can be generated via these entries. MSK_PolyStart entry will generate the 64 bit Start
mask when written to. It expects a spanline start X co-ordinate with a 16.16 fixed point format.

The upper 16 bit are compared with the 16 X co-ordinate

bits from VAU_Image1 (crl16). Bit 0 of the mask

corresponds with the Start co-ordinate written to CPLX_ALPHA[1:0] = MSK_Control2 [6:5]
MSK_PolyStart (cr94). Bit 1 corresponds to the next

pixel (at the right side) et-cetera. The corresponding 00 data_inc increment. with data
Mask bits are set to '0' if the are before (left) of the 01 data_d_ec_ _decrgmentlwnh data
s 10 mask_incinc inc/inc with mask(s)
reference value from VAU_Image1 and are set to 'l' if the . . .
11 mask_incdec inc / dec with mask(s)

are behind (right) of the reference value. This array of 64
single bits is added to the array of the 64 nibbles of the
Complex / Alpha mask when either mask_incinc or

mask_incdec are selected. A similar second 64 bit mask is generated by writing to MSK_PolyEnd (cr95). This
64 bit mask is added to the array of the 64 nibbles of the Complex / Alpha mask when mask_incinc is selected
and subtracted when mask_incdec is selected. A write operation to MSK_PolyCoord (cr96) will generate both
64 bit masks. This entry expects the 16 bits Start X co-ordinate in bits [31:16] and the End X co-ordinate in bits
[15:0]. An alternative usage is to supply the mask directly to MSK_PolyCoord (cr96). The 32 bit input data is
now added (option data_inc) or subtracted (option data_dec) as an array from 32 single bits. It is the
MASK LWPTRJ1:0] field MSK_Control1 [17:16] which decides which 32 nibbles are modified. A '0' modifies
nibbles [31:0] while a '1' modifies nibbles [63:32]

Imagine Processor

Imagine 2 Multi Media Processor

The Range mask flags Select function

The Range Mask Input Functions

12. The Image Mask Generator

RANGE_SEL = MSK_Control2 [9:8]

00 range_flags
01 alu_flags
10 depth_flags
11 vio_flags

from multiplier

from ALU

from the 3D pipeline
from the vector 10 unit

The control fields of the Range Clip Mask define how incoming status flags from the Range Clip unit are inserted
into the Range Mask. The four flags undergo a transformation before being applied to the Range Mask. The
mnemonics defines two fields with one mnemonic. (RANGE_INPUT_MAP[2:0] and RIO)

RANGE_INPUT_MAP[2:0]:

The four Range flags selected from the Range Clip Unit,
The ALU, The Depth Test unit or the Vector IO unit can
be mapped in various ways to the four bits which are
stored in the four Range mask registers. The four flags can
be and-ed / or-ed to modify one mask register bit in one
mask-register, two flags can be and-ed / or-ed to modify
one bit in one mask register while the other two flags are
also and-ed /or-ed to modify the same bit in another mask
register or the four flags are independently applied to bits
in all four mask registers. The RANGE_INPUT_MAP field
in the control register can be post-incremented with a
Mask

instruction. This post-increment operation only influences
certain bits in the field depending on the MSB bits:

RIO: Range Input Operation:
This is the operation used to combine 2 or 4 flags when
used for 1 line. A'0' ANDs flags and a '1' ORs flags.

RANGE_INPUT_MAP[2:0] and RIO
= MSK_Control2 [13:10]

000.0 no-op (default)

001.x copy_to_0123

010.0 and2_to_01 010.1 or2_to_01
011.0 and2_to_23 011.1 or2_to_23
100.0 and4_to_0 100.1 or4_to 0
101.0 and4_to_1 101.1 or4_to_1

110.0 and4_to_2 110.1 or4_to_2
111.0 and4_to_3 1111 or4_to_3

Increment the RANGE_INPUT_MAP[2:0]:

001 Do not Increment
01X Increment only bit 0
1XX Increment bits [1:0]

to 0
> O to_1' » and2_
7| a4 WI _r P
(o]
4 to 3 Sces
| O 0—=2p > or2_

to_0

copy_to_0123

VVYY

RangeOp: Range Mask Operation:

The newly arriving flags can be combined with the current
values in the Range/Clip registers. The status flags can
overwrite the old information of the Range Mask (copy)
but can also be combined with it (and, or):

Range Input Pointer

RANGE_OP = MSK_Control2 [17:16]

00: noop <default>

01: and_range_flags New = Old&Input
10: or_range_flags New = Old|Input
11: copy_range_flags New = Input

This parameter defines the bit position in the Range/Clip masks where the status flags from the Range unit, the
ALU, the Depth buffer compare unit or the Vector I/O unit are inserted. The default value is 0. The input
information will be stored or merged with existing information. This pointer is post-incremented after each time

that flags are received by any of the mentioned units.

Mnemonics: range_pointer (0) ... range_pointer (63)

Imagine Processor

(MSK_Control2 [23:18])

Imagine 2 Multi Media Processor 12. The Image Mask Generator

AN EXAMPLE OF A GENERATED MASK:

Imagine Processor

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Chapter
13. VECTOR ACCESS UNIT

T he Vector Access Unit
Can access external memory in vector mode. Simultaneous input and output

operations are possible via the internal bi-directional fifo. Quad byte and Double
short accesses can be with bytes / shorts after each other or above each other.
Access can be non-aligned without speed penalty. Accesses can be in horizontal

direction or vertical direction.

User’s Manual 10/2/2008 page 139

Imagine 2 Multi Media Processor VLC decoder and dequantizer

User’s Manual 10/2/2008 page 140

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Introduction to the Vector Access functions.
Firstly the basic read and write instructions and how to utilise the two masking sources will be described:

'Quasi' Simultaneous read and write vector operations:

The vector access operations transfer vector data between the SDRAM or SGRAM memory and the Imagine
Processor core. The Imagine vector access unit supports peak data rates of 1.600 Gigabyte per second with a 200
MHz clock speed. The Processor can read and write (simultaneously) vectors from 1 to 64 (32-bit) words on a
horizontal line at a speed of one read word plus one write word per cycle.

Supported Memory Access Types

Vector accesses to memory can be both horizontal and vertical, The pixel types can be single 32 bit pixels, single
or double 16 bit pixels and single or quadruple 8 bit pixels.

The individual pixels in a word are on top of each for horizontal accesses and after each other for vertical
accesses with the least significant one at the top (hor) or left-most (ver) location. Accesses for multi pixel words
can be non-aligned without speed penalty

Horizontal Vector Accesses

32 bit

L | | | | | | | | | | | |

2x16 bit Vertical
e S e e e | Vector

16 bit Accesses
et r r r r 1 1 1 1 1 1 1 1 1.1
4x8 bit
A 4
8 bit 32 bit
2x16 bit
16 bit
8bit 4x8 bit

So a Vector access can access a single line of 32 bit pixels, it can access two lines of 16 bit pixels or four lines of
8 bit pixels in parallel with the lines on top or after of each other. A special and very important feature is that the
32 bit word can be accessed in a non aligned fashion. The pixels (which are byte addressed) are not bound to 32
bit borders. Any 8 or 16 bit pixel can be accessed as being the top left pixel of the Vector (the addresses used by
the Imagine are the Top-Left co-ordinates of the Vector).

User’s Manual 10/2/2008 page 141

Imagine 2 Multi Media Processor

VLC decoder and dequantizer

Mnemonics of the Vector Access Generator

vector_load (

vector_store (

vector_control (

enables:

origin
,coordinate

[direction]
[.pixel_type]
[fixed_length]
[,byte_enables]
[state_select]
[.continue]);

origin
,coordinate

[direction]
[.pixel_type]
[fixed_length]
[.pixel_mask]
[,data_source]
[byte_enables]
[,mask_pointer]

[state_select]

origin1 or origin2 or origin3

Dcoord1 or Dcoord2 or Dcoord3 with optional ++
where D is either blank, 1D, 2D or 3D

horizontal (default) or vertical

8 0or 16 or 32 or 4x8 or 2x16 or 1x32

length(X') where Xis 1...128

bytes_enables

select_stateX or clear_stateX where X is 0...3
continue

origin1 or origin2 or origin3

Dcoord1 or Dcoord2 or Dcoord3 with optional ++
where D is either blank, 1D, 2D or 3D
horizontal (default) or vertical

8 or 16 or 32 or 4x8 or 2x16 or 1x32

length(X') where Xis 1...128

pixelmask or new_pixelmask

bicolor, or new_bicolor

bytes_enables

mask_pointer(X) or mask_reference(X)

with optional ++ and X is 0...63 or blank
select_stateX or clear_stateX where X is 0...1

[line_mapping]);line_map with optional ++

[reset flag]

[coordinate_dim]
[.pixel_type]
[byte _enables]
[,mask_pointer]

[state_select]

reset_on or reset_off

1Dcoord or 2Dcoord or 3Dcoord

8 0r16 or 32 or 4x8 or 2x16 or 1x32
bytes_enables

mask_pointer(X') or mask_reference(X)

with optional ++ and X is 0...63 or blank
select_stateX or clear_stateX where X is 0...3

[line_mapping]);line_map

OQor1or2or30r010r02o0r03or12 or13 or23 or012 or 013 or 023 or 123 or 0123

map : none or8 or16_01 or16_23 or32_0 or 32_1 or 32_2 or 32_3 or map

User’s Manual 10/2/2008

page 142

Imagine 2 Multi Media Processor

VLC decoder and dequantizer

Instruction word definition of the Vector Access Unit

INSTRUCTION WORD

‘1110’

AC |[RW

COORD
HY ORIG

IAD|TIM

OIM]

TIE|OIE| CD | PT | BE [MP| ST |OM|{IMP{IOM| FV FIXED LENGTH [6:0]

63]62]61]60[59]58]57]56]55]54]53]52]51]50]49]48[47]46]45]44]43]42]41]40]39]38]37]36]35]34]33]32

INSTRUCTION WORD
Vau[<0 [COORD| 00" | PIX 0000' BYTE ENABLES| <00’ MASK_POINTER MR[SCL| STATE [<0'| MOM
RST DIM TYPE [3:0] [5:0] [1:0] [2:0]
[1:0] [1:0]

31|30|29|28‘27’26|25|24|23|22|21|20‘19’18|17|16|15|14|13|12‘11’10|9 |8|7|6|5 |4\ 3]2 |1 |o\

AC

RW

HV

ORIG

COORD

IAD

TImM

oM

TIE

OIE

cb

PT

BE

MP

ST

om

IMP

IOM

FV
FIXED_LENGTH
VAU_RST
COORD_DIM
PIXEL_TYPE
BYTE_ENABLES
MASK_POINTER
MR

scL

STATE

MOM

vector access

read or write
horizontal or vertical
select address origin
select coordinate reg.
increment Address.
make Transparent mask
make Opaque mask
use Transparent mask
use Opaque mask
coordinate dimension
pixel type

byte enables

mask pointer

state select

mask output mapping
increment map pointer
increment output map.
fixed/variable length
fixed length

VAU reset flag contents
coordinate dimension
pixel type

byte enables

mask pointer

mask reference

state clear

state select

mask output mapping

User’s Manual 10/2/2008

1 = vector access, 0 = update control register only

0 =read, 1 = write, (1 = update VAU Reset Flag)

0 = horizontal, 1 = vertical

0 = origin1, 1 =origin2, 2 = origin3

0 = coordinate1, 1 = coordinate2, 2 = coordinate3

1 = (post) Increment selected coordinate in control register
1 = Enable Transparent mask for write enables

1 = Enable Opaque mask for Bi Color expansion

1 = Enable Transparent mask for write enables

Enable Opaque mask for Bi Color expansion

Load coordinate dimension in control register

Load pixel type in control register

Load byte enables in control register

Load mask pointer enables in control register

Load state select/clear in control register

Load mask output mapping in control register

(post) Increment mask pointer in control register

(post) Increment mask output mapping in control register
fixed length, 1 = variable length

0..127 represents a length of 1 to 128

[JEE N N N (L (L U Q.

0 = Reset OFF, 1 =Reset ON

0=1D, 1=2D, 2=3D, 3 = old XY coordinate

0 = bytes, 1 = shorts, 2 = words,

0 =mask, 1=write, bit[3] > [31:24],..,.., bit[0] = [7:0]

value range is 0 ..63 for the Imagine 2

The reference X coordinate points to the mask pointer position.
clear / initialise the selected history state

selected history state (0..3 for reading, 0..1 for writing)
0=no_op, 1=line_8, 2=line16_01, 3=line16_23,
4=line_32_0, 5=line_32_1, 6=line_32_2, 7=line_32_3,

page 143

Imagine 2 Multi Media Processor VLC decoder and dequantizer

The Transparent Pixel Mask
Individual 8 or 16 bit pixels can be masked during a vector write with a the use of the Transparent Image Mask

of the Mask generator. Individual components of 32 bit true color pixels can also be masked. The chapter on the
Image Mask generator explains the assembly of this mask. The Transparent Mask is contained in a 4x64 bit
register set. The programmer can invoke the usage of the Transparent mask with the keyword pixelmask for the
corresponding parameter. If the mask needs to be assembled before you start the vector write, use the keyword
new_pixelmask; if you do not specify anything the pixels will not be masked.

Example: image_vector (write, quad_byte, surface2, coord1, pixelmask);

This instruction causes a vector write of 4x8 bit pixel words (quad byte) starting at the pixel at the XY location
defined in coordinate register 1 on the 2D surface pointed to by the Surface register 2 and masks pixels by
applying the Transparent Pixel mask.

The Opaque Pixel Mask

The Opaque Pixel Mask ¢ The Bicolor option uses the four mask bits to select between the foreground and
background colours contained in the registers with these names. The bits from Opaque Mask register 0 select
between the bytes 0 of the foreground and background registers (bit 0..7) which are then placed on bit 0..7 of the
external Image databus. These eight bits correspond to the highest of the four lines in case of 8 bit colours when
four lines are written in parallel. The four mask bits define in a one-to-one fashion.

¢ bicolor, new_bicolor

The bicolor option supports very high speed colour expansion;

Example: image_access (write, quad_byte, imageZ2, bicolor);

User’s Manual 10/2/2008 page 144

Imagine 2 Multi Media Processor VLC decoder and dequantizer

The vector access control register

Cri12: VAU_Control, Vector Access Unit Control register
Vau[Q' [COORD[<00' | PIX <0000' BYTE_ENABLES | <00’ MASK_POINTER <0'[SCL| STATE [0’ MOM
RST DIM TYPE [3:0] [5:0] [1:0] [2:0]
[1:0] [1:0]

31|3o|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9|8|7|6|5 |4\ 3]2|1 |o\

The fields of the Image Memory Access control register.

Mask Output Pointer

The Mask information stored in the Transparent and Opaque Mask is accessed during a vector write with use of
the Mask output pointer. This pointer walks through the mask during the vector write. It is decremented for each
new horizontal address (the left-most pixel has the highest bit address, compatible with industry standards). A
typical 32xn vector starts with the mask at bit location 31 and ends with bit location 0.

The Mask Output mapping

Both Transparent and Opaque masks are line oriented masks. Each of the four registers in both masks has
information for another line which may be 8, 16 or 32 bit/pixel. The output bus is 32 bit wide for the first version
of the Imagine. This means that four 8 bit, or two 16 bit pixel lines can be drawn in parallel. The mapping of the
internal mask lines to the 32 bit databus is handled with the Mask Output mapping field.

Mask output mapping

MSKO MSK1 MSK2 MSK3

ByteO Byte1 Byte2 Byte3
000 <default> "' "' 1’ "'
001 line_8 line 0 line 1 line 2 line 3
010 line_16_01 line 0 line 0 line 1 line 1
011 line_16_23 line 2 line 2 line 3 line 3
100 line_32_0 line 0 line 0 line 0 line 0
101 line_32_1 line 1 line 1 line 1 line 1
110 line_32_2 line 2 line 2 line 2 line 2
111 line_32_3 line 3 line 3 line 3 line 3

User’s Manual 10/2/2008 page 145

Imagine 2 Multi Media Processor VLC decoder and dequantizer

VECTOR ACCESS UNIT CONTROL REGISTERS

cr112: VAU_control Vector Access unit control register
Vau[<0' [COORD[<00' | PIX <0000’ BYTE_ENABLES| <00’ MASK_POINTER | MR[SCL| STATE [0’ MOM
RST DIM TYPE [3:0] [5:0] [1:0] [2:0]

[1:0] [1:0]

31|30|29|28\27\26|25|24|23|22|21|2o 19\18]17[16|15|14|13|12\11\10]9 |8|7|6|5 |4\ 3 \2 |1 |0

cr113: VAU_status Vector Access unit status register
Int [Vau[Vau[Vio| Bi [<000’ 00’ WRITE FIFO LEVEL 00’ READ FIFO LEVEL ‘00' |TASK BUFFER LEVEL
Dis |Out | Inp | Inp | Col [5:0] [4:0] [4:0]
wait |wait |wait] 128 BIT WORDS 128 BIT WORDS

31|3o|29|28\27\26|25|24|23|22|21|2o\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\

cr114: VAU_Foreground Foreground Color register
Foreground Color value [31:0]

]31|30|29\28|27|26|25|24‘23|22|21\20|19|18|17|16‘15|14|13\12|11|10|9|8]7 |6 |5 \4| 3 |2|1 |0‘

cr115: VAU_Background Background Color register
Background Color value [31:0]

31[30 [29 28] 2726 [25 [24] 23 [22 [21 [20] 1918 17]16] 15 [1a 1312 11 fi0] o[8[7[6 [s[4]3]2]1]0

cr116: VAU Coord1 1,2 or 3 dimensional Coordinate 1 register
X coordinate [31:0]
Y coordinate [15:0] \ X coordinate [15:0]
Z coordinate [15:0] \ Y coordinate [15:0] \ X coordinate [15:0]
]31|30|29\28|27|26|25|24 23|22|21\20|19 18|17|16\15|14|13\12|11|10|9 | 8] 7 |6 | 5 \4| 3]2 | 1 |0
cr117: VAU Coord2 1.2 or 3 dimensional Coordinate 2 register
X coordinate [31:0]
Y coordinate [15:0] [X coordinate [15:0]
Z coordinate [15:0] ‘ Y coordinate [15:0] ‘ X coordinate [15:0]
]31 |30|29\28|27|26|25|24 23|22|21\20| 19 18|17|16‘ 15|14|13\12| 11|10|9 | 8] 7 |6 |5 \4| 3]2 | 1 |0
cri18: VAU Coord3 1,2 or 3 dimensional Coordinate 3 register
X coordinate [31:0]
Y coordinate [15:0] [X coordinate [15:0]
Z coordinate [15:0] ‘ Y coordinate [15:0] ‘ X coordinate [15:0]

]31]30[29\28|27|26|25|24 23]22[21\20|19 18|17|16\15]14[13\12|11|10|9|8]7|6 |5 \4| 3 2|1 |0

cr120: VAU_Surface1 Surface 1 offset pointer
Linear offset address for 2D surface numberl
[31:0]

]31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10|9|8]7 |6|5 \4| 3 |2|1 |0\

cr121: VAU_Surface2 Surface 2 offset pointer
Linear offset address for 2D surface number2
[31:0]

]31|30|29\28|27|26|25|24‘23|22|21\20|19|18|17|16‘15|14|13\12|11|10|9|8]7 |6 |5 \4| 3 |2|1 |0‘

cr122: VAU_Surface3 Surface 3 offset pointer
Linear offset address for 2D surface number3
[31:0]

31[30 [29 [28] 2726 [25 [24] 23 [22 [21 [20] 1918 17]16] 15 [1a 1312 11 fi0] o[8[7[6 [s[4[3]2]1]0

User’s Manual 10/2/2008 page 146

Imagine 2 Multi Media Processor VLC decoder and dequantizer

'image_access' executes a single access to memory opposed to an 'image vector' which accesses from 1 to 64
consecutive image memory locations in the X direction. The image access is a 'write' access of a 32 bit 'word' and
the address is taken from 'image2': the image address pointer 2. 'bitplane' is used to present the bitplane mask
register to the Image databus during the leading RAS edge.

The Foreground & Background colour registers

The Foreground and Background colours are standard features of all window systems and many graphics
standards. They are basically used in combination with character fonts where binary information is expanded into
for- and background colours. The Foreground and Back-ground colour registers are intended as 'semi-permanent'
locations for these colours which can stay there until software needs other ones.

The contents of the 32 bit register can be placed on the databus during the leading RAS and CAS edges. The
colour registers are 32 bit wide. In 8 or 16 bit operations the 8 or 16 bit colours should be repeated over the
entire 32 bit width of the registers. The colours can be used in these modes to handle 2 or 4 pixels in parallel.

All these modes work in both scalar and vector mode.

14 The Opaque Mask Expansion is invoked by using the bicolor option for the data during the CAS edges. The
32x4 opaque mask is used for a maximum of 32 writes in vector mode.

The binary information in the mask will be expanded to the foreground and background colours which are then
placed on the CAS edges during writing.

Example of an opaque mask expansion vector write operation:

image_vector (write,quad_byte,imagel,bit_plane,bicolor)

2¢ In the Transparent Mask mode only one of the two colours is used and should be specified with either
foreground or background as the data source during the CAS edges. The binary information in the 32x4
Transparent Mask is then used to write/not write this colour into Image memory. Example of Transparent Mask
operations which use a colour register:

image_vector (write,word,imagel,foreground,pixel_mask);

The foreground colour is written to the non masked pixels.

The Image Memory Address Registers.

These registers contain 2 dimensional Image memory addresses (X,Y) which can be selected by the Image
Access function. They can be post-incremented when they are referred by the image access function.

These X,Y addresses are byte oriented and represented by two sixteen bit integer numbers in the range from
-32768 to +32767. The X address is supplied in the highest 16 bit (16..31) while the Y address is supplied in the
lowest 16 bit (0..15).

The Image Address Pointers
Three registers can be used during graphics operations. A typical usage is one destination address pointer (IA1)

and two source address pointers (IA2,IA3). Image Address Pointer 1 is per definition the one which is referenced
by the Image Mask generator to generate a new pixel mask. All three registers can be post-incremented in
horizontal direction in a way that allows operations on arbitrary length vectors. The length (-1) of such a vector is
stored in the repeat register and can range from 1 to 32768 (the values stored range from 0 to 32767). The
maximum vector we can read or write contains 32 words; the actual maximum that will be used can be smaller
and is defined by the maximum repeat register which can define any value from 1 to 32.

The length of both vectors which is written in the example and the number of times the vector instruction is
repeated is defined by either the repeat register or the maximum repeat register if the contents of the repeat
register is larger than the maximum.

Say we want to write a vector with a scan length of 117 pixels and the maximum vector length has the default

User’s Manual 10/2/2008 page 147

Imagine 2 Multi Media Processor VLC decoder and dequantizer

value 32. This vector is then split up into 3 vectors of 32 and a tail vector of 21 during four loops by the
following sample program which demonstrates a basic programming mode of the Imagine:

lab: repeat after (4);
image_vector (write,word,imagel++,data,pixel_mask);

branch (/ab), ifnot (repeat_smaller);

veees

The repeat instruction refers to the repeat register (var) for its repeat count. It will get three times the value 32
and the last value will be 21. It will wait every time for 4 cycles until the target function has arrived which will be
repeated by the specified number of times.

During the execution of the image vector function quad byte data will be written to the address specified by
Image address pointer 1. This function will write 3 times a 32 word vector and a final 21 word vector. The
address register is referred to by Image++ which causes an post-increment by 32 in the first 3 loop passes and 21
during the last loop pass.

Note that the <repeated vector instruction contains an output instruction which places calculated data (from the
Imagine's data processing units) on the Image databus while the image vector instruction has the parameter data
which means the data should come from this source indeed.

The output instruction is repeated 3 x 32 times and 1 x 21 times. The data can for instance be read from the
internal register file or the data memory with an auto increment mode.

The branch causes the loop to be executed four times. The status flag being tested is found in the control/status
register and is the result of a comparison of the repeat register and the maximum repeat count register. If the first
one is larger then we are not ready yet.

If it is smaller or equal then we need one or more extra passes. The repeat register is post-decremented with the
maximum repeat count each time an arbitrary sequencer instruction refers to the flag mentioned above.

User’s Manual 10/2/2008 page 148

Imagine 2 Multi Media Processor VLC decoder and dequantizer

TRANSLATION FROM MNEMONICS INTO INSTRUCTION WORD

Mnemonics of the Image Memory Access Generator:
image function (function, pixel type, address_source [,data_source][,plane_mask] [,pixel _mask])
Image Function (Ic59..58)

Fn image function description
00 image_access Single image memory access

01 image_vector Vector image memory access (From 1 to 32 reads or writes in burst mode)
11 image_control Set control register cr52 (copy bits 0..23 from the instruction word.

The Parameters for the Image Access Functions

function (Ic17..13) and (Ic10..0)

A large number of functions can be selected from the two large tables on the following pages. These functions
include all existing functions for Dual and Triple ported DRAM and will extended (in software) as new functions
become available. The function determines the values which are send to the control inputs of the various memory
chips.

Pixel Type/Size (Ic57..55, 1c54)

This parameter defines the size and type of the pixel which is used during the image memory access. The types
byte and short modify only 8 or 16 bit in image memory during write operations while all others write 32 bit

The types double short and single word causes

automatic alignment on 16 and 32 bit Y addresses (bit 0 and/or bit 1 of the Address is cleared during the
Address selection which chooses between 5 control registers for the access address. The size determines also the
Y-increment value for the two Display registers.

The Output mapping (cr52[2:0] can be incremented by adding ++ to the pixel type (no space in between). This
causes bit IC[54] of the instruction word to be set.

T/Sz pixel type size

000 quad_byte (++) 4x8 bit
001 double_short(++) 2x16 bit
010 single word (++) 1x32 bit

100 byte (++) 8 bit
101 short (++) 16bit
110 word (++) 32 bit

User’s Manual 10/2/2008 page 149

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Coordinate
source (IC[5554]

This parameter selects between five different control registers. Three of the are Image addresses which are used
typically for graphics operations. E.g.: They can point to two source areas and one destination area. The other
two registers contain display addresses which are typically used during the line refresh interrupt to supply the
next line address.

Both types of registers can be auto incremented by attaching ++ to the mnemonic. An auto-increment for an
Image Address results in an X-address increment with 1 for single accesses and N = 1..32 for vector access,
where N is the length of the Vector. An autoincrement of the Display pointers results in an Y-address increment
with 1,2,4 or 8 depending on the size of the pixel (Ic55..56): byte, short, word or double.

1C[22,21.,53 selected address source:
000 imagel Image Addr. Pointer 1.
001 imagel++

010 image2 Image Addr. Pointer 2.
011 image2++

100 image3 Image Addr. Pointer 3.

101 image3++

data source (Ic20..18)

This parameter defines the origin of the data send to Image memory during write operations

¢ The default option 'data’ uses data from the Image I/O unit which can select Data from any data processing unit
of the Imagine.

¢ The color registers can be used to download a color externally.

¢ The bicolor mode uses 4 bit at a time from the opaque mask register to decide between either the foreground
or the back-ground color for each of the four bytes of the Image Databus

CD2..0 data_source selected CAS data source:
000 data Image I/O unit (default)
110 bicolor Selected for/background

111 new_bicolor Selected for/background

Transparent Mask assembly usage (IC(50..51)

This parameter selects the transparent mask to be used when writing to image memory. Four bits at a time can be
send to image memory via the four external MSK output pins. the option new pixel mask generates a new
transparent mask just before the actual write actions to image memory start.

E/A pixel mask Transp. Mask operation

00 <default> do not use the mask.
10 pixel_mask use the Transp. mask.
11 new_pixel mask generate & use mask.

User’s Manual 10/2/2008 page 150

Imagine 2 Multi Media Processor VLC decoder and dequantizer

Chapter
VLC DECODER / DEQUANTIZER

T he block level VLC decoder/dequantizer supports MPEG 2, MPEG 1, and H.261

encoded video bit-streams. The input to the unit are 32 bit chunks of serial data in
either big or little endian format. The VLC decoder takes five cycles to generate the
12 bit decoded and dequantized coefficient and the 2D sub-address within the 8x8
block after scan conversion. The sub-address is added to a 2D address to obtain the
destination address in external memory. Only the non-zero coefficients are
generated and written. The external memory should be cleared previously with for
instance the SGRAM block fill mode (12..16 Gigabyte/second) to account for the
zero coefficients.

A separate register contains the value for coefficient [7][7] which may not have
been encoded but has been made non-zero by either the MPEG 2 or Yagasaki
oddification method used to correct the IDCT rounding mismatch. This value may
always be written to memory after the EOB occurs without the need for any test.

The values in memory are completely processed and the next step in the decoding
process is the Inverse DCT.

User’s Manual 10/2/2008 page 151

Imagine 2 Multi Media Processor VLC decoder and dequantizer

BLOCK LEVEL VLC DECODER :

BIT STREAM INPUT (CHUNKS OF 32 BIT)

VLC_Control (cr124):

_intrg. or non intra frame, 8, 9, 10 or 11 bit intra DC precicion luminance or chroma U or
chroma V, intra VLC format 0 or 1 8, 12 or 16 bit escape level length, normal or alternate
scan quantizer scale code conversion (x2 / MPEG 2 non intra tab) fixed or downloaded
quantizer table, big or little endian input

INDEX(0) oddification method: MPEG 2, MPEG 1, H.261 or Yagasaki

Bit Stream data input

g 32
§<_ endian

L

INDEX(6)
2 Dimensional address
within 8x8 Block

VLC DECODER
DC INCREMENTER
COEFFICIENT DEAD ZONE ADJUST
ZIG-ZAG SCANNER

28

>

QUANTIZER TABLE (SOFT/FIXED)
QUANTIZER SCALE PRE-MULTIPLIER
DEQUANTIZER-MULTIPLIER

INDEX(7)
12 bit de-quantized
Coefficient Value

—p VLC decode (ReadStart (6),

} s,

/
%_ endian

|- 32

ODDIFICATION

-1

INDEX(0)
Bit Stream

P

A
L INDEX(1) :

BitStreamPointer,

Luminance DC coefficient
INDEX(2) :

Chrominance U and V coefficients
INDEX(3) :

Linear and 2D scan pointers,
Quantizer Scale Code

data

v

EXAMPLE BLOCK LEVEL VLC DECODER SUB-ROUTINE:

vlc block level subroutine:

B = rd(VLC Control) => F =
// The block inner loop is executed once for each non-zero coefficient in the block
// The VLC decode has no effect if new data is needed, we may therefor perform the
// test after the VLC decode instruction is given.

copy (B) ; // prepare for "Data Request" test

//
//

start of the block inner-loop
VLC decode instruction

vlc block loop:
WriteIndex (0));

if (minus), call (load new stream data); // call to load new bit stream chunk
B = rd2x16(VLC Data); // read sub address for 8x8 block
A = rd2x16 (BlockAddr), F = copy(B); // sub address to ALU for zero test
if (zero), return; // return if End Of Block detected
B = rd(VLC_Data), F = add(A,B); // read coefficient, calculate address
DA = wrAd(F), D = short (B); // write calculated coefficient
jump (vlc block loop); // jump to start of the loop
B = rd(VLC Control); // branch delay:
F = copy (B); // prepare for "Data Request" test

User’s Manual 10/2/2008 page 152

Imagine 2 Multi Media Processor VLC decoder and dequantizer

INSTRUCTION WORD
‘1010' ‘1100' BT| L/C |RD READ INDEX 'WRI WRITE INDEX
Pec [1:0] [inc [4:0] inc [4:0]

63| 62]61]60[59]58]57]56]55]54]53]52]51]50]49]48]47]46[45]44]43]42]41]40

VLC_decode (Luminance, ReadStart(4), WriteiIndex(0));

VLC_control (Chrominance_U, ReadStart(3), WriteIndex(0));

User’s Manual 10/2/2008 page 153

Imagine 2 Multi Media Processor VLC decoder and dequantizer

cr124: VLC_control Variable Length Code unit Control register
REQ =1 Request for new Serial Data Word Intra / Non Intra Quantiser Scale Table Select
(read only). All evaluations are disabled as long _ _)
as this bit is '1'. The bit is cleared by writing a INT =0 non Intra Frame QS =0 Quantiser chle Code x2
new 32 bit word to the Index O reg. INT =1 Intra Frame table | /QS =1 MPEG 2 non intra table
EOB =1 End Of Block detect (read only) Luminance/Chrominance ESC Escape Level Length
All results and scan pointers (linear and 2D) _ .)
are reset to zero when an EOB is detected. A| [L/C = 1x Luminance 0= 8,16 bit: MPEG 1, H.261
2D scan address = '0' test can be used as an| |L/C =00 Chrominance U 1= 12bit. MPEG2
alternative End Of Block detect. L/C =01 Chrominance V
Req [Eob RD| READ INDEX ‘00' |[WR| WRITE INDEX L/c | <o |INT| P [0 [vIC| ‘0’ [Esc] ODD |As|Qs|QT|[EM
inc [4:0] inc [4:0] [1:0] [1:0] [1:0]
31|30|29\28|27|26|25|24|23|22|21\20|19|18|17|16|15|14|13\12|11|10| 9 |8| 7 |6 |5 \4| 3 |2 |1 |0
Read and Write Indices ' Intra DC Precision Oddification Method
0 = Bit Stream 1/O register _ . B B
1 = Bit Stream pointer + DC Luminance IDP C 0 8 b!t DC coef 0 B MPEG 1 1 B MPEG 2,
2 = DC Chrominance coefficients IDP = 1 9 b!t DC coef 2 =H.261 3 = Yagasaki
3 = Scan & 2D pointer, Quant scale code IDP C 210 b!t DC coef [T
4 = Decoded coefficient register IDP =3 11 bit DC coef AS =0 standard ZigZag
5 = Quantizer value register AS =1 alternate ZigZag
6 = 2 Dim address output register
7 = De-quantized Coefficient output register [T
8 = De-quantized Coefficient [7][7] output reg. Intra VLC format QV =1 Use Quant Table
16:31' Downloa_dallale Quantizer Taple VLC =0 use table 0 I
Bit 29 / 21 = 1: Post Read / Write Index Incr. VLC =1 use table 1 EM =0 big, 1 = little endian
cr125: VLC_Data Variable Length Code unit Data INDEX 0
INDEX 0 : BIT STREAM /O
[31:0]

31 |30 |29 |28| 27 |26 |25 |24| 23 |22 |21 |20| 19 |18 |17 |16| 15 |14 |13 |12| 11 |10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 \

INDEX 1
'0000" LUMINANCE INTRA DC COEFFICIENT 10000 0000 00" BIT-STREAM POINTER
[11:0] [5:0]

31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|]2|11|10|9|8|7|6|5 |4| 3 |2 |1 |o\

INDEX 2
0000’ CHROMINANCE INTRA DC COEFFICIENT FOR U 0000’ CHROMINANCE INTRA DC COEFFICIENT FOR V
[11:0] [11:0]

31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10|9 |8|7|6 |5 |4| 3 |2 |1 |o\

INDEX 3
'0000 0000 000' QUANTIZER '00' |LINEAR SCAN POINTER | '00' 2D SCAN ADDRESS
SCALE CODE [4:0] [5:0] [5:0]

31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10| 9 |8| 7 |6 |5 |4| 3 |2 |1 |o

User’s Manual 10/2/2008 page 154

Imagine 2 Multi Media Processor VLC decoder and dequantizer

cr125: VLC_Data Variable Length Code unit Data INDEX 4

EXTENDED SIGN BIT DECODED COEFFICIENT OUTPUT REGISTER [12:0]
(2 X LEVEL [+ SIGN 1)

31|30|29\28|27|26|25|24|23|22|21\20|19|18|17|16|15|14|13\12|11|10| 9 |8| 7 |6 |5 \4| 3 |2 |1 |0

INDEXS
0000 0000 0000 0000 0' QUANTISER SCALE: [14:0]
QSCALE_TYPE [QSCALE_CODE] X QUANT TABLE[N][M]

31|30|29\28|27|26|25|24|23|22|21\20|19|18|17|16|15|14|13\12|11|10| 9 |8| 7 |6 |5 \4| 3 |2 |1 |0

INDEX 6
'0000 0000 0000 0' Y Address '0000 0000 0000 0' X Address
[2:0] [2:0]

31|30|29\28|27|26|25|24|23|22|21\20|19|18|17|16|15|14|13\12|11|10| 9 |8| 7 |6 |5 \4| 3 |2 |1 |0

INDEX 7
'0000 0000 0000 0000 0000’ FINAL DE-QUANTIZED COEFFICIENT
[11:0]

31|30|29\28|27|26|25|24|23|22|21\20|19|18|17|16|15|14|13\12|11|10|9|8|7 |6|5 \4| 3 |2 |1 |0\

INDEX 8
0000 0000 0000 0000 0000’ FINAL DE-QUANTIZED COEFFICIENT FOR POSITION
77 [11:0]

31|30|29\28|27|26|25|24|23|22|21\20|19|18|17|16|15|14|13\12|11|10| 9 |8| 7 |6 |5 \4| 3 |2 |1 |0

INDICES 16 through 31

Down loadable Quantizer Table Value | Down loadable Quantizer Table Value | Down loadable Quantizer Table Value | Down loadable Quantizer Table Value
Row N, Column 3 or 7, bits [7:0] Row N, Column 2 or 6, bits [7:0] Row N, Column 1 or 5, bits [7:0] Row N, Column 0 or 4, bits [7:0]

31|30|29\28|27|26|25|24|23|22|21\20|19|18|17|16|15|14|13\12|11|10| 9 |8| 7 |6 |5 \4| 3 |2 |1 |0
[
[

User’s Manual 10/2/2008 page 155

Imagine 2 Multi Media Processor 15. Motion Estimator

Chapter
15. MOTION ESTIMATOR.

T he Motion Estimator performs 200 operations per cycle sum of difference

operations needed for MPEGI and MPEG 2 encoding. It supports arbitrary MxN
kernel sizes up to 256x256 and arbitrary search space sizes up to 4096 by 4069

User’s Manual 10/2/2008 page 156

Imagine 2 Multi Media Processor 15. Motion Estimator

User’s Manual 10/2/2008 page 157

Imagine 2 Multi Media Processor 15. Motion Estimator

Overview

The motion estimator pipeline is designed to find the motion vector which is used for various type of motion
picture compression algorithms including MPEG-1, MPEG-2, and H.261. It is flexible and programmable
enough to support all possible motion estimation parameters. The search area can range from 1x1 to
4,096x4,096 pixels, and the search kernel can range from 1x1 to 128x128 pixels without any restriction like the
alignment of some integer. The minimum value detection hardware is also included in the pipeline so that the
pipeline can continue to work at the highest efficiency.

Description

The motion estimator pipeline is the autonomous unit that does not always require clock-by-clock instruction
feeding. The unit starts processing when the motion estimator instruction is given. The motion estimator
instruction is the set of instructions designed only for motion estimator pipeline. No other instruction can be
executed in the same clock as the motion estimator instruction is specified.

Fig.2 Block diagram of motion estimator pipeline

Fig.2 shows the block diagram of the motion estimator pipeline. It consists of four parts, the Kernel register
array (notated as KRA), the Search register array (SRA), the Calculation unit (CU), and the Minimum detection
unit (MDU).

The KRA holds the pixel data of the motion estimation kernel, and the SRA holds the pixel data of the motion
estimation search area (Fig.2). Each array consists of 16 registers of 32bit width. Every 32bit register represents
the 4 pixels of 8bit data, so two register array hold 64 pixels per each. The CU calculates the sum of the absolute
differences of the corresponding 64 pixel-pairs. The summation of this unit is affected by the Columns Mask and
the Row Mask described later. The CU can also add the optional subtotal input data. The MDU is optionally
used, and records the minimum value of the CU output and its corresponding XY position.

The motion estimator instruction initiates the particular type of processing, and also specifies the number of
clocks of the processing. During the processing, the motion estimator pipeline read the data from V-bus and A-
bus at each clock cycle. V-bus input is used to fill the search register array. This means the V-bus value is
written in the leftmost register of the array, and other contents are shifted to the right. Depending on the motion
estimator instruction that started the processing, the motion estimator pipeline executes in the following way.
When the motion estimator instruction is motion_estimator load, A-bus input is used to fill the KRA in the same
way as the SRA. In this case, the CU and the MDU do not work nor change. The cr81 doesn’t change neither.
When the motion estimator instruction is motion_estimator calc, A-bus input is used as the subtotal input value.
The subtotal input value is optionally used to be added to the output of the CU, depending on the add_subtotal
flag in the cr80. The resulting value is written to cr81.

When minimum _test flag in cr80 is set, the MDU is enabled. The MDU compares the cr81 with the minimum
value register in the cr82. If the minimum value register is larger, the minimum value register is updated and the
current X and Y positions held in the MDU are written to the minimum X and Y position registers in the cr83.
The current X position is incremented when the MDU is enabled.

The Column mask and the Row mask specify the valid pixel pairs that should be joined to the summation of the
CU. These masks enhance the flexibility of the motion estimator pipeline in the two meanings. First, they
enable the motion estimator pipeline to support arbitrary size of the motion estimation kernel by hiding the
unneeded pixel pairs. Second, they enable the pipeline to support not only 8bit/pixel data but also 16bit/pixel
and 32bit/pixel data by incorporating the pragmatic approximation. The examples of the usage are shown in the
Section 5.

When the motion estimator instruction is given, the new_search flag and the new_row flag affect the current XY
position held in the MDU in the following way. If the new_search is set, both current X and current Y are set to
zero. If the new_row is set, current X is set to zero and current Y is incremented.

Control registers

Flags and the values obtained from calculation are kept in the four 32-bit control registers, cr80, cr81, cr82, and
cr83. The location of the flags and values are shown in Fig.3. The result of the sum of absolute differences is
stored in the lower 24 bits of cr81, and the minimum value of the sum of absolute differences is stored in the
lower 24 bits of cr82. When the resulting value of the sum of absolute differences is smaller than the one in cr82,
the current values of X and Y positions are written to cr83 as indicated below. The Column mask, the Row mask,
and the flags, new search, new row, minimum _test, and add_subtotal, are located in cr80.

User’s Manual 10/2/2008 page 158

Imagine 2 Multi Media Processor 15. Motion Estimator

Fig. 3 Control registers, cr80, cr81, cr82, and cr83

Pipeline description
The process in the motion estimator pipeline has six stages:

Stage 1: Motion estimator instruction is given (only once for each processing).

Stage 2: Motion estimator reads V-bus and A-bus value, shift the KRA and the SRA.

Stage 3: CU reads the KRA and the SRA, calculates the difference for 64 pixel pairs, reduces 64 values to
32 values using Wallace tree.

Stage 4: CU reduces 32 values to 2 values.

Stage 5: CU adds 2 values and optional subtotal input, and writes the result to the cr81.

Stage 6: MDU updates the cr82 and cr83, according to the result of the previous stage. The current X is
incremented.

Examples

8bit/pixel, kernel:16x4, search area:47x4(32x1position)

/* Set new_search, minimum_test. Reset new_row, add_subtotal */
/* Set the Column Mask and the Row Mask to all 1’s */

A =rd(ri), V = input;

motion_estimator _load(16);

A =rd(ri), V = input;

/* repeat 14 times */

V = input;
motion_estimator calc(32);
V = input;

/* repeat 30 times */

B =rd(cr82); /* Read the minimum value */
B =rd(cr83); /* Read the XY position */

8bit/pixel, kernel:16x8, search area:47x8(32x1position)

/* Set new_search. Reset minimum_test, new_row, add_subtotal */
/* Set the Column Mask and the Row Mask to all 1’s */

A =r1d(ri), V = input;

motion_estimator _load(16);

A =rd(ri), V = input;

/* repeat 14 times */

V = input;
motion_estimator_calc(32);
V = input;
V = input;
V = input;
V = input;

V = input, B =rd(cr81);
V = input, B = rd(cr81), wr(ri, B);
/* repeat 31 times */

/* Set minimum_test, add_subtotal. Reset new_search, new_row. */

A =r1d(ri), V = input;
motion_estimator load(16);
A =rd(ri), V = input;

/* repeat 14 times */

A =1d(ri), V = input;
motion_estimator_calc(32);
A =rd(ri), V = input;

/* repeat 30 times */

User’s Manual 10/2/2008 page 159

Imagine 2 Multi Media Processor

B =rd(cr82); /* Read the minimum value */
B =rd(cr83); /* Read the XY position */

Mnemonics of the Motion Estimator

motion_estimator_load,;
motion_estimator_load (coefficients, load_data)
motion_estimator_calc;
motion_estimator_calc (calc_data);
motion_estimator_calc (repeat);

Program Example:

motion_estimator_load (16,15);
A =rd (ri++), V =input;
A =rd (ri++), V =input;

A =rd (ri++), V =input;

A =rd (ri++);

motion_estimator_calc (33);
A =rd (ri++), V = input;
A =rd (ri++), V = input;
A =rd (ri++), V = input;

MES_Control: Control register of the Motion Estimator (read / write)

cr80:

15. Motion Estimator

Column Enables

[15:0]

Soft Count Parameters | Row Enables| NS [NR MTe| AS
[30] en en n en

31|3o|29|28\27]26|25|24|23|22|21|20\19]18|17|16|15|14|13|12\11]10|9|8|7|6|5 |4\ 3]2|1 |0\

cr81:

MES_SumOfDiff (Sub)-Total Output (read only)

'00000000'

(Sub)-Total Output
[23:0]

31|3o|29|28\27\26|25|24|23|22|21|2o\19\18|17|16|15|14|13|12\11\10|9|8|7|6|5 |4\ 3 \2|1 |0\

cr82:

MES Minimum:

Minimum Sum of Differences found (read only)

'00000000'

Minimum Sum of Differences found
[23:0]

\31|30|29\28|27|26|25|24\23|22|21\20|19|18|17|16\15|14|13\12|11|10|9|8\ 7 |6|5 \4| 3 |2|1 |0\

cr83:

MES_Position:

Position of the Minimum Sum of Differences found (read only)

'0000'

X position of the Minimum
[11:0]

'0000' Y position of the Minimum
[11:0]

31 (30 [29 28] 2726 [25 [24] 23 [22 [21 [20] 1918 [17 [16] 15 [14 [13 [12] 11]10[9[8[7 [6 [s[4[3 210 |

User’s Manual 10/2/2008

page 160

Imagine 2 Multi Media Processor 24 Video Timing Generators

Chapter
24. VIDEO TIMING GENERATORS

T he Video Timing Generators execute timing instructions from their own Timing
instruction RAM and are capable op generating arbitrary video timing signals up
to a resolution of 4096 by 4096 pixels, including CCIR601, NTSC and PAL-M
formats. There are 2 timing generators, one for output and one for input.

The video output timing generator sends its timing signals to the video output unit.
It can be to the external Vreset* pin or to the CCIR 656 video input. It can choose
between the clock from the internal dot clock generator, the CCIR 656 video input
clock divided by 1, 2 or 4 or the Imagine clock for testing. The video output unit
operates on the same clock as the video output timing generator.

The video input timing generator can be synchronised to the CCIR 656 video input.
It runs on the CCIR 656 video input clock divided by 1, 2 or 4 or the Imagine clock
for testing. The CCIR 656 video input unit operates on the same clock as the video
input timing generator.

User’s Manual 10/2/2008 page 161

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.1 The I/O signals of the Video Timing Generator

24.1.1 schematic overview

5| [IPB_MASTER IPB_T_READY| [———>—»
3| [IPB REQUEST IPB RDDATA [31:0] —F=—=»

3| IPBRW
—_______ »| [IPB I READY

— /73| [IPB_SPACE [6:0]

— 14 31 IPB_ADDRESS [15:2]
_ﬂL, [PB_BE [3:0]
ﬁ&, [PB_ WRDATA [31:0]
_* 3| [RESET

— »>M CLK

— »[ypOT CIK
— 3| H RESET EXT TIMING SIGNALS
— »| [V RESET EXT

24 1.2 signal definitions

IPB_ MASTER input See : “The protocol of the Internal Peripheral Bus”
IPB_ REQUEST input
IPB I READY input
IPB_SPACE [6:0] input
IPB_ADDRESS [15:2] | input
IPB_BE [3:0] input
IPB_ WRDATA [31:0] | input
RESET input
IM_CLK input
IPB T READY output
IPB_ RDDATA output
DOT CLK input External DOT clock. (May not be present)
H RESET EXT input External horizontal sync signal (Only for SLAVE mode)
V_RESET EXT input External vertical sync signal (Only for SLAVE mode)
TIMING_SIGNALS output 8 timing signals progammed as low 8 bits in the program
[7:0] memory. Bit definitions are :
7 Vsync
6 Hsync
5 Blank
4 reserved
3 reserved
2 reserved
1 Vertical interrupt (VInt)
0 Horozontal interrupt (Hint)

User’s Manual 10/2/2008 page 162

Imagine 2 Multi Media Processor 24 Video Timing Generators
24.2 Module overview of the Video Timing Generator (VTG)

The Video Timing Generator consists of seven modules.

IPB-interface.

Horizontal counter (12-bit).

Vertical counter (12-bit).

Decoder (Contains the EOB and EOS state flip flops).
Program Counter (PC).

Instruction RAM.

Read multiplexer.

NNk W=

24.2.1 The IPB_interface

The IPB-interface connects the VTG to the Internal Peripheral Bus. It decodes the IPB request and determines
the appropriate action for the request. All accesses through the IPB to this unit require multiple cycles because
the VTG can operate asynchronously to the IMAGINE on the DOT_CLK.

24.2.2 The counters

There are two 12-bit counters (Horizontal and Vertical) to allow for a 4096x4096 pixel display. The 6-bit
program counter (PC) points to the current instruction address in the VTG instruction RAM, allowing for 64
instruction addresses.

24.2.3 The Decoder

The decoder controls the functioning of the VTG. The current mode (RESET, HOLD, MASTER/SLAVE) and
current state of the counters are used to determine the control of the other units (all except the [PB-interface).

24.2.4 The Instruction RAM

The Instruction RAM is a three port RAM with two read ports and one write port. The one read port is used
exclusively for the decoder. The other tow ports are used exclusively for the IPB interface. The RAM contains 64
words of 32-bits.

Timing Command | | 12-bit compare value || Address field (only lowest 6 bits used) || Timing signals

31 28 27 16 15 8 7 0

- v

|Vsync||Hsync|| Blank ||Vb1ank||rese‘rve||rese‘rve|| Vint || Hint |

The 32-bit instruction word contains four fields

¢ The instruction (2-bits, 2-reserved).

e The 12-bit compare value for both horizontal and vertical compares, depending on the instruction.

e The address field for loading the program counter. This is only used for instruction 1 (only if EOB and EOS
are false). For all the other instructions the address field is don’t care.

e The video timing signals (8-bits). The timing signals include horizontal sync, vertical sync, blank and
interrupts. Importantly the current instruction always specifies the value of the output timing signals. Care
should therefore be taken in programming the video timing generator to achieve the desired output signals.
On start-up the program memory is uninitialized and should always be programmed before enabling the unit.

User’s Manual 10/2/2008 page 163

Imagine 2 Multi Media Processor

24.2.5 The Read multipl

exer

24 Video Timing Generators

The read multiplexer selects the required read data from the IPB request. Read requests can always be done from
the IPB even if the unit is functioning on the DOT_CLK.

Block diagram of the Video Timing Generator

CLK
HOR_COUNTER || VER_COUNTER CONTROL REG IM_CLK
126t <H 126t
A
f ; f
IPB
v v Interface
DECODER
RESET VER
LOAD VER 'WR_COUNT
INC VER 'WR_CTRL —
WR_RAM IPB signals
RESET HOR |
) | LOAD_HOR RD_COUNT
INC_HOR «——) RD_CTIRL
B RD RAM
RESET PC
LOAD PC IM_CLK < »RD_DATA
INC PC
DOT CLK < @—— WRDATA
—RAM_ADDR
|
READ_MUX
A
A I \ 4
PROGRAM INSTRUCTION RAM ﬁg%édliliis
COUNTER RR 64X32 RRW
(Three port : Two read one write)
(Outputs are always enabled) DOT CLK
CLK «—H RESET
- DOA (Data out A bus) ' V RESET
PC VALUE |——p AADR (From PC) ¢ -
The CLK signal may be either the IM_CLK or the DOT_CLK
depending on the value of USE IM_CLK in the Control Reg.

User’s Manual 10/2/2008

page 164

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.3 Functional description of the Video Timing Generator

The VTG executes the timing instructions in the Instruction RAM and is capable op generating arbitrary timing
signals upto a resolution of 4096 by 4096 pixels, including CCIR601, NTSC and PAL-M formats.

The VTG has two main modes of operation. The first mode is used to control the unit from the IPB. In this mode
the unit can be tested and the instruction RAM programmed for the required video display format. On
initialisation the instruction RAM contains random values and has to be programmed before activation.

The second mode of operation is used to generate the timing signals for the display format. Usually the VTG runs
asynchronously to the IMAGINE clock from the externally applied DOT clock. It can however be programmed
to run on the IMAGINE clock if for instance the DOT clock is not available. The VTG has only four instructions,
but this is sufficient for an arbitrary complex display format.

24.3.1 Video Timing Generator instruction description
The four allowed instructions are as follows:

Instruction 0 : Wait for line segment end.
This instruction is repeated until the horizontal counter is equal to the compare value given in the
instruction. The address counter is incremented to the next instruction in this case. (The address load
value is don’t care for this instruction).

Instruction 1 : Wait for line end.

This instruction is repeated until the horizontal counter is equal to the instruction compare value. It the

values are equal :

e IfEOB and EOS are both false (End of screen, End of band), load the address counter with the value
given in the instruction. This is intended for repeating the same line.

e IfEOB is true and EOS is false, increment the address counter to the next instruction. This is
intended to start the next screen band.

e If EOS is true, reset the address register and all registers and flags.

In all three cases reset the horizontal counter and EOB and EOS flags.

Instruction 2 : Test if the current line is the is the last of a Band of the screen.
Set the EOB flag if the vertical counter is equal to the compare value of the instruction, else reset EOB.
Always reset EOS. Always increment the program counter and horizontal counter. (The address load
value is don’t care for this instruction).

Instruction 3 : Test if the current line is the last of the screen.
Set the EOS flag if the vertical counter is equal to the compare value of the instruction, else reset EOS.
Always reset EOB. Always increment the program counter and horizontal counter. EOS indicates the
end of the entire frame in case of an interlaced format.

User’s Manual 10/2/2008 page 165

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.4 Sample program for the Video Timing Generator

The following is an example format of 14 lines by 18 pixels. The visible display area is 6 lines by 9 pixels (lines
5-10, pixels 6-14). Each pixel shows by which instruction it is generated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |15 16 17
0 0 0 0 1 1 1 2 3 3 3 3 3 3 3 3 4 4 4
1 0 0 0 1 1 1 2 3 3 3 3 3 3 3 3 4 4 4
2 5 5 5 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9
3 5 5 5 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9
4 5 5 5 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9
5 0o 10 10 (11 11 1112 13 13 13 13 13 13 13 13 |14 14 14
6 0o 10 10|11 11 11 |12 13 13 13 13 13 13 13 13 |14 14 14
7 0o 10 10|11 11 11 |12 13 13 13 13 13 13 13 13 |14 14 14
8 0o 10 10 (11 11 11 |12 13 13 13 13 13 13 13 13 |14 14 14
9 0o 10 10 (11 11 11|12 13 13 13 13 13 13 13 13 |14 14 14
10 10 10 10 |11 11 11)12 13 13 13 13 13 13 13 13 |14 14 14
11 15 15 15)16 16 16 |17 18 18 18 18 18 18 18 18 [19 19 19
12 15 15 15|16 16 16 |17 18 18 18 18 18 18 18 18 [19 19 19
13 15 15 15|16 16 16 |17 18 18 18 18 18 18 18 18 [19 19 19

The screen format above is generated with the following program:

Addr. video timing command compare value load. address video timing signals

0 Wait for segment end comp=2 addr=x hsync=0, vsync=0, blank=0
1 Wait for segment end comp=5 addr=x hsync=1, vsync=0, blank=0
2 Test if line=end of band comp=1 addr=x hsync=1, vsync=0, blank=0
3 Wait for segment comp=14 addr=x hsync=1, vsync=0, blank=0
4 Wait for line end comp=17 addr=0 hsync=1, vsync=0, blank=0
5 Wait for segment end comp=2 addr=x hsync=0, vsync=1, blank=0
6 Wait for segment end comp=5 addr=x hsync=1, vsync=1, blank=0
7 Test if line=end of band comp=4 addr=x hsync=1, vsync=1, blank=0
8 Wait for segment end comp=14 addr=x hsync=1, vsync=1, blank=0
9 Wait for line end comp=17 addr=5 hsync=1, vsync=1, blank=0
10 Wait for segment end comp=2 addr=x hsync=0, vsync=1, blank=0
11 Wait for segment end comp=5 addr=x hsync=1, vsync=1, blank=0
12 Test if line=end of band comp=10 addr=x hsync=1, vsync=1, blank=1
13 Wait for segment end comp=14 addr=x hsync=1, vsync=1, blank=1
14 Wait for line end comp=17 addr=10 hsync=1, vsync=1, blank=0
15 Wait for segment end comp=2 addr=x hsync=0, vsync=1, blank=0
16 Wait for segment end comp=5 addr=x hsync=1, vsync=1, blank=0
17 Test if line=end of screen comp=13 addr=x hsync=1, vsync=1, blank=0
18 Wait for segment end comp=14 addr=x hsync=1, vsync=1, blank=0
19 Wait for line end comp=17 addr=15 hsync=1, vsync=1, blank=0

User’s Manual 10/2/2008 page 166

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.5 Function Table of the Video Timing Generator

R H M/S V. H I ME E |PC VER HOR EOS EOB
e o res res n a O O cntr cntr
s 1 s t S B
d t ¢
r h
RESET 1 x X X X X X X X Res Res Res Res Res
HOLD 0 1 x X X X X X x | Hold Hold Hold Hold Hold
V RESET EXT |0 0 S 1 X X X X X | Res Res Res Res Res
H RESET EXT |0 0 S 0 1 x x 0 0 | Load Incr Res Res Res
S 0 1 x x 0 1 Incr Incr Res Res Res
S 0 1 x x 1 x Res Res Res Res Res
Instr type 0 0 0 M/ x0 x0 0 0 x x | Hold Hold Incr Hold Hold
Segment end M/S x0 x0 0 1 x x | Incr Hold Incr Hold Hold
Instr type 1 0 0 M/S x0 x0 1 0 x x |Hold Hold Incr Hold Hold
Line end M/S x0 x0 1 1 0 0 |Load Incr Res Res Res
M/S x0 x0 1 1 0 1 Incr Incr Res Res Res
M/S x0 x/0 1 1 1 x | Res Res Res Res Res
Instr type 2 0 0 M/S x0 x0 2 0 x x | Incr Hold Incr Res Res
Test EOB M/S x0 x/0 2 1 x X Incr Hold Incr Res Set
Instr type 3 0 0 M/S x0 x0 3 0 x x | Incr Hold Incr Res Res
Test EOS M/S x0 x/0 3 1 x x | Incr Hold Incr Set Res

User’s Manual 10/2/2008 page 167

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.6 Interfacing with the Video Timing Generator through the IP

All read and write accesses to and from the Video Timing Generator require multiple cycles for completion
because the VTG operates asynchronously to the IMAGINE during normal operation. There are basically three
different accesses depending on the selected address (IPB_ADDRESS).

1. Control register (VTG_BASE + 128)
2. Counter register (Horizontal and Vertical) (VTG_BASE + 129)
3. Instruction RAM (VTG _BASE -> VTG _BASE + 63)

Read accesses can always be performed to any of these areas, even if the VTG is using the DOT CLK. This
allows for determining the state of the VTG while it is operational (generating timing signals). Writing to the
counter register and part of the control register (PC bits 15-8) can only be done while the VTG is in HOLD mode
(Hold bit in control register = 1). This avoids interference with the functioning of the unit during normal
operation.

24.6.1 The Control register

The control register has the following fields :

©0000000° Decoder signals Program counter (PC)

7-bits unused) read only) 8-bit, 2 bits unused) Unit control register

31 25 24 16 15 & 7 0

— v

[EOS |[EOB |Master/Slave |[PCD1|[DCDO |[M clk |Hold |Reset |

v

Decoder signals
read only)

— T

HOR res |VER res |PC res |HOR load |VER load |[PC load |[HOR inc |VER inc |[PC inc |

The control register (lowest 8 bits) determines the general state of the VTG. Although the EOS and EOB bits
form part of the control register from a programmers perspective, they are actually state flip-flops within the
decoder and usually function asynchronously to the IMAGINE on the DOT clock. The lower 6 bits are however
always synchronous to the IMAGINE to allow control of the unit without the DOT clock. The low 6- bits can
therefore always be accessed from the IPB, but the EOS and EOB can only be changed if the unit is in a HOLD
mode (Hold bit set). This avoids interference with the unit during normal operation. The same applies to the
Program counter which can also only be change while in a Hold mode.

User’s Manual 10/2/2008 page 168

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.6.1.1 The Unit control register

Reset This is a reset bit for the VTG without the IPB interface. This bit is intended to be used just before
starting normal operation of the VTG after testing and programming of the instruction RAM. If this bit is set, the
VTG will reset its internal state. All counters will be zeroed (Horizontal pixel counter, Vertical pixel counter and
Program counter) as well as the EOB and EOS flags.

Hold This bit is intended to place the VTG in a hold mode for general access from the IPB. In this mode all
registers are accessible for reading and writing. The value of the IM_clk bit may also be changed, but for general
access it should be set to ‘1’ (use IMAGINE clock) and only be cleared after all testing and programming is
complete.

IM_clk If this bit is set the unit will operate using the IMAGINE clock instead of the DOT clock.

DCDI1, DCDO These bits determine the clock pre-scale value. During testing they should be cleared.
00 Divide clock by 1
01 Divide clock by 2
10 Divide clock by 4
11 Divide clock by 8

Master/Slave The VTG can function in a Master or a slave mode. In Master mode the external signals

HOR RESET EXT and VER RESET EXT are ignored and the VTG will just execute the timing program as
defined in the instruction RAM. The Slave mode is intended to synchronise the unit to an external source. In
Slave mode the unit will function normally while HOR_RESET EXT and VER RESET EXT are low (‘0”) and
is only affected if one or both of them are high (‘1°). If the VER_RESET EXT is high (HOR_RESET EXT
ignored), the internal state will be reset (synchronous to the clock) to start a new screen (Pixel counters, PC, EOB
and EOS all reset). If the HOR_RESET EXT is high a horizontal reset will be executed (synchronous to the
clock). The exact operation depends on the current state of the VTG but corresponds to reaching a line end
during normal operation (executing Instruction type 1 with the Horizontal counter equal to the 12-bit compare
value of the instruction) (See section 3.1 Instruction type 1 when the Horizontal counter equals the compare
value).

24.6.1.2 The Program counter

The program counter can only be changed while in the Hold mode. Eight bits are defined although only 6 are
implemented (26 = 64). The two remaining bits will return ‘00’ when read.

24.6.1.3 The Decoder signals

These signals are read only and writing to them has no effect. They reflect most of the current decoder control
signals to facilitate testing or possible state determination during normal operation. These values will rarely be
required.

24.6.2 The Counter register

The counter register has the following fields. Writing from the IPB can only be performed while the unit is in a
Hold mode. Byte enables are also used during writing to allow 8-bit accesses.

‘0000’ Horizontal pixel counter |[°0000’ Vertical pixel counter
(4-bits unused) (12-bit) (4-bits unused) (12-bit)
31 28 27 16 15 12 11 0

User’s Manual 10/2/2008 page 169

Imagine 2 Multi Media Processor 24 Video Timing Generators

24.6.3 The Instruction RAM

Any 32-bit value can be written to the instruction RAM, but in general the values should conform to the
instruction specification as described in section 3.1. Due to the fact that a three port RAM is used, reading and
writing to the instruction RAM can always be done, even while the unit is operational (generating timing signals).
This allows for on the fly changing of the VTG program by accessing areas which are not currently required by
the unit. This creates a possibility to extend the capabilities of the VTG if the 64 word RAM is not sufficient.
Extreme caution should however be taken not to write to the same area of RAM currently being accessed by the
unit, as this will probably result in indeterminate operation. On the fly alteration of the VTG instruction RAM is
possible, but will very rarely be required as the current 64 word address space is sufficient for all the standard
display formats.

24.7 Programmers Notes
The following should be kept in mind with regards to the VTG

e The IPB RESET signal overrides all other signals. When this signal is active, no operation or access is
possible.

e When writing to the internal state registers (Horizontal and Vertical counters, Program counter, EOS and
EOB flags) can only be done when in a Hold mode.

e When the unit is in a Hold mode, the IM_clk bit should be set (use IMAGINE clock) and DCD1 and DCDO
should be cleared to avoid problems.

¢ In Slave mode the unit functions normally if the external reset signals are low (‘0”). If these signals never
become active, there is no change between Master and Slave mode. This means that a valid program is still
required. Importantly a program induced horizontal or vertical reset will be executed if the program reaches
that state before the externally applied signals. This would probably not be the required “slave” operation. In
order to avoid this, the horizontal compare value for the “Wait for line end” instructions (Instruction type 1)
should be increased (even set to 4095) to insure that the external reset signals be acknowledged.

* Care should be taken to supply the unit with a valid program. In general the compare values in the
instructions should always be greater than or equal to the relevant Horizontal or Vertical counter. If the
instruction compare value is less than the current counter value, the counter will have to overflow through
zero before the reaching the compare value.

e Various programs may produce the same results. Instruction types 2 and 3 usually have different placement
possibilities.

User’s Manual 10/2/2008 page 170

Imagine 2 Multi Media Processor 24 Video Timing Generators

Chapter
25. VIDEO OUTPUT UNIT

T he Video Output Unit receives video timing information from the video output

timing generator and pixel data from the video output fifo. It translates 32 bit, 16 bit
hi-color or 8 bit pseudo color pixel information into 32 bit alpha, red, green, blue
information. The three color components go to the video DAC and the alpha value
can be re-directed to the 8 bits of the digital video port. A 32x32x2 bit VGA
compatible hardware cursor is also provided. 3x256x8 bit color look up tables can
be used for pseudo color to true color conversion or to used for true color matching
as required by the PC98 standart

User’s Manual 10/2/2008 page 171

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.1 The Input/ Output Signals of RAMDAC (digital circuit)

—%/ » Pixin [63:0] Alpha |—2o4—p)
FIFO «4— ReadNext Red e
interface 8
—— CtrlReg [23:16] Green |=———te—b |
Blue % > DACs
a Hsync n In
- Sync_on_Green ——p
Vsync n In
from BlankLV |——p
Video Blank n_In ~
Timing — P 0dd/Even n_In HSync n O O——)
Generator VSync n O O———» L Video
(_ —»D DotClk Blank n 0 O——» Timing
Odd/Even n O ——» » Outputs
/- —— 1 IPB_Master IPB T Ready —» to
——p IPB Request Internal
— »{ [PB RW IPB_RdData[31:0] 2 > Peripheral
— »{ IPB I Ready Bus
from —— ¥ IPB_Space0
;nt?ffl 1< —Llp! IPB_Address[15:2]
Bue 0| =t IPB_BE[3:0]
—24—pi IPB_WrData[31:0]
— » Reset
_.—»Dcp (Imagine Clock)

25.1.1 Input/ Output signals definitions

Fifo Interface signals

PixIn [63:0] input 64 bit pixel data from FIFO. Data formats are:
1) 8bit x 8 words (pseudo color)
2) 16 bit x 4 words (direct color)
3) 32 bit x 2 words (direct color)

ReadNext output | Data read request to FIFO (active high)

CtrlReg [23:16] output | FIFO control register outputs.

bit 16: Fifo Enable

bit 17: Almost Empty Interrupt Enable

bit 19, 18: Reserved (reset to ‘0°)

bit 23..20: Watermark of Almost Empty Interrupt

User’s Manual 10/2/2008 page 172

Imagine 2 Multi Media Processor 24 Video Timing Generators

Video Timing signals (from Video Timing Generator)

HSync n_In input Horizontal sync input from Video Timing Generator (active
low) . This signal is synchronized with DotClk.

Vsync n In input Vertical sync input from Video Timing Generator (active
low). This signal is synchronized with DotClk.

Blank n In input Blank input from Video Timing Generator (active low).
This signal is synchronized with DotClk.

Odd Even n_In input Odd or even field input from Video Timing Generator.
Odd_Even n_In indicates odd or even field during interlaced
display. When Odd/Even polarity register (Cursor Control
Register bit 13) set to 1, a low signal indicates the even field
and a high signal indicates the odd field. The polarity can be
inverted by value of Odd/Even polarity register. This signal is
synchronized with DotClk.

DotClk input Pixel clock input.

Color output signals (To DACs)

Alpha [7:0] output | DotClk synchronized alpha color outputs. These signals are
connected to digital input bus of DAC cell.

Red [7:0] output | DotClk synchronized red color outputs. These signals are
connected to digital input bus of DAC cell.

Green [7:0] output | DotClk synchronized green color outputs. These signals are
connected to digital input bus of DAC cell.

Blue [7:0] output | DotClk synchronized blue color outputs. These signals are
connected to digital input bus of DAC cell.

Sync_on_Green output | When this signal is high, sync signal is added to Green
Analog Output of DAC cell.

BlankLV output | Blank level select signal. When set to high, blank signal is
added to analog outputs of DAC cell (black level > blank
level). When set to zero, black level equals to blank level..

Video Timing output signals

HSync n O output | Pipeline delayed HSync n_In signal (active low). This signal
is synchronized with DotClk.

Vsync n O output | Pipeline delayed Vsync n_In signal (active low). This signal
is synchronized with DotClk.

Blank n O output | Pipeline delayed Blank n_In signal (active low). This signal
is synchronized with DotClk.

Odd Even n O output | Pipeline delayed Odd Even n_In signal. Value of Odd Even

Polarity register (Cursor Control Register bit 13) is no effect
to this signal. This signal is synchronized with DotClk.

User’s Manual 10/2/2008 page 173

Imagine 2 Multi Media Processor 24 Video Timing Generators

Internal Peripheral Bus I/F signals

CP (Imagine Clock) input See document “The Protocol of the INTERNAL
PERIPHERAL BUS”

Reset input

IPB_Master input

IPB_Request input

IPB RW input

IPB T Ready output

IPB I Ready input

IPB_Space0 input

IPB_Address[15:2] input

IPB BE [3:0] input

IPB_RdData [31:0] output

IPB_WrData [31:0] input

User’s Manual 10/2/2008 page 174

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.2 RAMDAC module overview

RAMDAC module has two blocks. One is pixel data streams which is pipelined and DotClk synchronized. There
are 7 stages to convert each pixels and to operate cursors.

1) Read 64 bit Pixels from FIFO

2) Select one Pixel (8-bit, 16-bit or 32-bit) from 64-bit pixels and 16- bit to 32 bit color expansion
3,4) Pseudo color read from Color Look Up RAM (8-bit data only)

5,6) Cursor operations

7) Output to DAC cells (select color on/ off)

Video timing signals from Video Timing Generator are pipeline delayed same as pixel data.
Another is control block. It has some control registers and interface logic connected to Internal Peripheral Bus.
This block is synchronized with Imagine Clock.

HSync n_In, Vsync_n_In, - -
Blank n In and Horizontal counter is
0dd Ever In . synchronized with DotClk.
- Ve PixIn ReadNext C}r:Reg Vertical counter is
| | I synchronized with Imagine
DotClk 64 L1 /
PixNum [2:0]
A ¢ .
Stage 1 : Horizontal
PN ead FIFO (fifoctrl.v) J IFO Ctrl & Vertical [>
| Counter (|q—
A\ 4
64
Cursor
Compare (<= .
Position |« >
A Stage 2 : Reui
ISelect pixel / Color expansion <Color Ctrl egister l—
<> (divpix.v)
i i i 1 feran g | pseudo Coqtrol < >
v color color Register
< —
€ Stage3,4: 256x8 Color
IRead Color Look Up Table Look Up < > D
<4 (c_tbl.v) Table RAM
1PB
aRGB RGB signals
l l A l 32 f color 24 color g
> Stage 5. 6 4Cursor Area?
Generate Cursor >
<+ (cur_gen.v) | _ Cursor Color R
7 Y Registers |€ »| Internal
32 2?1333 Cursor Ctrl < Peripheral Bus
q Interface
A Stage 7 : | @estCul 32x32x2 P R
RGB 32-bit Data out Cursor RAM [v
[(colorout.v) —
¢ ¢ ¢ ¢ < T Color On/Off
aRGB checksum
¢ 8 8 8 8 32 >
vvvy YV >
HSync n O, Vsync n O,
Blank n O and Alpha Red Green Blue
Odd_Even n_O CP (Imagine Clk)

User’s Manual 10/2/2008 page 175

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.3 Read FIFO (fifoctrl.v)

This block is first stage of pipelines. While Blank n_In signal is high, this block generates ReadNext signal to
FIFO, Read 64-bit pixel data from FIFO. The cycle of ReadNext is depend on the value of Pixel Size Register
(Color Control Register bit 3, 2). This register selects incoming data size.

25.3.1 The timing of read from FIFO and ReadNext signal

Case 1: Select 8 bit pixels

PixIn[63:0] 1st 8 pixels X 2nd 8 pixels X 3rd 8 pixels

Blank n_In [
ReadNext / \ / \

H cnt[11:0] 0 XlX2X3X4X5X6X7X8X9X10X11X12X13X:

Case 2: Select 16 bit pixels

S AN AN AT AV ARAVAVAYAVAVARAVAVAW RS
PixIn[63:0] 1st4 pixels X 2nd 4 pixels X 3rd 4 pixels X 4th 4 pixels X:
Blank n In ’

ReadNext / \ [\ / \ / \

H cnt[11:0] 0 XlX2X3X4X5X6X7X8X9X10X11X12X13X:

Case 3: Select 32 bit pixels

PixIn[63:0] 1st 2 pixels Xan 2 pixel*?ard 2 pixelsx4th 2 pixelsXSth 2 pixelsX6th 2 pixelsx7th 2 pixelsX:

Blank n In J
ReadNext /A Y A B W U A B S A

H cnt[11:0] 0 XlX2X3X4X5X6X7X8X9X10X11X12X13X:

User’s Manual 10/2/2008 page 176

Imagine 2 Multi Media Processor

25.3.2 Input Data Format

8 bit Pixels

63 56 55

48 47 40 39

32 31

24 23

24 Video Timing Generators

16 15

8 7 0

Pixel 7 [7:0] | Pixel 6 [7:0]| Pixel 5 [7:0] | Pixel 4 [7

:0]

Pixel 3 [7:0]

Pixel 2 [7:0]

Pixel 1 [7:0] | Pixel 0 [7:0]

16 bit Pixels
63 48 47 32 31 16 15 0
Pixel 3 [15:0] Pixel 2 [15:0] Pixel 1 [15:0] Pixel 0 [15:0]
32 bit Pixels
63 32 31 0
Pixel 1 [31:0] Pixel 0 [31:0]
25.3.3 Block diagrams
64 64
PixIn ﬁ)_;ut_)
o divpix
(from FIFO) Ne
[En
ReadNext
(to FIFO)
Blank n In >
pixsize +
Read
Count X [2:0] - Next?
3 pixnum
(to divpix)
PDC DC

User’s Manual 10/2/2008

page 177

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.4 Pixel select and 16 bit to 32 bit color expansion (divpix.v)

This block select one 32-bit, 16-bit or 8-bit pixel from 64-bit pixels. Pixel size is defined by Pixel Size register
(Color Control Register bit 3, 2). Pixel select signal (pixnum[2:0]) is generated from Fifoctrl block. In case of
16-bit pixels, 16-bit pixels are expanded to 32-bit direct color data. Data format for 16-bit pixels is given by
Format 16 register (Color Control Register bit 5, 4). See subsection 2.2.2 [6-bit to 32-bit color expansion, for
more details. One dot clock cycle is needed to select pixel and color expansion. The block diagram of this
module is as follows.

25.4.1 Block diagrams

D in A
(from fifoctr]) 8:1 8 8 Data_8
Mux (to c_tbl)
DC
bit2:0 |
21 2 21 32 32 Data_32
Mux Mux e (to c_tbl)

bit 0

16-bit
4:1 g6 ->32-bit
Mux color
expansion
pixnum 3 bit 1:0
Format16 et
pixsize[1]

25.4.2 16-bit to 32-bit color expansion

1555 -> 8888

[is]afsToaf o]0 [T 7 [e[s][4T3T2T1 o]
A[RTRIR[R[R|[G]G[G[G[G]|B[B[B[B[B
off4f3|2]|tfofl4]3]2|t]olf4]3]2]1]0
A[A[AJAJAJAJATA|[R[R[R[R[R[R[R[R|[G][G|G|G[G|[G|G|[G|[B][B[B[B[B[B[B[B
olofofolojofofolaf3|2]t]of4|3]|2ff4|3]2]1|o]|4]|3|[2]4]3|2|1]|0]4]3]2

[31[30]29]28]27[26]25[24][23[22]21[20] 9] 18] 17]16][15[1413]2 11|10 o [8 |[7]6[5[4[3]2]1]0]

565 -> 8888
[15] a3 i2]1t][ol o8] 7]6]s]al3]2]1]o]
R[R|R|R|R|[G|G|G|G|G|G|B|B|B|B|B
al3|2ft]olls|4|3]2]|t]|ofl4|3]2]1]0
I[T[IJI[1JI[1|[R[R[R[R[R[R[R[R|[G][G[G[G|G|[G|G[G|[B][B[B][B[B[B[B[B
: al3f2|tfolal3]|2|s|4a|3]2|t]|ofs|a4]3]|2]1]|o]4]3]2

[31]30]29]28]27]26[25]24][23]22] 2120 10| 18] 17]16][15[14 13 12]11]10] o [8|[7]6[5[4]3]2]1]0]

User’s Manual 10/2/2008 page 178

Imagine 2 Multi Media Processor

4444 -> 8888

24 Video Timing Generators

[15]1a[32|10 o8] 7]6]s]al[3]2]1]0]

A[ATATA|R[R[R[R]|[G[G[G[G]|B]B[B]B
sl2ft|ofaf2]t]ofl3f2fi]of3]|2|t]o
A[A[AJATA[A[AJA|[R[R[R[R[R[R[R[R|[G[G|[G|[G[G[G|[G[G|[B[B][B[B[B[B[B[B
slafufofsf2|tfoffaf2]t|of3]2]|t|off3]2]|t|of3]2]t|off3]2]t|of3]2]1]0
[31[30]29]28]27[26]25]24][23[22]21[20] 19] 18] 17]16][15[1413 [121110 o [8 |[7]6 [543]2]1]0]

25.5 Read Look-up Table RAM (c_tbl.v)

In pseudo color mode, 8-bit pixel data is used as address the color look-up table RAM. Color look-up table RAM
consists of 256x24 bit 2-port asynchronous RAM. 2 dot clock cycles is needed to read color look-up table. In
case of 32-bit pixels, data is only 2 clock pipelined. Color look-up table RAM is not initialized and may be
written or read from IPB at any time. When read color table by IPB bus, first hold output register of pipeline
with valid data (current data), then switch multiplexer to IPB_Address. Output register is held 2 imagine clock
cycles. The block diagram of this block is as follows.

32
Data 32 ==—p=———ve 32 32 Dout_thru
= Sel _
(aRGB color) o —— 5 (aRGB color)
C if pixsize == 0,
RGB only V\\ {8'hff, {3{data_8}}}, s
else, data 32
. 2 if pixsize == 0,
PlX_SlZe {3 {data_S}}},
klse, data 32[23:0]
Hold
OR
Dotclk detect if no dotclk,
" set direct bC
D g Sel |24 A/ Color Look-up Table /
ata_ 8 Gamma Correction RAM
(gr;:(;ui(; lc;())lor/ o6 | (256x8 RAM x3)
Mux Sl R Adi70] | 2 24, Dout_mem
I Q - | (RGB color)
Q Pbc
8
. e R_Data[7:0] 2 9y
.) 2 bl RdData
Address W_Adr(7:0] Pop (toIPB Bus)
Q
Rop
R
from WrData 2 24 & :
IPB Bus X W_Data[7:0]
Rop
R
3 Wr 4
BWE — &l WE[7:0]
Nep % 2 CP: Imagine Clock
en. DC: Dot Clock
RE
y R —

User’s Manual 10/2/2008

page 179

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.6 Cursor Generation (cur_gen.v)

This block generate two color 32x32 pixel cursor. Two dot clock cycles is needed to generate cursor. XGA

cursor and X-Windows cursor modes are available. Cursor mode is defined by Cursor Type register(Cursor
Control Register bit 9). The cursor operates in both non-interlaced and interlaced modes. It is defined by Cursor
interlace register(Cursor Control Register bit 12). When Cursor interlace register set to 1, polarity of
Even_Odd n_In can be changed by Cursor Polarity register(Cursor Control Register bit 13).

The pattern for the 32x32 cursor is provided by the cursor RAM, which may be access from IPB at any time.
Cursor positioning is performed using the Cursor x, Cursor_y registers. Positions x and y are defined increasing
from left to right and from top to bottom.

Block diagram of this blocks is as follows.

25.6.1 Block diagrams (cur_gen.v)

optional Alpha output is 2 clocks
carlier than

RGB data (to output pin). \

8 8
Oxff #MUX — Alpha
8 >
Alpha |
24
Din_mem 24 ,__Mux " D out
— > RGB
Din_thru 32 2 N 24 41
RGB Mux e
Gamma_on
Cursor_color(24 RGB
Cursor_colorl 24
Cursor Sel V\ 3
32 32bit N Select:
Read Data 04 1t | plane 0 Cursor Cursor Color 0
from Cursor shift 2
RAM | reg. type? Cursor Color 1
Transparent
Invert
370it Cursor
i
lane 1
320 hife [P
|| reg.
Cursor_On,
Cursor_type
(from cursor ctrl reg.)
Count_X 12
— Cursor
area? Cursor_en

All F/Fs are synchronized with DotClk

Cursor X #

25.6.2 Cursor modes definitions

The 32x32x2 cursor RAM provides two bits of cursor information on every dot clock during the 32x32 cursor
window. Cursor Type register (Cursor Control Register bit 9) specify XGA mode or X-Window mode. When
Cursor On register(Cursor Control Register bit 8) is 0, the cursor is disabled. The two bits of cursor pixel data
determine the cursor appearance as follows.

RAM COLOR SELECTION
PLANEI | PLANEO XGA mode X-Window mode
0 0 Cursor color 0 Transparent
0 1 Cursor color 1 Transparent
1 0 Transparent Cursor color 0
1 1 Complement Cursor color 1

User’s Manual 10/2/2008 page 180

Imagine 2 Multi Media Processor

25.6.3 Cursor RAM

The 32x32x2 cursor RAM defines the pixel pattern within the 32x32 pixel cursor window. It is not initialized

and may be written or read from Internal Peripheral Bus (offset 0x100 to 0x1ff) at any time.

24 Video Timing Generators

The cursor plane 0 bits for the entire cursor array are stored in the first 128 bytes of the RAM, and the cursor
plane 1 bits are stored in the last 128 bytes of the RAM. Information for eight cursor pixels is stored in each byte.
Each four bytes of pixels makes one line of the cursor. This 32 bit x 2 plane data is read from cursor generation
block each vertical lines and stored to shift register while value of vertical counter in cursor window. Then
while value of horizontal counter is in cursor window, the shift register is shift to left every dot clock.

Count y _12

Cursor é7‘

area?

32x32x2 Cursor RAM

Cursor_area_y
(to Cur_Gen)

Cursor_out

(to Cur_Gen)

RdData

Cursor_y _12/
e (32x64 RAM)
Odd_Even, 5
Cur_interlace; Mux R_Adr{4:0] o4
Cur_polarity 5 I
e rCp
N L 64
p R_Data[63:0]
32 32
Address 8 > 5 W_Adt[4:0] 3, |Mux Nep
cp Select En
bit 63:32/
bit 31:0
WrData o 32/ W Data[63:32]
kep
from
32 32
IPB Bus W _Data[31:0]
bep
BWE 2 wro| 18
= pulse WE[7:0]
bep Gen.
MSB
bhep
\ RE
Np CP: Imagine Clock

User’s Manual 10/2/2008

(to IPB Bus)

page 181

Imagine 2 Multi Media Processor 24 Video Timing Generators

9b’t9q’r’n9q ’O’ka‘amad aO

Upper Left Corner of Cursor
as Displayed on Screen

< 32 >
pixels
Byte 03 Byte 02 Byte 01 Byte 00
Byte 07 Byte 06 Byte 05 Byte 04
32
pixels
Byte 7f Byte 7e Byte 7d Byte 7¢
8 pixels
D7]|D6[D5[D4[D3[D2[D1[DO|
First Displayed Pixel
(Leftmost)

’b’t’q’r’n’q ’O’k,‘ ,m’d 1

Upper Left Corner of Cursor
as Displayed on Screen

< 32 >
pixels
Byte 83 Byte 82 Byte 81 Byte 80
Byte 87 Byte 86 Byte 85 Byte 84
32
pixels
Byte ff Byte fe Byte fd Byte fc
8 pixels
D7|D6|D5|D4[D3[D2[D1]DoO|
A
First Displayed Pixel
(Leftmost)

User’s Manual 10/2/2008 page 182

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.6.4 Cursor positioning

The cursor position x, y registers position the 32x32 cursor on the display screen. The cursor position X, y
registers specify the location of the cursor top left corner on the display screen relative to the end of the
Blank n In signal. Figure shows the orientation of the X, y coordinates for positioning the cursor.

The values written to the cursor position registers represent the position of the top left corner of the cursor.
When value X is written to the cursor position x or value Y is written to cursor position y registers, the cursor is
off the screen. When the cursor position x, yis (X - 1, Y - 1), only a single pixel of the cursor is displayed and it
appears at the lower right corner of the screen.

Blank n

Blank n
— x —Pp |

/

Screen(0, 0)
Cursor(X, y)

«—< —>p

Cursor position (x + 31,y +

A\ L

Active Display Area Screen(X. Y)

User’s Manual 10/2/2008 page 183

Imagine 2 Multi Media Processor

25.7 Color Data out (colorout.v)

This block has the 32-bit alpha RGB registers for the digital color outputs and checksum registers for each 8-bit
color. When Color On register(Color Control Register bit 0) is 1, color outputs are disabled (all ‘0’). The
checksum registers is connected to 32-bit color output registers (at the end of the pipeline) and checksum values
are calculated each 8-bit colors. When Test Control Register bit 24 set to 1, checksum registers are enabled
(calculate checksum). When set to 0, checksum registers are held its values. These values are synchronized with
Imagine clock using two 32-bit registers. It can be read from Internal Peripheral Bus (offset 0x008). While
calculate checksum read values are all ‘0’. When bit 25 of Test Control Register set to 1, checksum registers

reset to ‘0’.The block diagram of this module is as follows.

Din 32

enb_chksum
rst_chksum

User’s Manual 10/2/2008

24 Video Timing Generators

bit 31:24 8] Alpha
st T e o
: 3 o DACs
bit 7:0 Green
l_ . Blue
l: '—Mux And - e a chksum
n
>DC }:p And CP r_chksum t0 IPB
g_chksum 0
b_chksum
] Alpha
[
— | Red
—| Green
Blue

CP: Imagine clock
DC: Dot Clock

page 184

Imagine 2 Multi Media Processor

25.8 Internal Peripheral Bus I/F

RAMDAC module has Internal Peripheral Bus(IPB) interface giving direct access to the registers and memories
of this module. These are mapped on IPB address space 0 (IPB_Space0). 2048 byte ranges are needed. These
registers and memories are addressed directly by IPB_Address[10:2] from IPB and can be written or read at any
time. When write access, write transfer always successfully terminate at first try. [IPB_Address[10:2] and
IPB_WrData[31:0] are stored, then write to registers and memories at next cycle. In case of read access, it takes
two cycles to read from registers and four cycles to read from memories (color look-up table or cursor RAM).

Checksum reg

Count x, Count y
C_LUT Data

Cursor RAM Data

24 Video Timing Generators

IPB_Master
IPB RW
IPB Request

IPB_Space0
IPB I Ready
IPB_Address

IPB_BE

IPB_WrData

User’s Manual

=% [PB_RdData

IPB T Ready

hvent re

(to counters)
lut ram re

(to color LUT RAM)

32
3%
24
Select Read Data
3%
read enable for Vv | | | |
lctrlregs, checksums, cusor x, y
land cursor color 0, 1 Read
Enable
Req Gen..
PPfr} 32
Access? 4 Ctr]l Regs
Req
bit 15:11
bit 10:2 Cursor [32
. . Position
P) [I X, y
Byte Write fmm
4 Enable
Gen..
N Cursor |32
- Color
.z 0,1
7
4
3
Q
32 32
bep
10/2/2008

cur_ram re
(to cursor RAM)

hvent_bwe
(to counters)

lut ram bwe
(to color LUT RAM)

cur_ram_bwe
(to cursor RAM)

Addr
WrData

page 185

Imagine 2 Multi Media Processor

25.8.1

RAMDAC base

IPB_Address

address

24 Video Timing Generators

0 0010
e

RAMDAC Register Space

15[14]13]12]11] 10

o[8]7]e6]s]al3]2]1]o

25.8.2 RAMDALC registers memory map

12
16

20
24
28
32

256

380
384

508
512

1024

2024

31|30]29|28|27|26|25]24 23|22]21 |2o| 19|18|17]16 15|14]13|12| 11 |10| 9]8 7 | 6]5 |4| 3 |2 | 1]0
Test Control FIFO Control Cursor Control Color Control
Register Register Register Register
Reserved

Alpha Checksum [7:0]

RED Checksum [7:0]

GREEN Checksum [7:0]

BLUE Checksum[7:0]

[read only] [read only] [read only] [read only]
Reserved
‘0 Cursor Position X [11:0] ‘0’ Cursor Position Y[11:0]
‘0 Horizontal Count [11:0] ‘0’ Vertical Count [11:0]
‘0’ Cursor Color 0 Cursor Color 0 Cursor Color 0
RED [7:0] GREEN [7:0] BLUE [7:0]
‘0’ Cursor Color 1 Cursor Color 1 Cursor Color 1
RED [7:0] GREEN [7:0] BLUE [7:0]
Reserved
Cursor Plane 0 Line 0
Cursor Plane 0 Line 31
Cursor Plane 1 Line 0
Cursor Plane 1 Line 31
Reserved
‘0 Color Look Up Table RAM Entry 0
(R[7:0] G[7:0] B[7:0])
‘0’ Color Look Up Table RAM Entry 255

(R[7:0] G[7:0] B[7:0])

User’s Manual 10/2/2008

page 186

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.9 Control Registers

25.9.1 Color Control Registers

This registers controls input data selections and color output signals. Input data types are selected from 16-, 32-
bit direct color and 8-bit pseudo color mode. In 16-bit direct color mode, 1555 format, 565 format and 4444
format can be selected.

Bit7:6 controls analog output levels. When bit 6 is set to “1°, 442.5 LSBs of current are added to the Green
output. When bit 7 is set to ‘1°, 83.5 LSBs of current are added to the outputs.

When Bit 0 is set to ‘1°, color outputs, sync, blank and fields signals is inactive. When IPB Reset is asserted to
1’ this bit is set to ‘1°.

This registers can be write or read from Internal Peripheral Bus. It is not initialized except bit 0.

bit 0: 1 = Enable Color outputs, sync, blank and field signals
0 = Disable Color outputs, sync, blank and field signals

Direct Color/ Lookup Table selection
bit 1: 0 = direct color (16-bit,32-bit pixels) / gray scale
(8-bit pixels)
1 = enable gamma correction (16-bit, 32-bit pixels) /
enable lookup table RAM (8-bit pixels)

Input Pixel Size
bit 3,2: 00 = 8 bit Pixels 01 = 16 bit Pixels
1x = 32 bit Pixels

16 bit Data Format
bit 5,4: 00 = Reserved 01 = 1555 format
10 = 565 format 11 = 4444 format

DAC output level specifications
bit 6: 1 = Sync on Green output
bit 7: 0 = Black Level == Blank Level

1 =Black Level > Blank Level

vVVYVYYVYY
Test Control FIFO Control Cursor Control Color Control
Register Register Register Register

[31[30]29]28]27]26]25]24]23[22]21]20]19]18]17]16]15[14]13]12]1i]10] o876 [5]4[3]2]1]0]

User’s Manual 10/2/2008 page 187

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.9.2 Cursor Control Register

This register controls 32x32 pixel cursor. X-windows and XGA modes are available(bit 9). The cursor operates
in both non-interlaced and interlaced modes (bit 12). In non-interlaced mode, bit 7 of this register allows the
polarity of Odd/Even_n signal to be inverted when set to ‘1’(It has no influence to Odd/Even_n_Out signal). Bit
8 of this register controls display cursor or not.

This registers is not initialized and can be write or read from Internal Peripheral Bus at any time.

1 = show cursor |

bit 8: 0 =no cursor

1 = X-Windows cursor |

‘ bit 11, 10: Reserved !

‘ bit 12: 0 = non-interlaced cursor 1 = interlaced cursor

Odd/Even Polarity
bit 13: 0=o0dd -> 1, 3, 5.....
l=o0dd->0,2,4...

bit 9: 0 = XGA cursor

bit 14: Reserved

-

‘ bit 15: 0= disable alpha out 1 = enable alpha out

VVVVi‘V

Cursor Control
Register

Test Control
Register

FIFO Control
Register

Color Control
Register

[31]30]29]28]27]26]25]24]23]22]21]20] 19] 18] 17 16 [15[1a] 13 12]11]10] o876 [s5]4]3]2]1]0

25.9.3 FIFO Control Register

This registers controls the FIFO module. The outputs of this registers are directly connected with the FIFO
module. Bit 16 of this register controls the FIFO operation. When set to ‘0°, disable FIFO operation (FIFO read
address counter reset to ‘0”). Bit 17 of this register enables FIFO Almost Empty

Interrupt. Bit 23..20 is watermark for FIFO Almost Empty Interrupt. When the data stored in FIFO is lower than
values of bit 23..20 times 8 words, FIFO Almost Empty Interrupt is generated.

This registers is not initialized and can be write or read from Internal Peripheral Bus at any time.

Watermark
0: 0 words 8: 64 words
1: 8 words 9: 72 words
2: 16 words 10: 80 words
3: 24 words 11: 88 words
4: 32 words 12: 96 words
5: 40 words 13: 104 words 4‘ bit 19, 18: Reserved ‘
6: 48 words 14: 112 words
7: 56 words 15: 120 words - -

bit 17: 0 = disable Almost Empty Interrupt

1 = enable Almost Empty Interrupt

bit 16: 0 = disable FIFO (reset FIFO) 1 = enable FIFO ‘

_vvvivy

Test Control
Register

FIFO Control
Register

Cursor Control
Register

Color Control
Register

[31[30]29]28]27]26]25]24]23[22[21]20]19]18]17]16]15[14] 13 12]11]10] o876 [5]4[3]2]1]0

User’s Manual 10/2/200

8

page 188

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.9.4 Test Control Register

This registers is used for test of RAMDAC module. Bit 25, 24 is controls the color out checksum registers
operations. When bit 24 is ‘1°, checksum registers are enabled. While enabled, read values of checksum registers
are always ‘0’. When bit 24 is ‘0°, checksum registers are held, these values can be read. When bit 25 set to “1”,
checksum registers reset to ‘0’. Bit 25, 24 of this registers is not initialized and can be write or read from Internal
Peripheral Bus at any time.

Bit 26 is used for dot clock detection. If set to ‘0’, it means “no dot clock detection”.
Bit 31..28 is monitoring registers of timing signals generated by Video Timing Generator. These signals are
synchronized to Imagine clock. Bit 31..28 and 26 can be read from Internal Peripheral Bus.

[bit 31: Hsync_n signal (from Video Timing Generator) read only [read ‘

|nn vl

[bit 30: Vsync_n signal (from Video Timing Generator) [read

|nn|v1

| bit 29: Blank n signal (from Video Timing Generator) [read

|nn]v1

| bit 28: Odd/Even_n signal (from Video Timing Generator) [read

|nn|v1

bit 27: Reserved ‘

bit 26: 0 = not dot clock detected 1 = dot clock detected [read
onlvl

bit 25: 1 = reset Checksum register
bit 24: 0 = Hold Checksum register 1 = Enable Checksum register
VVVYVYVY
Test Control FIFO Control Cursor Control Color Control
Register Register Register Register

[31[30]29]28]27]26]25]24]23]22] 2120 19] 18] 17]16]15[14]13[12]11]10] o876 [5[4[3]2]1]0]

25.9.5 Test Registers

This registers are checksum of color output data. This registers can be only read from Internal Peripheral Bus at
any time. See subsection 2.5 Color Data out, for more details.

25.9.6 Cursor Position X, y Registers

This registers indicates the location of the cursor top left corner on the display screen. This registers can be
write or read from Internal Peripheral Bus at any time. See subsection 2.4.4 Cursor positioning, for more
details.

User’s Manual 10/2/2008 page 189

Imagine 2 Multi Media Processor 24 Video Timing Generators

25.9.7 Count x, Count y Registers

These registers are output of the 12-bit horizontal and vertical counters to display pixels. Horizontal counter
count up on every dot clock cycle during Blank n In signal is inactive (asserted to 1). When Blank n Inis 0,
horizontal counter reset to 0.

Vertical counter is synchronized by Imagine clock. Vertical counter count up when Blank n_In signal
falls to 0. When Vsync n_In falls to 0, vertical counter reset to 0. Blank n_In and Vsync_n_In are synchronized
by Imagine clock, then used. The values of these registers can be load from IPB for the purpose of test. When
read access from IPB, the values of horizontal counter is connected with IPB via Imagine clock synchronized
registers. The outputs of vertical counter is directly connected with IPB.

25.9.8 Cursor Color 0, 1 Registers

These registers store the 24-bit RGB color data for 2 color 32x32 cursor window. This registers can be write or
read from Internal Peripheral Bus at any time See subsection 2.4.2 Cursor modes definitions, for more details.

25.9.9 Cursor Plane 0, 1 entries

These are the entries to the 32x32x2 cursor RAM defines the pixel pattern within the 32x32 pixel cursor window.
It is not initialized and may be written or read from Internal Peripheral Bus (offset 0x100 to Ox1fc) at any time.
See subsection 2.4.3 Cursor RAM, for more details.

25.9.10 Color Look-up Table RAM entries

These are the entries to the 256x24 bit color look-up table RAM for pseudo color mode. Color look-up table
RAM is not initialized and may be written or read from Internal Peripheral Bus (offset 0x400 to 0x7fc) at any
time. See subsection 2.3 Read Look-up Table RAM, for more details.

User’s Manual 10/2/2008 page 190

Imagine 2 Multi Media Processor 26 Video Input Unit

Chapter
26. VIDEO INPUT UNIT

T he Video Input Unit can load digital video data from the 8 bit video input bus.
This bus xecute timing instructions from their own Timing instruction RAM and are
capable op generating arbitrary video timing signals up to a resolution of 4096 by
4096 pixels, including CCIR601, NTSC and PAL-M formats. The Video output
timing generator sends its timing signals to the video output unit. Both video input
and output timing generators can be independently synchronised to the CCIR 656
video input or to the external Vreset* pin. Both can independently choose between
the clock from the internal dot clock generator or the CCIR 656 video input clock.

User’s Manual 10/2/2008 page 191

Imagine 2 Multi Media Processor 26 Video Input Unit

26.1 The Input/Output Signals of the Video Input Unit

| [IPB MASTER IPB_T_READY| ————=>—»
3| [IPB_ REQUEST IPB_RDDATA [31:0] —F—»

3| IPBRW

— 3| [IPB I READY

— /7 _»| [IPB_SPACE [6:0]

— 414 | |IPB ADDRESS [15:2]
ﬁL, IPB_BE [3:0]
ﬁ&, [PB. WRDATA [31:0]

—° 3| RESET

S cp ALMOST FULL .
» H_RESETO >

V_RESETO >
— _ »[>pOT CIK H RESETI >
— /8 »|IIN BYTE V_RESETI| b——p

26.1.1 Signal definitions

IPB_ MASTER input See : “The protocol of the Internal Peripheral Bus”

IPB_ REQUEST input

IPB_I READY input

IPB_SPACE [6:0] input

IPB_ADDRESS [15:2] | input

IPB_BE [3:0] input

IPB. WRDATA [31:0] | input

RESET input

CP input

IPB_ T READY output

IPB_ RDDATA output

DOT _CLK input External DOT clock. (May not be present)

IN BYTE input 8-bit digital input data. (Usually YUV data as per CCIR
recomendation)

ALMOST FULL output FIFO almost full flag. Signals Imagine that a FIFO read is
required to avoid data loss. The FIFO should never be
allowed to get completely full and it cannot stall the input.

H RESETO output Horizontal reset pulse for Video Timing Generator 0

V_RESETO0 output Vertical reset pulse for Video Timing Generator 0

H RESETI1 output Horizontal reset pulse for Video Timing Generator 1

V_RESETI1 output Vertical reset pulse for Video Timing Generator 1

User’s Manual 10/2/2008 page 192

Imagine 2 Multi Media Processor 26 Video Input Unit

26.2 Module overview of the Video Input Unit (VIN)

The Video Input Unit consists of six modules.

[PB-interface.

Stage0 (Input stage).

Stagel (optional 4:2:2 to Alpha:4:4:4 conversion with possible downsampling).
Stage? (optional downsampling).

Stage3 (optional colour conversion YUV -> RGB).

FIFO.

S ol e

26.2.1 The IPB_interface

The IPB-interface connects the VIN to the Internal Peripheral Bus. It decodes the IPB request and determines the
appropriate action for the request. All accesses through the IPB to this unit require multiple cycles, except
reading from the FIFO which is completed within a single cycle. This allows a fast burst read when the FIFO is
almost full. This unit also contains the control registers for the rest of the unit.

26.2.2 StageO (Input stage)

The input stage is the most complex of all the stages. It has to detect global synchronisation of the input data
stream, proper word grouping (4-bytes), horizontal and vertical sync signals, line and/or field skipping,
synchronisation errors etc. This stage basically determines which data to pass to the next stage. Once the input
stage outputs data to the next stage, the data passes through the other stages and into the FIFO.

26.2.3 Stage1 (4:2:2 to A:4:4:4 conversion)

This stage optionally converts a 4:2:2 input word into a A:4:4:4 value with A taken from a programmable
register. This stage has three modes:

0 : pass through (X3, X2, X1, X0) > (X3, X2, X1, X0)

1:4:2:2 to A:4:4:4 with downsampling (Y1, V0, Y0, U0) > (A, VO, (Y1+Y0)/2, U0)
2:4:2:2t0 A:4:4:4 (Y1, V0, Y0, U0) > (A, V0, Y0, U0) (A, VO, Y1, U0)
3 : RESERVED

Mode 1 achieves a 2:1 horizontal downsampling of the input data. With mode 2 a single input word creates two
output words which effectively upsamples the input data. When digital line blank data or field blank data is
received, then no conversion is performed, irrespective of the mode.

26.3.4 Stage2 (Down sampling)

This stages does optional 2:1 downsampling of the input. It has four modes of operation.

: pass through (X3, X2, X1, X0)

1 A:4:4:4 downsampling (A0, V0,Y0, UO),(AL, VLY, Ul)
: 4:2:2 downsampling (Y1, V0, Y0, U0) (Y3, V1, Y2, Ul)
: 8-bit downsampling (X7, X6, X5, X4) (X3, X2, X1, X0)

(X3, X2, X1, X0)
((A1+A0)/2, (VI+VO0)/2, (Y1+Y0)/2, (UL+U0)2)
((Y3+Y2)/2, (VI+V0)/2, (Y1+Y0)/2, (U1+U0)/2)

9
9
9
> ((XT+X6)/2, (X5+X4)2, (X3+X2)/2, (X1+X0)/2)

W~ O

Mode 1 together with mode 1 of stage 1 achieves a 4:1 horizontal downsampling of the input data stream. As
with the previous stage no transformation is performed on digital blanking data. Note that modes 1 to 3 require
two input words from the previous stage before generating an output. If a pre-amble is detected while this stage is
still waiting for the second input word, the saved word is discarded for this would indicate an error condition.

26.3.5 Stage3d (Colour conversion)

This stage does the optional A:4:4:4 to ARGB conversion. The coefficients in the conversion matrix are
programmable to allow for fine tuning of individual requirements and for various other applications. It has two
modes.

0 : pass through (X3, X2, X1, X0) > (X3, X2, X1, X0)
1:A:4:4:4t0 ARGB (A, V,Y,U) > (A,R, G,B)

User’s Manual 10/2/2008 page 193

Imagine 2 Multi Media Processor 26 Video Input Unit

The standard YUV to RGB conversion matrix for CCIR656 data is as follows:

R 1 0 1.371 Y
G |[=|1 -0.336 -0.698 U
B 1 1.732 0 \Y%

The coefficients are however programmable via control registers 4, 5 and 6. The coefficients have a sign bit and
an eight bit value in the 1.7 format (1 bit before the decimal comma and 7 after). They can therefore vary from
-1.9921875 to +1.9921875 (+- 1.1111111). This allows for fine tuning the colour conversion matrix.

R a ¢ Y
G |=|d e f U
B g h 1 A\

26.3.6 FIFO (128 deep by 32-bit wide)

The FIFO stores the data coming from stage 3. It has a programmable watermark to determine the ALMOST
FULL state. As it is not possible to stall the input data stream, it should NEVER be allowed to become
completely full. The almost full flag generates an interrupt to the processor to indicate that data is available.

User’s Manual 10/2/2008 page 194

Imagine 2 Multi Media Processor

26.4 Functional description of the Video Input Unit
The VIN is mainly intended for accepting digital input data as per the CCIR 656 recommendation. All the

programmable options do however allow for other user defined applications. It is for instance possible to accept
any incoming data and pass it through to the processor where any software manipulation can be performed. The
VIN contains downsampling and colour conversion circuitry to reduce the burden on the processor, especially for

applications which do not require the full resolution.

26 Video Input Unit

The operation of the VIN will now be described with an assumed CCIR656 input data stream.

Block diagram of the Video Input Unit

Stage 0
N {

DATA CONTROL €

SE

Stage 1

DATA CONTROL 4—1

vl v

Stage 2

DATA CONTROL o

vil v

Stage 3

DATA CONTROL [¢®

vi] v

FIFO

/

]y

IPB
Interface

CONTROL
REGISTERS

ALMOST
FULL

DATA

The CLK signal may be either the DOT CLK or a clock pulse from the

IPB interface (synchronous to the Imagine clock CP)

1—
IPB signals

—

User’s Manual 10/2/2008

page 195

Imagine 2 Multi Media Processor 26 Video Input Unit

26.4.1 StageO (Input stage)

This stage is the most complex of the four stages. It’s main function is to determine what data to pass into the rest
of the pipeline. After a reset the first task this unit has to perform is to synchronise on the incoming data stream
(if synchronisation is enabled). After a reset the incoming data could be at an arbitrary position in the video
frame. In order to determine synchronisation, the unit uses the bits 16 to 23 in control register 2 to detect a valid
FVH combination, which forms part or the byte after a received pre-amble (the pre-amble is defined as hex FF
00 00 in CCIR656).

The exact method used to determine a valid FVH combination needs some elaboration as it is also used in

detecting the Horizontal and Vertical reset pulses from the input data stream.

¢ Firstly there are the three compare values for F, V and H. (Refer to control register 2 bit definition) These bits
determine what the values of F, V and H should be in the input for a valid detection. They only apply
however if the corresponding enable bit is logic ‘1.

¢ The three enable bits determine which of the three values (F, V and H) should be used in the comparison. If
the enable bit is logic ‘0’, the corresponding value is NOT used in the comparison and the compare value is
then a don’t care.

* The transition detect is used to determine a transition in the state of F and/or V. This means that not only
should the current F and/or V value be correct, but it/they should have changed from the previously received
F and V. This allows for an unambiguous placement of the selected signal be it the global sync, horizontal or
vertical reset pulse. There is no transition check for H because according to the CCIR specification, the H
values changes with every received pre-amble.

To clarify the method, a few examples will be given.

e The required values for a “normal” horizontal reset pulse at the end of the active video line (start of H_sync)
would be FVH_enable=(001), FVH_compare=(xx1), FV_trans=(00). Only the H value is used in the
comparison and no transition detection is required. The pulse will therefore be generated every time the
received H is a logic “1°. If the H compare value is set to ‘0°, the pulse will be generated at the start of the
active video (end of H_sync).

¢ The required values for a vertical reset pulse would be FVH_enable=(010), FVH_compare=(x1x) and
FV_trans=(01). Only the V value is used and it should change TO a ‘1’ to create the pulse. This will create
two reset pulses at the start of the V_sync during the first and second fields (interlaced). If it is required only
for the second field, then the values should be FVH_enable=(110), FVH compare=(11x) and FV_trans=(01).

* For global synchronisation a logical position would be at the start of the first field. The required values for
this are FVH_enable=(100), FVH_compare=(0xx) and FV_trans=(10).

It is important to note that various other values could be used, but they would not be useful with CCIR656 input
data. For instance checking for a transition in BOTH F and V would not work because in CCIR656 data these
two values never have transitions SIMULTANEOUSLY'. This might however not be applicable in other
applications.

The vertical reset pulse is also used to reset the line counter within stage 0. This counter holds the current input
line number and is increased by the horizontal reset pulse. Because these pulses are however programmable, the
line number does not correspond to the same line number as defined in the CCIR656 specification. This line
number is further used to ignore certain lines (if required. See bits 0-7 of control reg 3). Ignoring lines allows for
elementary vertical downsampling of the input stream.

In general a single frame consists of three distinct data areas.

¢ Normal line data (YUYV pixel data in groups of four received as Cb, YO, Cr, Y1)
» Digital line blank data (H=1)

* Digital field blank data (V=1)

By setting the required bits (bits0-11 of control register 3) the application program can determine exactly what
data to send to the next stage. Note that the exact line numbers do not correspond to the CCIR656 specification,
but depend on the user placement of the horizontal and vertical synchronisation pulses. When accepting pre-
ambles, the EAV (end of active video) is part of the normal line data and the SAV (start of active video) is part
of the line blank data.

User’s Manual 10/2/2008 page 196

Imagine 2 Multi Media Processor 26 Video Input Unit

26.5 The control registers

The video input unit has six control registers. The first control register is mainly a status register and is intended
for testing. The other five control registers determine all the modes of operation for the different stages, the FIFO
watermark etc. The complete bit definitions are as follows

Control Register 1

0 RESET

1 HOLD

2 FIFO empty

3 FIFO almost full

4 Input Synchronized
5 Synchronization error
6 H reset

7 V_reset

19:8 Line counter

20 Stage 0 data valid
21 Stage 1 data valid
22 Stage 2 data valid
23 Stage 3 data valid
31:24 Input byte

Control Register 2

Horizontal reset pulse control

0,1,2 H,V,F compare value

3,45 H,V,F compare enable

6,7 V,F transition check enable
Vertical reset pulse control

8,9,10 H,V.F compare value

11,12,13 H,V,F compare enable

14,15 V,F transition check enable

Start synchronisation control
16,17,18 H,V,F compare value
19,20,21 H,V,F compare enable

22,23 V.,F transition check enable
General control

24 Enable Horizontal reset 0

25 Enable Vertical reset 0

26 Enable Horizontal reset 1

27 Enable Vertical reset 1

28 Enable start synchronisation

29 Enable re-sync on error

30 Enable Hamming error correction

31 Reserved

User’s Manual 10/2/2008 page 197

Imagine 2 Multi Media Processor

Control Register 3

0NN BN~ O

O

10
11
13:12
15:14
16
24:17
31:25

Enable sampling in even field lines xx00
Enable sampling in even field lines xx01
Enable sampling in even field lines xx10
Enable sampling in even field lines xx11
Enable sampling in odd field lines xx00
Enable sampling in odd field lines xx01
Enable sampling in odd field lines xx10
Enable sampling in odd field lines xx11
Accept field blank data

Accept line blank data

Accept normal data

Accept pre-ambles

Mode stage 1

Mode stage 2

Mode stage 3

Alpha

Watermark

Control Register 4

31:24
23:16
15:8
7:0

a

b
c
d

Control Register 5

31:24
23:16
15:8
7:0

(&

f
g
h

Control Register 6

31:24
23:9
8:0

i
Reserved
9 sign bits (a-i) O=poitive 1=negative

User’s Manual 10/2/2008

26 Video Input Unit

page 198

Imagine 2 Multi Media Processor 26 Video Input Unit

26.6 Interfacing with the Video Input Unit through the IPB

All read and write accesses to and from the Video Input Unit require multiple cycles, except reading from the
FIFO which completes within one cycle. There are seven different accesses depending on the selected address
(IPB_ ADDRESS).

FIFO address (VIN_BASE + 0)

Control register 1 (VIN_BASE + 1)
Control register 2 (VIN_BASE + 2)
Control register 3 (VIN_BASE + 3)
Control register 4 (VIN_BASE + 4)
Control register 5 (VIN_BASE + 5)
Control register 6 (VIN_BASE + 6)

NNk WD~

L The FIFO address can only be read and completes within a single cycle. This allows the FIFO to be
emptied with a burst read when it signals that it is almost full. Control register 1 is a status register and
is intended mainly for testing purposes. Most of the bits are read only. If the unit is in the hold mode, the
dot clock is replaced by a test pulse to facilitate testing. Every WRITE to control register 1 generates
another test pulse. During hold mode the top byte (bits 31:24) of control register 1 is also used as the
input byte instead of the actual byte received. Hereby a program can simulate any possible input byte
stream in a controlled manner for testing purposes.

User’s Manual 10/2/2008 page 199

Imagine 2 Multi Media Processor 29 The I’S audio interface

Chapter
29. THE I’S AUDIO INTERFACE

T he IS audio interface has four different serial audio channels which can be
individually programmed for input and output. Almost all serial formats are
supported including the Sony S format. The polarity of the Left / Right indicator is
programmable as well as the number of bits per audio sample. An on chip RAM of
128 words of 32 bit can be used as a fifo(s) for one to four channels with
progammable fifo size. The fifo(s) can generate interrupts to the Imagine core
processor based on programmable watermarks.

User’s Manual 10/2/2008 page 200

Imagine 2 Multi Media Processor

29 The I’S audio interface

29.1 The Input/Output Signals of IS Interface Unit

Interrupt ¢
signals +—
4+
For debugging
[———P
—P>
L
—P>
from —_—
Internal < WA
Peripheral L/
Bus
—P>
NE—.

INT R
INT_W

SCKCNT

IPB Master
IPB_Request

IPB RW
IPB I Ready
IPB_Space0
IPB_Address[15:2]
IPB_BE[3:0]
IPB_WrData[31:0]
Reset

CP (Imagine Clock)

SDIO
SDIO
WS in0
WS out0
SDI1
SDO1
WS inl
WS outl
SDI2
SDO2
WS in2
WS out2

SDI3
SDO3
WS in3
WS out3
SCK
P_IOn

MASTER

IPB T Ready

IPB RdData[31:0]

User’s Manual 10/2/2008

'S I/F
signals

—

for I/O
direction
Ctrl

to

Internal
Peripheral
Bus

page 201

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.1.1 Input/ Output signals definitions

I’S Bus Interface signals

SCK input | Serial data clock for every I’S Port

SDIO input Serial two time-multiplexed data input for I°S Port 0.

Input data is synchronized with SCK. When P_Ion[0] is set to
1, SDIO is used as I°S input data port.

SDO1 output | Serial two time-multiplexed data output for I*S Port 0. When
P _Ion[0] is set to 0, SDOO is used as I*S output data port. The
data is synchronized with CP (Imagine clock).

WS _in0 input Word Select signal for I*S Port generated by external IS
master device.

When MASTER is logic 0, it is used as word select signal. It
is synchronized with SCK.

If JPMODE[0] (Main Control register, bit 12) is set to 0 (IS
input format), “WS_in0 = 0” indicates the left channel data and
“WS _in0 = 1” indicates the right channel data.

In case of “JPMODE[0] = 1” (Japanese input format),
“WS_in0 = 0” indicates the right channel data and “WS_in0 =
1” indicates the left channel data.

WS _out0 output | Word select signal for I’S Port 0. When MASTER([0] is set to
1, it is used as word select signal. This signal is generated by
Serial Timing Generator in this unit.

This signal is synchronized with CP (Imagine clock).

SDI1..3 input Serial two time-multiplexed data input for I°S Port 1..3.
(same as SDIO).

SDO1..3 output | serial two time-multiplexed data output for I’S Port 1..3 (same
as SDOO).

WS inl..3 input Word Select signal input for I’S Port 1..3 (same as WS_in0).

WS outl..3 input Word Select signal ouput for I*S Port 1..3 (same as
WS_out0).

I’S Bus Interface signals (bidirectional control for I/O buffers)

P_Ion[3:0] output | This is a register output (Main Control register, bit23..20) and
can be written or read from Internal Peripheral Bus.

These signals are used as the DIR control signal of
bidirectional SDI/SDO I/O buffer.

MASTER [3:0] output | This is a register output (Main Control register, bit 11:8) and
can be written or read from Internal Peripheral Bus.

These signals are used as the DIR control signal of
bidirectional MASTER 1/O buffer.

Interrupt signals (to Interrupt Vector Generator)

INT R output | Read interrupt flag.

INT W output | Write interrupt flag.

User’s Manual 10/2/2008 page 202

Imagine 2 Multi Media Processor

29 The I’S audio interface

Internal Peripheral Bus Interface

CP (Imagine Clock) input
Reset input
IPB_Master input
IPB_Request input
IPB RW input
IPB T Ready output
IPB I Ready input
IPB_Space0 input
IPB_Address[15:2] input
IPB_BE [3:0] input
IPB_RdData [31:0] output
IPB_WrData [31:0] input

See document “The Protocol of the INTERNAL
PERIPHERAL BUS, revision 0.9a”

User’s Manual 10/2/2008

page 203

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.2 [I*S Bus Interface Unit overview

I°S Bus Interface Unit has three interfaces, four port I°S Interfaces, Internal Peripheral Bus, and two interrupt
output signals. Four port I*S (inter-IC sound) bus interfaces are used for communication with the external digital
audio devices. Each ports can be used as input port or output port. These ports are independent (except SCK)
and can be set to master or slave. This interface is based on “I°S bus specification” and also supports
Japanese(SONY) input/output format.

Internal Peripheral Bus is connected with some internal control registers and I/O registers. These registers are
on IPB_Space0, 64 bytes address area. Internal Peripheral Bus communicates with I*S input or output ports via
internal 128 word x 32 bit FIFO. This FIFO is separated to four areas, and each areas have a independent /O
registers and Read/Write pointers.

The two interrupt lines (INT_R, INT W) are connected to the Interrupt Vector Generator via the Interrupt
Router. When input or output FIFO almost full/empty occurs, this module generates interrupt pulse. All flip-flops
and FIFO are synchronized with Imagine Clock.

MASTER <€ MASTER, JPMODE, P 10n .
12S EN. P EN Main Ctrl [® >
Register
2S EN
P ‘En
INT R < Interrupt ‘ID Interrupt | >
INT W < Gen. == Ctrl
\ FIEO Register
v 1 status ‘_»
IPB
32 x 128 word FIFO Control signals
| —
synchronous FIFO
vy (including FIFO ctrl registers
SCK > > & status registers)
WS_in0 — 1 . y'y A
Timing Port I/O Status
Gen ¢
WS_out0 < o \ Port I/O Status
Port FIFO Status q
SE v
7y _: Port /0 | e
Serial Trans. End Status
register [« Internal
Peripheral
P_IOn0 Bus I/F
= L |
Serial Out Port 0 Out ‘PWE
SDO0 <« Lch & Rch Parallel Out
SEp! (OutReg) [TRp >
N
Serial In
SDIO
P port 01 [@PRE__
Lch & Reh | Parallel In
SE o| (InReg) [WE
Port 0 1/O Interface
Frame Size i S———
Frame Size
Register
Port 0..3 is consist of the same
circuits.

User’s Manual 10/2/2008 page 204

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.3 Serial Timing Generator (12S_TGEN.v)

This block generates serial word select signal (WS) and serial data enable (SE), and serial transfer end signal
(SEND). This block samples SCK by Imagine Clock (CP), detects leading edge of SCK. The SCK counter
(SCKCNT) counts up the leading edge of SCK, generates WS signal (If MASTER is asserted with 1, this block
uses this signal for WS output signal) and serial input/output timing.

This block also generates IS serial data write or read enables. The read enables are used for separating each
audio data from multiple serial input (SDATA_IN). The separated audio data are store to 32-bit FIFO input
registers. The write enables are used for making of multiple serial output (SDATA_OUT) from 32-bit FIFO
output registers. All enables are synchronized with Imagine Clock and based on the value of SCKCNT.

I’S Bus Interface Unit has four Timing Generators for each I’S 1/0 Ports and separately programmable.

29.3.1 Block Diagram (for I?S I/O Port 0)

p 2:1 |
» MUX
MASTER A
JPMODE
p WS_out
] WS out
4 Generator
WS in DEtdgf WSI edge SCK
- etector
WSJ edgd Counter B
) '_
> L » SEL
Serial EN &
128_EN D D @ RST? Serial End % SENDL
T Signal | —p SER
RSTI — Generator | spnpr
SCK ﬁn P SCK rise
10Sts[3:0] EN
P IO
p:ENn Enable ?
FSIZ z X
— / Enable Conditions
Frame Size is used only in if P_IOn = 1 (I2S Read)
Japanese format. P_EN & !1OSts[3] & TOSts[2].

else (I12S Write),
P_EN & IOSts[1] & 10Sts[0]

User’s Manual 10/2/2008 page 205

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.3.2 Serial Timing (Slave, I?S format)
o APAANNANNAAN NN AN NN,

SCK : ; o L o A
SCK rise __ﬂ ﬂ ﬂ ﬂ ﬂ
WS in : |SDI samplmg point | E _—/ :
24 WS_in _._\ /]SDO sampling p01nt| / i
WS_in 1d — i
SDI ED(/ Reh bit0 O Lehbis Y Lehbiid jjjj@:)(g Lch i Y Reh bRIS(MSBY
2d-SDI R h Rch bit0 (L S ; ; Lch bitl5 (M B; bitld . bil] J—_TLchbio_ (Reh bit15(MSB)
SDO _bm_X Reh bit0 (1 SB_))(X)()(X)()(Lch bitl:S b - hm Lehbiwo ' Y XY Reh hit1 5(MSBZD
SCKCNT T4 15 X 0) S R VI T 0 :
SEL [WSI edge & SCK rise, /V / \A/SCKCNT =15
Reset SCKCNT kSCKCNT =0& 12d-WS & P_EN | SCKCNT =0 & 2d- & SCK_Tise
SENDL ' 1OSts[1] & ! TOSts[0 IWS & Previous M\
SER WG EE /ﬂ if Out Port, IOSts[3] & IO?T?,_[Z]) SEL was set to 1 \/7
SENDR RN e [nput Port Register Full ["~
10Sts[3] \ A\In case of In Port) I [
T0Sts[2] [\
10Sts[1] '\9’\ \
108ts10] - Output Port Register Empty
In case of Out Port)

29.3.3 Serial Timing (Slave, Japanese format)

cm.nﬂhﬂﬂﬂﬂﬂﬂﬂnﬂhﬂﬂﬂﬂﬂﬂﬂnﬂhﬂﬂﬂﬂﬂmﬂnﬂbﬂﬂﬂﬂﬂﬂﬂnﬂhﬂﬂﬂﬂﬂﬂﬂn_

SCK _f g : : : : o
SCK rise __| / i\ I e /-L\ 5 /-L\
. — SDO sampling pomt b b :
WS_in H DI sampling pomt \ -—— ; / : '
2d WS in | g / R P o P :
3d-WS_in | | / T L\ i L R ;
Wy edge L N \ _ a N |
SDI 1t1 X é Rch bit0 (LSB) X Lch bitl5 (Mgz? X Lchbitld . bitl) Lch bit0 (LSB) X Rch hit1 5(MSB;
24-SDI Reh bii0 | Tch b1t15* O huiA bl) Lchbio (LSB) [Reh BiTS(MSB)
SDO Thifl x Rch bit0 : X)(XX)()(X Leh bit1 Y biia it Leh bito (LSB) : XX)(Rch b1t15(MSB)
SCKCNT T4 5 X (A S T VI 5 X 0
\WSJ edoe =0 _—— & SCKCNT =15
SEL e J RSCKCNT =0 & 24-WS & P_EN | SCKONT =0 & 2d- - s et
SENDL i&_! IOSts[1] & ! IOSts[0 IWS & Previous M\ =
if Out Port, IOSts[3] & I0Sts[2]) [| SEL was set to 1 \
SER SCKCNT=15&] Wk /
SENDR SCK rise m\
- /
T0Sts[3] Input Port Register Full » /\
10Sts[2] [In case of In Port) /—\)
10Sts[1] m \
10Sts[0
s[0] U\Output Port Register Empty
In case of Out Port)

User’s Manual 10/2/2008 page 206

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.3.4 Serial Timing (Master, I°S format)

cp _ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂf\ﬂf\ﬂﬂ ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂf\ﬂﬂﬂﬂﬂﬂﬂﬂﬂf\
SCK m_F—_ m

DO samplin 01nt :
SCK _rise r'-\ /-v-{SDI sampling point | /—,-13 p g p |/-—\ /—-—\
WS out —E—~\A/SCKCNT714&SCK7/1se i/ B — .
oggle WS out: ¢ 7 SR

SDI n;)(Reh bit0 ; C : _bit1 2 Lchbit0 x Reh bit] SLMSB)
2d-sDI R\ ReWbM0 |) Tehbils i T bitd b1t1 __Lchbit0 |)Reh b1t15(MSB)

SDO Thit1 X Rehbito LSB). XN Lehbiels X bitia . b1t1 X__Lch bit0 (LSB): XXXRQ]J hit] S(MSB)

SCKCNT 14 X 15 o) 0 X 1 BT 15 X 0
—v .
SEL [SCKCNT = 15 & SCK rise \®*—SCKCNT = 15
Roset SCKCNT SCKCNT =0 & !WS_out & SCKCNT =0 & !12d- % SCK rise
SENDL P _EN &_110Sts[1] & !10Sts[0] | [WS & Previous N\
if Out Port, 10Sts[3] & I0Sts[2]) | | SEL was set to 1 4

SER SCKCNT = 15 &|_W \ J
SENDR ISCK rise M\
I0Sts[3] (\ /
10Sts[2] A
10Sts[1] / ‘/\/\ \
10Sts[0] - _/

Input Port Register Full Output Port Register Empt
In £ In Port P g P
case of In Port) In case of Out Port)

29.3.5 Serial Timing (Master, Japanese format)

Cp _ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂf\ﬂﬂf\ﬂﬂf\ﬂﬂf\ﬂﬂf\ﬂ ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂf\ﬂﬂf\ﬂﬂf\ﬂﬂf\

SCK ’ | S o v W o S U o
SCK _rise SDI sampling pomf | /-\ SCKCNT =15 & m r-{ SDO sampling point /-—\ :
/ | | SCKTise, Toggle e =
WS _in 5‘5 g :\ (WS out : : / ’ /E

SDI 1t1 x Rch bit0 (LSB) X Lch bitl5 (MSB) X Lch bitl4 bit !“ Lch bit0 (LSB) X Rch bit15(MSB
2d-SDI Rgh b1t1X Rch bit0 (LSB] __Lchbitls (MSB) _bitl4 Z: bm _Lchbit0 (LSB) YRch bitls MSB

SDO bitl __Rehbiw0 (LSB) XXXXXXX Lch b1t15 Y oid Y Lehbio (LSB) XXXRch bit15(MSB)
SCKCNT T4) 15) 0 X 1 - 7) 15 X 0
SEL 4—SCKCNT =15
/V\SCKCNT =0&!WS out& SCKCNT =0 & \—m
SENDL P_EN & 1 IOSts[1] & ! IOSts[0 WS _out & Previous /\ =
(if Out Port, IOSts[3] & 10Sts[2]) || SEL was set to 1 A
SER SCKCNT=15& | /
SENDR SCK rise m
10Sts[3] a\ T
10Sts[2]
10Sts[1] /T /\ \
10Sts[0] y/
Input Port Register Full U\
(In case of In Port) Output Port Register Empty

(In case of Out Port)

User’s Manual 10/2/2008 page 207

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.3.6 Serial Data Format

This unit supports both I*S format and Japanese format. The Word length is fixed to dual 16-bit. In slave mode,
when the incoming serial data length is grater than 16-bit, the trailing invalid bits are ignored. In case of output
ports, the position of invalid bits are filled with 0’s.

IS format (Data Length 16-bit)

N AV A AV AT AT AW AVAVAVAVAVAVAVAWA AW AWAWAWAWAWA
SO S 1 G S S 0 S0 S G S G 515 7S: G G S0 S G S0 G G S

ws T Lef [Right —
— 16bit >g 16bit >

A AV AN AN AV AW A AVAYAYAVAVAYAVAWAWANSN AWAWAWAWAWA

SD T OMSB O T OESBRSBC) SB[)

ws Lot \ Right —
» 16bit > < 16bit >

B S A W A A VA A O A VA WO A W A Y A W A W A W AR Y A VS A WV A W A W A W A
S S T S D S W0 (5: D 0 G S 1 G S D 0 5 0 G0 G
ws T\ S N [R -

In case of In Port, this
Unit ignores trailing N-bits.
In case of Out Port, this

unit stuffs trailing N-bits
with ‘0.

Japanese format (Data Length > 16-bit)

SD :D(::D(:i@(:)m::::m::
ws _/— """ N v (e — . Right T
€— Nbit —> g 16bit p€— Nbit —Ppig lebit—

\ In case of In Port, this Unit /
ignores leading N-bits.

In case of Out Port, this unit
stuffs leading N-bits with ‘0’.

User’s Manual 10/2/2008 page 208

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.4 FIFO Input/Output Registers (I12S_FR.v)

This block has eight 32-bit registers. Internal Peripheral Bus communicates with I*S ports by using these
registers. It is placed between Internal Peripheral Bus and FIFO or I*S ports and FIFO.

FIFO Input Registers are used in two ways. If the I°S port is set to output, Internal Peripheral Bus writes data to
this register. The data must be written to the register, 32-bit simultaneously. Byte write is not supported. If FIFO
is not full and this register contains 32-bit data, the data is written to FIFO. On the other hand, if the I*S port is
set to input, it’s used for IS port input registers. This registers is 32-bit shift register with serial input and
parallel outputs. Serial input is connected with serial data in of IS Input Port (SDI). After the serial transfer, if
FIFO is not full, the data is written to FIFO, 32-bit simultaneously.

FIFO Output Registers are also used for two ways. One is FIFO to IPB registers. Internal Peripheral Bus read
data from this register, 32-bit simultaneously. After the read by Internal Peripheral Bus, if FIFO is not empty,
FIFO writes 32-bit data to the register. Another one is FIFO to I°S output ports registers. This registers is 32-bit
shift register with 32-bit parallel inputs and a serial output. Serial output is connected to serial output of IS
output ports (SDO). After the serial data transfer, if FIFO is not empty, the FIFO writes 32-bit data to register
using parallel inputs.

29.4.1 Block Diagram (FIFO Input Registers)

Ex: Port #0 FIFO input Registers

IPB_WiData 22 LLISL Jpin pour HidS] 22/ po i
we
WE_P[0] Pen Port 0 to FIFO
SDI[0] Sin Lch Data 0
\ | serial in en|gepn Input
SEL[0] L/ RE
[15.0] Pin Pout [15:0]
we Pen Port 0
Rch Data
Sin \
SCK rise) serial in en|Sep Serial/Parallel In-Parallel Out
= 16-bit Shift Register.
SER[0] RE LSB <= Serial Input.
PRE[0]

29.4.2 Block Diagram (FIFO Output Registers)

Ex: Port #0 FIFO output Registers Port #0 Lch
serial out
FRD __ 3%/ BLI6L Din poyr [ekdlapits]

(from FIFO out) we
PWE[0] D WE

— Sen
RE_P[0] RE j>—> SO[0]

'\ to Serial
Output.
SEL[0]
serial out/en
. :lj) Port #0 Reh | ™ Parallel In-Parallel/Serial Out
SCK rise [15:01 a0l serial out 16-bit Shift Register.
Din Dout bitl5 Serial Out = MSB.
w phs
1 Sen 32 » PO o
RE to IPB_RdData

,il) serial out en

User’s Manual 10/2/2008 page 209

SER[0]

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.5 128 x 32 bit FIFO (F_I2S.v)

This block has 128 x 32 bit user configurable FIFO. The FIFO has one write port and one read port,
independently. The FIFO is divided to four parts for IS Port 0..3. Each part has individually FIFO start address,
end address, watermark, write pointer, and read pointer. Start address, end address, and watermark are able to be
written or read from Internal Peripheral Bus. These values are stored to registers. The write pointer and read
pointer are able to be only read from Internal Peripheral Bus. These registers are automatically increment when
write to FIFO or read from FIFO.

Each part has four flags, FF, FE, FH, and FI. FF and FE respectively indicates FIFO full and empty conditions.
FH indicates half full condition (while a selected number of words is stored in memory.

In case of FIFO which is written by Internal Peripheral Bus (when I?S Port is set to output), FI is asserted to 1
only one Imagine clock cycle, when a number of stored data is less than selected number (watermark). In case of
FIFO which is read from Internal Peripheral Bus (when I°S Port is set to input), FI is asserted to 1 only one
Imagine clock cycle, when a number of stored data is greater than selected number (watermark). FI flags are used
for Interrupt Generator to generate interrupt signals. These flags are read from Internal Peripheral Bus at any
time.

When accesses from Internal Peripheral Bus and I°S ports simultaneously, the 1°S’s access has priority. In case
of write access is the same.

This block is completely synchronized with Imagine clock (not including delay cell or etc. to generate write
pulse).

29.5.1 Block Diagram 1/2 (FIFO block)

PO i J,_
FIFO Write Pl_' 32
i —— . 37 .
Data (fr . 5 Write Data , dib doa el FRD
put P2 i + Sel. (FIFO Read
P3 i 32 Data, to FIFO
Output
sel Registers)
WP_P0O —
7
WP_Pl 7 ! Write L i badr
/
WP_P2 y Address Sel.
WP_P3 L b enb
sel —Jg
' 4, I we 32 x 128 words
Write Enables y OR 2web t synchronous
RAM
RP_PO _7'_
7
RP_P1 ———
7 Read Z ,‘ aadr
RP_P2 _7'_ Address Sel.
RP P3 g
sel

4 I

Read Enables v OR D ena

e G N clka
’:> clkb

Cp

User’s Manual 10/2/2008 page 210

Imagine 2 Multi Media Processor

29.5.2 Block Diagram 1/2 (Controller & Arbiter block)

P_IOn
12S_EN
P_EN

I0Sts[15:0]

SA PO, EA PO,
WM_P0O

SA PI,EA_PI,
WM Pl

SA P2, EA P2,
WM_P2

FIFO Start Address,
FIFO End Address,
and FIFO Watermark

\

SA P3,EA_P3,
WM _P3

User’s Manual 10/2/2008

29 The I’S audio interface

4
/
FIFO 4
4 // Arbiter / $» Read Enables
4
1o /’ (R/W enable // » Write Enables
generator)
» FIFOSts[15:0]
H edge
FE_EE_FH _FL
PRE[0] -, » RP_PO
PWE[0] FIFO 7/
Controller =+ » WP PO
RST FIFO (Port 0)
H edge
EE_FE_EH _EL
PRE[1] 7 »
» RP PI
FIFO 7/ -
PWE[1] Controller /' » WP Pl
RST FIFO (Port 1)
H edge
oo 23 200 2 2 N S 2
PRE[2] 7 g
FIFO 7, » RP P2
PWE] Controller L » WP P2
RST FIFO (POI’t 2)
H_edge
—oc8 EE EFE FH EL
—_ PRE[3] | 7y
PWE[3] FIFO 7’ > o
Controller ol » WP P3
RST _FIFO (Port 3) \ -
Read and Write
Pointers

page 211

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.5.3 FIFO Arbiter (I2SFABT.v)

This block arbitrates write and read accesses from FIFO input/output registers and generates write and read
enable signals. The write enable signals are used for FIFO write access and clears I/O status registers’ IH, IL bits.
The read enable signals are user for FIFO read access and set I/O status registers” OH, OL bits.

When accesses from Internal Peripheral Bus and from I*S ports simultaneously, the I’S’s access has priority. In
case of write access is the same.

If IH and IL bit (I/O status register) is 1 and FF flag (FIFO status register) is 0, the arbiter asserts write enable to
1. Besides, if OH and OL bit (I/O status register) is both 0 and FE flag (FIFO status register) is 0, the arbiter
asserts read enable to 1.

Priority:
Port 0 (to I2S) highest
Port 1 (to I2S)

Examp_le: Port 2 (to 12S)
Wrdy i2s[0]=12S EN & P_EN[0] Port 3 (to 128)

& IFF_PO & !10Sts[1] & !10Sts[0] & Port 0 (to IPB)

P_IOn[0] Port 1 (to IPB)
Port 2 (to IPB)
Port 3 (to IPB) lowest
2S_EN 7 .
P EN // Ready Signals .
FF PO WRdy_i2s = WE Gen. |mefedp PWE
FF_P1 (with Write Enables
FIFO full _ . . .
1 Write Readv? arbitration)
ags FF_P2 : 4,
WRdy_ipb 7
FF_P3
16, Priority:
10Ssts / Port 0 (from 12S) highest
Port 1 (from I12S)
Port 2 (from 12S)
4 Port 3 (from 12S)
P IOn a Port 0 (from IPB)
Port 1 (from IPB)
Port 2 (from IPB)
Port 3 (from IPB) lowest
Ready Signals
4
FE_PO RRdy _i2s 2 - R](E G}eln > DRE
wit
FIFO empty/ FE_P1 YV Read Enables
)
flags FE_P2 Read Ready? A, arbitration)
FE7P3 RRdy_lpb /

User’s Manual 10/2/2008 page 212

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.5.4 FIFO Controller (I2SFCTRL.v)

This block two 7-bit up counters and one 8-bit up-down counter. Two 7-bit up counters are used for FIFO write
pointer (memory write address) and FIFO read pointer (memory read address). One 8-bit up-down counter counts
a number of data which written into FIFO. Start and end address (higher 4 bit) are defined by FIFO control
registers. Lower 3 bit of start address are filled with ‘0. Lower 3 bit of end address are filled with ‘1°. The block
diagram of this module is as follows.

WMark
(b0, WM, b000} ar
7, SAdr
{SA. b000} 7 = EAdr -
/ EAdr - »
{EA, b111} - SAdr+1°? FF
PWE
PRE
startadr .
endadr up t up-dO\q |
en 1T countd down nter >= WMark? » FH
reset reset
In case of IPB to

[FIFO write ports,

select A input.

If FIFO to IPB read
startadr b ﬂ A/ ports, select B input.
endadr q — 2:1 SELi————p FI
en U count o—:Dl
reset 7

U » W Point
7y
RST ” P R _Point

H edge

29.6 Interrupt Generator (12S_IGEN.v)

This module generates two interrupt lines (INT R, INT W). The interrupt lines are connected to the Interrupt
Vector Generator via the Interrupt Router. When output FIFO half empty states occurs, this module asserts
INT W to 1 while one Imagine clock cycle.

When input FIFO full empty states occurs, this module asserts INT R to 1 while one Imagine clock cycle.
When some bit of Interrupt Enable Register (Interrupt Control register, bit 11:8) is set to 0, interrupts
corresponding to the bit are disabled.

Interrupt conditions is assign to Interrupt Identify Register (Interrupt Control register, bit 3:0). This register is
able to be read from Internal Peripheral Bus.

Conditions which INT W is asserted to 1 are:
1. One or more I’S Port is set to Output (Main Control registers, bit 23..20). and
2. FIFO half full flag for the I*S Port turns to 0 (FIFO status registers, bit 13,9, 5, 1). and
3. Interrupt enable for the I°S Port is set to 1 (Interrupt registers, bit 11..8).

EX: P _I0n[0] & !FIFOSts[1] & INT_EN[0]

Conditions which INT R is asserted to 1 are:
1. One or more I’S Port is set to Input (Main Control registers, bit 23..20). and
2. FIFO half full flag for the I*S Port turns to 1 (FIFO status registers, bit 13,9, 5, 1). and
3. Interrupt enable for the I°S Port is set to 1 (Interrupt registers, bit 11..8).

EX: IP_IOn[0] & FIFOSts[1] & INT_EN[0]

User’s Manual 10/2/2008 page 213

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.7 Internal Peripheral Bus I/F (12SIPBIO.v)

This module has Internal Peripheral Bus(IPB) interface giving direct access to the registers (include some FIFO
Input/ Output registers) of this module. These are mapped on IPB address space 0 (IPB_Space0). 64 byte ranges
are needed. These registers are addressed directly by IPB_Address[15:2] from IPB and can be written or read at
any time, except some FIFO data ports. In any case, write or read transfer to control registers always successfully
terminate at first try. In case of accesses to FIFO data write ports, if this register is empty, only 1 Imagine clock
cycle is needed to this transfer. If this register contains data, the Initiator must wait until this register is empty. In
case of accesses to FIFO data read ports, if this register contains data, only 1 Imagine clock cycle is needed to
this transfer. If this register is empty, the Initiator must wait until this register contains data. When Initiator writes
to read only registers (e.g. I’S Port is set to input), this module only set IPB_T Ready to 1, vice versa..

MCR —32_
(from Main Ctrl Regs.)
PO o —32_
(I’S Port 0 FIFO out reg)
Pl O el
(I’S Port 1 FIFO out reg)
goin FtIFO P2 o 32)
utpu (PS Port 2 FIFO out reg) e RE_P
P3 o 32 (to I’S Port 0..3 FIFO out reg)
(I’S Port 3 FIFO out reg)
FS 32
(from Frame Size Regs) 16
R —_
(from Int. Ctrl Regs.) Ree;({i E(Iilanle Gserierator &
FIFOSts 16, ead Data Selector
(FIFO Status flags)
10Sts
(FIFO I/O Regs status)
FC_PO 32
FC P1 32
from FIFO - 32
FC_P2 .
Ctrl Regs. - 32,
FC_P3 7
A
IPB_Address =2 22
IPB_Request RREO
IPB RW
IPB I Ready IPB_T Ready
- WREQ
IPB_Space0 Access?
- 15:6
4
» WE_MC
(to Main Ctrl Regs.)
- p WE_IRI
5:2 4 (to Interrupt Ctrl Regs.)
4 » WE P
IPB_BE (to S Port 0..3 FIFO input Regs.)
2 » WE FC_P0O
5 (to I’S Port 0 FIFO Ctrl Regs.)
4 Write Enable =» WE_FC_PI
P IOn — e—— Generator 5 (to I‘S‘Pon 1 FIFO Ctrl Regs.) to FIFO
» WE FC_P2 Ctrl regs.
’ (to I’S Port 2 FIFO Ctrl Regs.)
i » WE FC P3
Comes from Main Crtl (to IS Port 3 FIFO Ctrl Regs.)
Regs, bit 23..20 2 > WE FS
(to Frame Size Regs.)

User’s Manual 10/2/2008 page 214

Imagine 2 Multi Media Processor 29 The I*S audio interface

29.8 FS Registers

29.8.1 I°S Controller base address

IPB_Address I’S
I’S BASE register
(10b0000000110) space
15P4\13P2|11P0\9 ‘8|7 ‘6‘5 ‘4|3 ‘2

29.8.2 I°S Controller registers memory map

31]30[29]28][27]26]25]24]23[22] 21 [20 9] 1817 [16]15] 14 13]12[11]10] o8 [7[e6[5[4]3[2]1]o0

I’S Main Control
Register

I*S Input/Output Port 0 I’S Input/Output Port 0
(Left channel) (Right channel)

IS Input/Output Port 1 IS Input/Output Port 1
(Left channel) (Right channel)

I’S Input/Output Port 2 I’S Input/Output Port 2
(Left channel) (Right channel)

I*S Input/Output Port 3 I*S Input/Output Port 3
(Left channel) (Right channel)

Reserved (0x00000000)

I*S Interrupt Control
Register

I’S Input/ Output FIFO
Status Register

I’S FIFO Input / Output Port
Status Register

I’S Port 0 FIFO
Control / Status Register

o e 0 N N AW N = o

I’S Port 1 FIFO
Control / Status Register

[
(—

I’S Port 2 FIFO
Control / Status Register

[a—
[

I’S Port 3 FIFO
Control / Status Register

[
[\®)

Reserved (0x00000000)

[
W

IS Frame Size
Register

[—
=

Reserved (0x00000000)

15

\ IPB_Address[5:2]

User’s Manual 10/2/2008 page 215

Imagine 2 Multi Media Processor

29.8.3 I°S Main Control Registers

This registers totally controls PS Controller.
Bit 0 is master enable bit of the I’S controller (this module). When this bit is set to 0, all functions in this module
are disabled, and all FIFO pointers are zero clear. When IPB_RESET, this bit is reset to 0.

Bit 29:26 are Port Enables. controls each ports of IS input/output data streams. These registers enables or disable

each ports of FIFO inputs/outputs.

29 The I’S audio interface

Bit 23:20 are used as the DIR control signal of bidirectional SDI/SDO I/O buffers. When this bit is set to 1, SDI/

SDO port is set to input.

Bit 11:8 are used as the DIR control signal of bidirectional MASTER I/O buffers. When this bit is set to 1, WS
signal is set to output, and this module uses the internal timing signal.
This registers can be write or read from Internal Peripheral Bus. Register values are not initialized except bit 0.

bit 29: IS Port 3 Enable

1 = enable / 0 = disable

bit 28: IS Port 2 Enable

1 = enable / 0 = disable

bit 27: IS Port 1 Enable

1 = enable / 0 = disable

bit 26: IS Port 0 Enable

1 = enable / 0 = disable

bit 23: IS Port 3 Direction Control

1 = Input/ 0 = Output

bit 22: IS Port 2 Direction Control

1 = Input/ 0 = Output

bit 21: I°S Port 1 Direction Control

1 = Input/ 0 = Output

bit 20: I°S Port 0 Direction Control

1 =Input / 0 = Output

bit 17: I°S Port 3 Data Format

1 = Japanese/ 0 = s

bit 16: I°S Port 2 Data Format

1 = Japanese/ 0 = s

bit 15: I°S Port | Data Format

1 = Japanese/ 0 = s

4' bit 14: I’S Port 0 Data Format

1 =Japanese / 0 = ’s

bit 11: IS Port 3 Word Secect signal

1 = Master/ 0 = Slave

bit 10: IS Port 2 Word Secect signal

1 = Master/ 0 = Slave

bit 9: IS Port 1 Word Secect signal

1 = Master/ 0 = Slave

bit 8: I°S Port 0 Word Secect signal
1 = Master/ 0 = Slave

bit 0: IS master enable
1 = enable/ 0 = disable
(When IPB Reset, this bit is reset to 0.)

!

YVVY VVYVYY YVYVYY VYV X
"00" | SPort |"00" | Portl/O |"00" | Format | "00"| Master "0000000" 25
Enable Select I°S/JP /Slave En

[31[30]29]28]27] 26| 25[24]23]22]21[20] 10]18]17]16[15[14[13]12] 1110 o [8]7]6[5[4[3][2]1]0]

User’s Manual 10/2/2008

page 216

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.8.4 Interrupt Control Register

This register controls two interrupt lines, INT R and INT W. When each parts of FIFO half empty/full state
occurs, this module generates interrupt.

Bit 11:8 are interrupt enables for each FIFO input / output ports (including command write/read ports, which
does not use the FIFO). If some bit of this enables are set to 0, the corresponding FIFO full or empty interrupts
are disabled. These bit are not initialized. This register is able to be written or read from Internal Peripheral Bus
at any time.

Bit 3:0 are interrupt identify registers for checking the interrupt status. This register indicates which port is in the
interrupt state. These bit are able to be only read from Internal Peripheral Bus.

bit 0: 1 = IS Port 0 FIFO half full interrupt occurs (if Port 0 is set to Input)
or half empty interrupt occurs (if Port 0 is set to Output) [read only]

bit 1: 1 = IS Port 1 FIFO half full interrupt occurs (if Port 1 is set to Input)
or half empty interrupt occurs (if Port 1 is set to Output) [read only]

bit 2: 1 = I’S Port 2 FIFO half full interrupt occurs (if Port 2 is set to Input)
or half empty interrupt occurs (if Port 2 is set to Output) [read only]

bit 3: 1 = IS Port 3 FIFO half full interrupt occurs (if Port 3 is set to Input)
or half empty interrupt occurs (if Port 3 is set to Output) [read only]

bit 8: IS Port 0 FIFO half full/empty interrupt enable
1 = enable / 0 = disable

bit 9: I’S Port 1 FIFO half full/empty interrupt enable
1 = enable / 0 = disable

bit 10: I’S Port 2 FIFO half full/empty interrupt enable
1 = enable / 0 = disable

bit 11: I°S Port 3 FIFO half full/empty interrupt enable
1 = enable / 0 = disable

\ A A / YYVY
"00000000" , . “0000” Interrupt | Interrupt
00000000 Enable Reg 0000 | | jenify Reg

[31]30]29]28]27]26]25]24] 23] 22 2120 10 18] 17]16] 151413 12]11]10] o[8[76 s5]af3]2]1]0]

User’s Manual 10/2/2008 page 217

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.8.5 Input/Output FIFO Status Register

This registers contains FIFO status. The FIFOs which is separated to four independent blocks have each four
status flags, FIFO empty (FE), FIFO full (FF), FIFO half empty or full (FH), and FIFO interrupt (FI). Every FI
bit are used for generating interrupts. This registers are able to be only read from Internal Peripheral Bus at any
time. See subsection 2.4 FIFO Input/ Output Registers, for more details.

I’S Port 2 FIFO Status
bit 11: 1 = FIFO empty
bit 10: 1 = FIFO full
bit 9: 1 = FIFO half full
bit 8: 1 = FIFO interrupt (pulse)

IS Port 1 FIFO Status
bit 7: 1 = FIFO empty
bit 6: 1 = FIFO full
> bit 5: 1 = FIFO half full
IS Port 3 FIFO Status bit 4: 1 = FIFO interrupt (pulse)

bit 15: 1 = FIFO empty
bit 14: 1 = FIFO full

bit 13: 1 = FIFO half full
bit 12: 1 = FIFO interrupt (pulse)

IS Port 0 FIFO Status
bit 3: 1 = FIFO empty
bit 2: 1 = FIFO full
bit 1: 1 = FIFO half full

bit 0: 1 = FIFO interrupt (pulse)

YYVYVYVYY

I YYVYYYVY

"00000000"

"00000000"

I°S Port 3
FIFO Status

IS Port 2
FIFO Status

I*S Port 1
FIFO Status

%S Port 0
FIFO Status

31]30]29[28[27]26]25]24[23 222120 19] 18] 17[16]15]14] 3] 1211]10] o[8[76 [5]4][3[2]1]0]

29.8.6 FIFO Input/Output Port Status Register

This registers contains input/output port (FIFO Input/Output register) status. The four FIFO input or output ports
have each four status flags, higher 16-bit of FIFO input register has data (IH), lower 16-bit of FIFO input register
has data (IL), higher 16-bit of FIFO output register has data (OH), and lower 16-bit of FIFO output register has

data (OL). These registers able to be only read from Internal Peripheral Bus at any time. See subsection 2.4
Interrupt Generator, for more details.

I’S Port 2 FIFO Port register Status
bit 11: 1 = input register (high) has data
bit 10: 1 = input register (low) has data
bit9: 1 = output register (high) has data
bit 8: 1 = output register (low) has data

I’S Port 1 FIFO Port register Status
bit 7: 1 = input register (high) has data
bit 6: 1 = input register (low) has data
bit 5: 1 = output register (high) has data
bit 4: 1 = output register (low) has data

I’S Port 3 FIFO Port register Status
bit 15: 1 = input register (high) has data
bit 14: 1 = input register (low) has data
bit 13: 1 = output register (high) has data

bit 12: 1 = output register (low) has data

I’S Port 0 FIFO Port register Status
bit 3: 1 = input register (high) has data
bit 2: 1 = input register (low) has data
bit 1: 1 = output register (high) has data
bit 0: 1 = output register (low) has data

YYVYVYVVYVYVIVYY

Reserved
"00000000"

Reserved
"00000000"

I°S Port 3
Port Status

IS Port 2
Port Status

IS Port 0
Port Status

IS Port 1
Port Status

31]30]29[28[27]26]25] 24

23[22][21[20]19]18[17[16] 1514 13]12]1if1of o [8]7[6[5[4]3]2]1]0]

User’s Manual 10/2/2008

page 218

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.8.7 FIFO Control/Status Registers

This registers are used for definitions of the FIFO. This registers contains FIFO start address, FIFO end address,
and FIFO watermark. Each FIFO block has one FIFO Control /Status Registers, amount to five registers. These
values are able to be written or read from Internal Peripheral Bus at any time. Bit 30:24 are FIFO read pointer,
Bit 22:16 are FIFO write pointer. These registers are able to be only read from Internal Peripheral Bus. See
subsection 2.3.4 FIFO Controller, for more details.

FIFO Write Pointer FIFO Start Address [6:3]
indicates 7-bit write address (FIFO Start Address [2:0]
f synchronous RAM) are “000”.)
FIFO Read Pointer FIFO Water Mark [6:2] FIFO End Address [6:3]
indicates 7-bit read address (FIFO Water Mark [1:0] (FIFO End Address [2:0]
of synchronous RAM) are “00”.) are “1117.)
A A A \ 4
ipp|[EIEO W atcrMark FIFO Start FIFO End
'0' FIFO Read Poi '0' i i '0' '0'
O Read Pointer FIFO Write Pointer x 4 Address x 8 Address x 8

3

=
N
W
[
W

30[29]28[27]26]25]24[23]22]21[20] 19]18]17] 16 14]i3[2fufofols{7[e6]s]4[3]2]1]0

29.8.8 Frame Size registers

This registers are used for definitions of the frame size of the data streams. The value plus 1 is define to Word
Select (WS) signal’s period of the left channel and right channel. This values are used only in Japanese format
(when in I*S mode, this values are not referenced). The frame sizes are programmable for each ports individually.
These registers are able to be written or read from Internal Peripheral Bus at any time.

I’S Port 2 Frame size -1
= WS2 high period
= WS2 low period

I’S Port 3 Frame size -1 I’S Port 1 Frame size -1 'S Port 0 Frame size -1
= WS3 high period = WS1 high period = WSO high period
= WS3 low period = WSI low period = WSO low period
A A \ 4
2
o I’S Port 3 o I*S Port 2 0 IS Port 1 o I*S Port 0
Frame Size - 1 Frame Size - 1 Frame Size - 1 Frame Size - 1

31[30]29]28[27]26[25] 2423 22]21]20] 19]18]17[16] 15[14] 13| 12]11]10[9876|543]2]1]0

User’s Manual 10/2/2008 page 219

Imagine 2 Multi Media Processor 29 The I’S audio interface

29.9 I’S Data Access Ports

In order to communicate with IS digital interface, eight 32-bit registers are prepared. Each registers are
connected via internal FIFO. These registers are read only or write only registers. The status of registers are able
to read the FIFO port status registers.

29.9.1 1°S FIFO input port registers

If I°S data port is set to output, this registers is connected to Internal Peripheral Bus. This register is always
connected to FIFO Input. Bit 31:16 are 16-bit left channel data, and bit 15:0 are right channel data. This value is
used for IS serial output data. This registers are write only registers, and must be written 32-bit simultaneously.
If I’S data port is set to input, this registers is disconnected to Internal Peripheral Bus, and used for I*S serial
data input.

29.9.2 1°S FIFO output port registers

If I*S data port is set to input, this registers is connected to Internal Peripheral Bus. This register is always
connected to FIFO Output. Bit 31:16 are 16-bit left channel data, and bit 15:0 are right channel data. This values
comes from I°S serial input port. This registers are read only registers, and must be read 32-bit simultaneously.
If I°S data port is set to output, this registers is disconnected to Internal Peripheral Bus, and used for I°S serial
data output.

User’s Manual 10/2/2008 page 220

Imagine 2 Multi Media Processor 30 The AC97 audio codec

Chapter
30. THE AC97 AUDIO CODEC

T he AC97 audio codec transmits and receives audio data via a 5 line serial
interface connected to an external AC97 codec which includes AD and DA
converters plus a mixer. This external codec can be controlled via this interface. An
on chip 128 by 32 bit word RAM can be programmed as one or more fifo(s) for all
the defined audio and modem 1/0 channels: Playback output, Record input, Modem
input and Modem output and Microphone input. The sizes of the individual fifos are
programmable as well as the watermarks which can generate interrupts for the
Imagine 2 core processor on almost full / almost empty detection.

User’s Manual 10/2/2008 page 221

Imagine 2 Multi Media Processor

30 The AC97 audio codec

30.1 The Input/Output Signals of AC’97 Controller

BIT CLK 4—\
4—— INT R
Ipterrupt — AC97RST N O—»
Slgnals <] INT_W B AC'97
SYNC —> > Digital IF
for 8 SDATA_IN | signals
debugging <+ BitCnt -
SDATA OUT [——» D,
/~ ——p| IPB_Master
—— »| IPB _Request
—— »| IPB RW
— | IPB_I Ready
from T
Internal —p{ IPB Space0
Periphera1< ﬂl“;; IPB_Address[15:2] IPB_T Ready ——» to
Bus +> IPB_BE[3:0] » Inte.rnal
—224—p! IPB_WrData[31:0] IPB_RdData[31:0] |l Eerlpheral
us
— » Reset
\ — Y CP (Imagine Clock)
omit the RAMBIST signals.
30.1.1 Input/ Output signals definitions
AC’97 Interface signals
BIT CLK input 12.288 MHz serial data clock
AC97RST N output | AC’97 Master H/W Reset signal.
When C_RST (Main Control register, bit 0) is set to 1, this
signal is asserted to 0 (activate).
SYNC output | 48 KHz fixed rate sample sync.
This signal is synchronized with Imagine Clock.
SDATA IN input | Serial, time division multiplexed, AC’97 input stream.
This signal is synchronized with Imagine Clock.
SDATA OUT output | Serial, time division multiplexed, AC’97 output stream.
This signal is synchronized with Imagine Clock.

User’s Manual 10/2/2008

page 222

Imagine 2 Multi Media Processor

30 The AC97 audio codec

Interrupt signals (to Interrupt Vector Generator)

INT R

output

Read interrupt flag.

INT W

output

Write interrupt flag.

Internal Peripheral Bus I/F signals

CP (Imagine Clock) input
Reset input
IPB_Master input
IPB_Request input
IPB RW input
IPB T Ready output
IPB 1 Ready input
IPB_Space0 input
IPB_Address[15:2] input
IPB_BE [3:0] input
IPB_RdData [31:0] output
IPB_WrData [31:0] input

See document “The Protocol of the INTERNAL
PERIPHERAL BUS, revision 0.9a”

User’s Manual 10/2/2008

page 223

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.2 AC’97 controller module overview

AC’97 controller has three interfaces, AC-Link, Internal Peripheral Bus, and two interrupt output signals. AC-
link (Audio Codec *97 controller digital serial link) is used to communicate with AC’97 chips. This interface is
based on “Audio Codec '97 Component Specification, Revision 1.03”.

Internal Peripheral Bus is connected with some internal control registers and I/O registers. These registers are on
IPB_Space0, 64 bytes address area. Internal Peripheral Bus communicates with AC-link via internal 128 word x
32 bit FIFO. This FIFO is separated to five areas, and each areas have a independent 1/O registers and
Read/Write pointers. The two interrupt lines (INT_R, INT W) are connected to the Interrupt Vector Generator
via the Interrupt Router. When input or output FIFO almost full/empty occurs, this module generates interrupt
pulse. All flip-flops and FIFO are synchronized with Imagine Clock.

INT R INT W
BC _rise A A FIFO Status
AC97RST_N >
< — O<} C _rst
¢ W st
BIT_CLK Ti;in Main Ctrl < >
SYNC > & a|Serial Enable| g AC97 EN,[P EN Reas
< Gen > Gen < &s.
EN
SDATA OUT . AAC97 |EN A4
» Interrupt <& ;
OTag 1D Int t "
BC_rise —> Gen. Cltl fgup
— rl Regs.
| BC_fall
¢ AC97 | WE YYVY V¥
Ctrlreg. [« D > WE
)Vrite Port. sE)
< AC97 @ < AC’97
Playback | WE RE Playback WE
Lch & Rch »|Lch & Rch[%
Out EE—’ In
O (Out) (In)
Gen AC’97 AC’97
¢ Modem < Modem
Output < WE Output
Samplel,2 RE P Samplel, 2 [« WE
©Ou) |4 (In)
SDATA_IN » AC97 > 128 x 32 bit > AC97 >
MIC in Re| synchronous FIFO MIC in
Samplel,2 [¢ (including WE P Samplel,? |« RE
(In) |& FIFO ctrl registers (Out)
& status registers) Internal
> AC97 > > ACY7 » Peripheral
Record RE WE Record RE Bus I/F
Lch & Reh P|Lch & Reh [
() [& (Ou)
AC’97 AC'97
» Modem > »| Modem >
Input | RE WE »{ Input RE
Samplel, 2 ﬁE A RE oo eeen e EE_ Samplel, 2 <
(In) (Out)
A
> ACo7 1O status <
Cirl reg [W/R enables RE
Read Port |gg g Y
- Shift Enables > . g——W/R enables
e & P[/O status registers
ag 4 W/R enables
L p| AC’97 Headecrcady -
ITag FIFO status :

User’s Manual 10/2/2008 page 224

—_

IPB
signals

-«

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.3 AC’97 Serial Timing Generator (T_GEN.v)

This block generates 48 kHz fixed rate serial sync signal (SYNC). This block samples BIT CLK by Imagine
Clock (CP), detects rising and falling edge of BIT CLK. The BIT CLK counter counts up the rising edge of
BIT CLK, generates SYNC signal and serial input/output timing.

When C_RST (Main Control register, bit 0) is set to 1, BIT CLK counter is reset to 0. When W_RST (Main
Control register, bit 1) is set to 1, BIT CLK counter is reset to 0, and SYNC signal is asserted to 1 for Warm
AC’97 reset state.

30.3.1 The timing of Serial Timing Generator

AN e RN WA A e eV AWV AN AU AN AW aVAVANAR A AT

CRST — / / / /
! /L/J /@/4

BIT _CLK
BC rise / / \ / / / \ / / / \
BC _fall / / / \ / / / | / /
BitCnt[7:0] 255 255 J o 0 [1 1 16 [17
SYNC y [/ / / \

SYNC set = SYNC reset =

(0 == BitCnt) (16 == BitCnt)

& BC _rise & BC _rise
30.3.2 Block Diagram
: » BitCnt

W _RST L
_) > Set to Oxff Como0s e St D_> SYNC
C RST — |
AC97 EN en bit — j :
_ Counter 0x10? [Yes —D‘ Reset
J‘ D p BC rise
® D p BC_fall
BIT CLK —D L/
> o

User’s Manual 10/2/2008

page 225

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.4 AC’97 Serial Data Enable Generator (SE_GEN.v)

This block generates AC’97 serial data write and read enables. The read enables are used to separate each audio
data from multiple serial input (SDATA_IN). The separated audio data are store to 32-bit FIFO input registers.
The write enables are used for making of multiple serial output (SDATA OUT) from 32-bit FIFO output
registers. All enables are synchronized with Imagine Clock and based on the value of BitCnt.

30.4.1 Block diagram

Serial Enable Generator (SE_GEN.v) has eleven sub modules names SE_GEN/ for serial enable signals
generation. BitCnt, RST (= C_RST | W_RST), and CP are connected to each SE_ GENIs as common inputs.
Each modules has different inputs and outputs for the other signals.

The example of this block is as follows.

Example: Generate Playback Lch

BitCnt sl BitCnt

0x3a 3 START SEN » PBL sen
Oxda ==l END | GENI

Otag[2] EN - » PBL s end
RST ——{RST

START and END is a fixed values. PBL_sen is used as serial enable signal of
Playback FIFO output register (Lch). PBL s _en is used as reset signal of IOSts
bit 5 (I/O status register Playback out OH).

Internal Timing of SE_ GEN1

CP

RST

EN

BitCnt

SEN

SEND

EAVARAUAVAEAV ARV AV AU ANAVAR RV AERVATRURWANE
/ /

Start - 1 | Start / End-1 | End / Start + N
/

\

e X

while RST=1,
SEN reset to 0

£ ouCnt = Start & EN= 1L This signal is used as When RST = 1
SEN set to 1 1 hen s
set or reset signal for I/ This signal has no
if BitCnt=End & EN=1, O status registers effejct to I/O status
SEN reset to 0 registers

User’s Manual 10/2/2008 page 226

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.4.2 Set/Reset Conditions of Serial enables

Data name Serial Serial enable Enable condition (EN) START END
enable end

Command AD sen | AD s end OTag[0] 0x12 Oxla
Address
Command WD sen | WD s end OTag[1] 0x26 0x36
Write Data
Playback Lch | PBL sen [PBL s end | OTag[2] 0x3a Ox4a
FIFO output
Playback Rch | PBR sen [PBR s end | OTag[3] Ox4e 0x5e
FIFO output
Modem Out MO sen | MO_s end OTag[4] 0x62 0x72
FIFO output
Command EAD sen | EAD s end | R _EN & !IOSts[3] & ITag[0] 0x13 Oxla
Echo Address
Command RD sen RD s end R_EN & !IOSts[2] & ITag[1] 0x26 0x36
Read Data

Record Lch RL sen RL s end R EN & P _EN[1] & IOSts[11] & ITag[2] | 0x3a Ox4a
FIFO input

Record Rch RR sen RR s end R EN & P_EN[1] & TOSts[10] & ITag[3] | Ox4e 0x5e
FIFO input

Modem In MI sen MI s end R _EN & P_EN[3] & !'TOSts[19] & ITag[4] | 0x62 0x72
FIFO input

MIC In FIFO | MIC sen | MIC s end | R _EN & P_EN[4] & !'TIOSts[23] & ITag[5] | 0x76 0x86
input

NOTE: R EN=C _RDY & AC97 EN.
START and END are the BitCnt values.

30.5 AC’97 Serial Output Generator (SO_GEN.v)

This block generates AC’97 serial output data. The serial data output (SDATA_OUT) is directly connected to
AC’97 chip and send digital audio streams to AC’97 chip. The MSBs of each FIFO output registers, Write
command address, Write data are used for serial output data. The MSB of command address (AD_s), MSB of
command write data (WD_s), MSB of 2channel composite PCM output stream (PBL s and PBR _s) , and MSB
of Modem Line Codec DAC input stream (MO _s) are multiplexed according to the Internal Serial Timing
Generator (T_GEN.v).

Each outgoing streams has 20-bit sample resolution. However, this module supports only 16-bit output
resolution, this block always stuffs all trailing non-valid bit positions (last 4 bit positions) with 0’s.

User’s Manual 10/2/2008 page 227

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.5.1 Block Diagram

When Bitent = 0 and BC rise = 1,
Output Tag data is latched to OTag F/Fs.
8 =09 ¥ During the Audio Frame period, OTag

BitCnt
i doesn’t change.
BC rise L
C_RDY —
AC97 EN 7 / o P 0
10Sts[1] — N
\ 1
0 _/ en D
Output Tag
\ 2 bit 0: Command Address
5 —/ on D bit 1: Command Write Data
0 — bit 2: Playback Out Lch
bit 3: Playback Out Rch
N b 3 bit 4: Modem Out
4 . en
0 > if when each bitis setto 1,
the audio output stream has
\ 4 valid data
13 - o |P :
10Sts 24 2
P EN 5 2 » OTag
-
AD s
WD s Y D [—» SDATA OUT
Serial Data Sel.
Serial < PBL_S P
Data | ppR s
MO s
-
r
AD s
WD s
Serial PBL s
enables -
PBR s Select Conditions
MO s .
9 BitCnt =2: Y = OR-ed OTag[4:0]

BitCnt = 3: Y = Otag[0]
BitCnt =4:Y = Otag[1]
BitCnt = 5: Y = Otag[2]
BitCnt = 6: Y = Otag[3]
BitCnt = 7: Y = Otag[4]
Others:
AD sen=1: Y= AD s
WD sen=1: Y=WD s
PBL sen=1: Y=PBL s
PBR sen=1: Y =PBR s
MO _sen=1: Y=MO s

User’s Manual 10/2/2008 page 228

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.6 FIFO Input/Output Registers (F_REGS.v)

This block has fourteen 32-bit registers. Internal Peripheral Bus communicates with AC-link by using these
registers. It is placed between Internal Peripheral Bus and FIFO or AC-link and FIFO, except some registers.

FIFO Input Registers are classified into two types. One is IPB to FIFO registers. Internal Peripheral Bus writes
data to this register. The data must be written to the register, 32-bit simultaneously. Byte write is not supported. If
FIFO is not full and this register contains 32-bit data, the data is written to FIFO. Another one is FIFO to AC-link
registers. This registers is 32-bit shift register with serial input and parallel outputs. Serial input is connected with
serial input of AC-link (SDATA_IN). After the serial transfer, if FIFO is not full, the data is written to FIFO, 32-
bit simultaneously.

FIFO Output Registers are classified into two types. One is FIFO to IPB registers. Internal Peripheral Bus read
data from this register, 32-bit simultaneously. After the read by Internal Peripheral Bus, if FIFO is not empty,
FIFO writes 32-bit data to the register. Another one is FIFO to AC-link registers. This registers is 32-bit shift
register with 32-bit parallel inputs and a serial output. Serial output is connected to serial output of AC-link
(SDATA_OUT) via Serial Output Generator. After the serial data transfer, if FIFO is not empty, the FIFO writes
32-bit data to register using parallel inputs.

AC’97 command register, write data register, command echo register, and read data register are including FIFO
Input/Output Registers for convenience' sake, however, these registers are directly connected with Internal
Peripheral Bus and AC-link, not using FIFO.

30.6.1 Block Diagram (AC'97 Commend R/W Registers)

IPB_WrData —”h

31 COM_RW
IPB_ WE_PB we D (to Interrupt Gen.)
>
Command Address
3124 (with R/W bit) serial out
p [MSE » AD s)
we
>
BCise)—M to Serial Output
AD_sen Gen
Command Write Data
serial out
MSB
we |P »WD_s)
>
serial out en
WD sen Command Echo
- Address narallel out 3\
7
SDTA IN D » EAD
to IPB I/F
BC_fall serial in en > 0 /
Command Read Data (IPB_RdData)
AD_sen parallel out
16
D » RD
J
) serial in en
RD_sen

User’s Manual 10/2/2008 page 229

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.6.2 Block Diagram (FIFO Input Registers)

Playback Lch, Rch data

(IPB to FIFO)
IPB_WrData 32 D 32 » PB i \
we -
IPB_WE_PB N
Modem Out Sample 1, 2
data (IPB to FIFO)
D 32 .
we » MO i
IPB_WE_MO
Record Lch parallel
out(AC-link to FIFO)
. 16
SDATA_IN Si jd L
>
BC _fall > serial in en Record Rch parallel to FIFO
RL_sen out (AC-link to FIFO) Input
G S0 16
P 32
il REC_i
serial in en
) Modem Input sample 1, 2
RR_sen parallel out (AC-link to
. FIFO
si U e M1 i
) serial in en MIC Input sample 1, 2
MI sen parallel out (AC-link to
FIFO)
si a2 =P MIC i j
DM' \ Serial In-Parallel Out
MIC_sen

32-bit Shift Register.
LSB <= Serial Input.

User’s Manual 10/2/2008 page 230

Imagine 2 Multi Media Processor

30.6.3 Block Diagram (FIFO Output Registers)

32
FRD Playback Lch
(from FIFO out) 3116 < serial out
- MSB
we |D > reLs)
REn_Play o D L -
>
BC _rise \ serial out en Playback Rch
PBL sen —/ serial out
- 13.0
p MSB » PBR s
we =
serial out en
PBR sen —
Modem Out
serial out
e p [|MSB » MO s
REn_Mod o D /
> \
| Parallel In-Serial Out

MO _sen ;D

serial out en|

B2-bit Shift Register.
Serial Out <- MSB.

'\

Record Lch & Rch out

» REC o

» Ml o

32
D
Ren_Rec i e N
Modem Input sample 1, 2
out
D 32
Ren_Mod i e N
MIC Input sample 1, 2
out
D 32
Ren_Mic i e N

User’s Manual 10/2/2008

» MIC o

)

30 The AC97 audio codec

to Serial
Output Gen.

to IPB I/F
(IPB_RdData)

page 231

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.7 Read Input Tags (R_TAG.v)

This block reads Codec Ready bit and 6-bit Input Tag bit from AC’97 Serial Data Input (SDATA_IN).

While SYNC is asserted to 1, this block read tag bits. Codec Ready bit (stored in C_RDY register) indicates
whether AC’97 is in the “Codec Ready” state or not. While it is 0, Serial Enable Generator is disabled. Input Tag
bit (stored in ITag[5:0]) means each input audio slot contains valid data or not.

RST

) » C_RDY
SDATA_IN J D -

BC fall
BitCnt 8 BitCnt | Y8

=27

6
D > ITag
BC_fall 6 /
- 2< €S
BitCnt bit 0: Command Echo Address
<99 bit 1: Command Read Data
bit 2: Record Lch

bit 3: Record Rch
bit 4: Modem Input
bit 5: MIC Input

30.8 128 x 32 bit FIFO (F_AC97.v)

This block has 132 x 32 bit user configurable FIFO. The FIFO has one write port and one read port,
independently. The FIFO is divided to 5 parts for Playback Out, Record In, Modem Out, Modem In, and MIC In.
Each part has individually FIFO start address, end address, watermark, write pointer, and read pointer. Start
address, end address, and watermark are able to be written or read from Internal Peripheral Bus. These values are
stored to registers. The write pointer and read pointer are able to be only read from Internal Peripheral Bus.
These registers are automatically increment when write to FIFO or read from FIFO.

Each part has four flags, FF, FE, FH, and FI. FF and FE respectively indicates FIFO full and empty conditions.
FH indicates half full condition (while a selected number of words is stored in memory.

In case of FIFO which is written by Internal Peripheral Bus, FI is asserted to 1 only one Imagine clock cycle,
when a number of stored data is less than selected number (watermark). Playback Out and Modem Out fall under
this type. In case of FIFO which is read from Internal Peripheral Bus, F1 is asserted to 1 only one Imagine clock
cycle, when a number of stored data is greater than selected number (watermark). Record In, Modem In, and

MIC In are this type. FI flags are used for Interrupt Generator to generate interrupt signals. These flags are read
from Internal Peripheral Bus at any time.

When accesses from Internal Peripheral Bus and AC-link simultaneously, the AC-link’s access has priority. In
case of write access is the same.

This block is completely synchronized with Imagine clock (not including delay cell or etc. to generate write
pulse).

User’s Manual 10/2/2008 page 232

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.8.1 Block Diagram 1/2 (Controller & Arbiter block)

ACY7_EN FIFO s
P_EN 5 // w%l}blterbl - / > Read Enables
10Sts[23:4] 20, (R/W enable L » Write Enables
/ generator)
> FIFOSts[23:4]
SA_PB, EA PB v H_edge
— T FF, FE, FH, FI
WM_PB ,
REn Play o | FIFO 7 RP_PB
Controller 7 -
WEn Play 01 (Playback) ek » WP_PB
‘1’ ———H edge
SA REC, EA REC, FF, FE, FHL F1
WM_REC
REn Rec i | FIFO 7, > RP REC
En Rec | Controller 7 > -
WEn Rec | (Record) z e » WP REC
‘0’ tH_edge
SA MO, EA_ MO -
— T = FF, FE, FH, FI
WM_MO s
REn Mod o | FIFO 7 g
WEn Mod Controller 7 » RP_MO
o oco (Modem Out) ,/ » WP MO
‘1 tH_edge
SA MI, EA MI -
T =T FF, FE, FH, FI
WM_MI ,
REn Mod i FIFO 7,
FIFO Start Address, WEn Mod | | Controller - - » RP_MI
FIFO End Address. n_lod 1 M
’ odem In L
and FIFO Watermark () 7 \> WP_MI
l Read and Write
SA_MIC, EA_MIC r tH_edge Pointers
WM MIC FF, FE, FH, FI
REn Mic i | FIFO 7,
En Mic i Controller 7 » RP_MIC
— W Mell MICm) Ly > WP MIC
RST_FIFO
(= C_RST|W_RST)

User’s Manual 10/2/2008 page 233

Imagine 2 Multi Media Processor

30.8.2 Block Diagram 2/2 (FIFO block)

FIFO Write
Data (from
FIFO Input
Registers)

PB_i
REC i
< MO i
ML i
MIC_i

WP_PB
WP_REC
WP_MO
WP_MI
WP_MIC

Write Enables

RP_PB
RP_REC
RP_MO
RP_MI
RP_MIC

Read Enables

30 The AC97 audio codec

32

» FRD

32
32
‘2’ Write Data f—idet dib doa
+ Sel.
32 o
—32+— sel
7,
T
7,
7 ’/ Write z ’ badr
7: Address Sel.
’l
z ’ sel
5, | we | 32x128 words
y OR 2enb ¢ gynchronous|
RAM
7,
T
7
T
. Read L aadr
71 Address Sel.
’l
7 ,’ sel
5
rl I OR e cna
clka
clkb

User’s Manual 10/2/2008

T

(FIFO Read
Data, to FIFO
Output
Registers)

clka and clkb are
connected to CP.
web (bit write enables) are
connected to logic 1.

page 234

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.8.3 FIFO Arbiter (F_ABT.v)

This block arbitrates write or read accesses from FIFO input/output registers and generates write and read enable
signals. The write enable signals are used for FIFO write access and clears /O status registers’ IH, IL bits. The
read enable signals are user for FIFO read access and set I/O status registers” OH, OL bits.

When accesses from Internal Peripheral Bus and AC-link simultaneously, the AC-link’s access has priority. In
case of write access is the same.

If IH and IL bit (I/O status register) is 1 and FF flag (FIFO status register) is 0, the arbiter asserts write enable to
1. Besides, if OH and OL bit (I/O status register) is both 0 and FE flag (FIFO status register) is 0, the arbiter
asserts read enable to 1.

Priority:
MIC in highest
Example: Modem in
Wrdy Play o = AC97_EN Record
& P_EN[0] & !FF_Play ¢
& 10Sts[7] & 10Sts[6] Modem out
/ Playback lowest
AC97_EN S) ——» WEn_Play o
P EN va Ready Signals ——% WEn_Rec i
FF_Play o 2 va WE Gen. ——» WEn_Mod_o Write
FIFO full | FF_Rec_i (with —» WEn_Mod_i Enables
flags FF_Mod o Write Ready? arbitration) —— WEn_Mic_i
FF Mod i
FF_Mic_o
24,
10Ssts 7 ororiy
Modem out highest
Example: Playback
Rrdy Play o= AC97_EN &
P_EN[0] & !FE_Play o & ! MIC in
[OSts[5] & !'TOSts[4] Modem out
Record lowest
——» REn_Play o
Ready Signals » REn Rec i
FE_Play o 2 a RE Gen. | — REn_Mod o Read
FIFO empty FE_Rec_i (with —— REn_Mod i Enables
flags FE:Mod__o Read Ready? arbitration) —— REn_Mic i
FE Mod i
FE_Mic_o

30.8.4 FIFO Controller (F_CTRL.v)

This block two 7-bit up counters and one 8-bit up-down counter. Two 7-bit up counters are used for FIFO write
pointer (memory write address) and FIFO read pointer (memory read address). One 8-bit up-down counter counts
a number of data which written into FIFO. Start and end address (higher 4 bit) are defined by FIFO control
registers. Lower 3 bit of start address are filled with ‘0’. Lower 3 bit of end address are filled with ‘1°. The block
diagram of this module is as follows.

User’s Manual 10/2/2008 page 235

Imagine 2 Multi Media Processor 30 The AC97 audio codec

WMark
o e ——
g 7/ =EAdr- | yes
{EA,bI11} - Ead SAdr+ 17 [FF
W En
R En
startadr g
endadr up t up_d()\q \ // .
en 1L countd down nter >= WMark? [» FH
reset
reset In case of IPB to
[FIFO write ports, select
A input.
lIf FIFO to IPB read
startadr 5 @A— A/ ports, select B input.
endadr q 2:1 SEL.{————p» FI
en 1U count D—:DL
reset 7/
7 P W_Point
LN 4
7 » R Point
RST -

H edge

30.9 Interrupt Generator (INT_GEN.v)

This module generates two interrupt lines (INT_R, INT W). The interrupt lines are connected to the Interrupt
Vector Generator via the Interrupt Router. When output FIFO half empty states (or AC’97 Control Write register
empty) occurs, this module asserts INT W to 1 while one Imagine clock cycle.

When input FIFO full empty states (or AC’97 Control Read register full) occurs, this module asserts INT R to 1
while one Imagine clock cycle.

When some bit of Interrupt Enable Register (Interrupt Control register, bit 13:8) is set to 0, interrupts
corresponding to the bit are disabled.

Interrupt conditions is assign to Interrupt Identify Register (Interrupt Control register, bit 5:0). This register is
able to be read from Internal Peripheral Bus.

Conditions which INT W is asserted to 1 are:
1. Command Write data empty and enable interrupt for this port (FIFOSts[0] & INT ENJ0])
2. Playback FIFO half empty and enable interrupt for this port (FIFOSts[4] & INT EN[1])
3. Modem Out FIFO half empty and enable interrupt for this port (FIFOSts[12] & INT EN[3])

Conditions which INT R is asserted to 1 are:
1. Command Read data full and enable interrupt for this port (FIFOSts[2] & INT _EN[0])
2. Record FIFO half full and enable interrupt for this port (FIFOSts[8] & INT EN[2])
3. Modem In FIFO half full and enable interrupt for this port (FIFOSts[16]& INT _EN[4])
4. MIC In FIFO half full and enable interrupt for this port (FIFOSts[20] & INT_EN[5])

30.10 Internal Peripheral Bus I/F (ACIPBIO.v)

This module has Internal Peripheral Bus(IPB) interface giving direct access to the registers (include some FIFO
Input/ Output registers) of this module. These are mapped on IPB address space 0 (IPB_Space0). 64 byte ranges
are needed.

These registers are addressed directly by IPB_Address[10:2] from IPB and can be written or read at any time,
except some FIFO data ports. In any case, write or read transfer to control registers always
successfully terminate at first try. In case of accesses to FIFO data write ports, if this register is empty, only 1
Imagine clock cycle is needed to this transfer. If this register contains data, the Initiator must wait until this
register is empty. In case of accesses to FIFO data read ports, if this register contains data, only 1 Imagine clock
cycle is needed to this transfer. If this register is empty, the Initiator must wait until this register contains data.
When Initiator writes to read only registers (e.g. Record FIFO port register), this module only set IPB T Ready
to 1, vice versa..

User’s Manual 10/2/2008 page 236

Imagine 2 Multi Media Processor

30 The AC97 audio codec

Internal Peripheral Bus Interface

32

RD MCR sl
(from Main Ctrl Regs.)
(7N J— v —
(Command Echo Addr)
RD —
from FIFO (Command Read Data) . Read Enable Generator &
om REC o t Read Data Selector A
Output (Record FIFO out Regs.) IPB_RE_EAD
M 32 (to Command Echo Address & Read Data Regs.)
0 —_n
(Modem In FIFO out Regs.) r—— > IPB_RE REC
MIC o 32, | (to Record Lch & Rch Regs.) > to FIFO
(MIC In FIFO out Regs.) I » IPBRE MI Output
RD IR —32_. (to Modem In Sample 1,2 Regs.
(from Int. Ctrl Regs.) 9 . IPB_RE_MIC
FIFOStS mum——— (to MIC Sample 1,2 Regs.)
(FIFO Status flags) J
10Sts 2
(FIFO 1/0O Regs. Status)
RD_FCR_PB 32
32
from FIFO RD_FCR_REC "
Ctrl Regs. RD_FCR_MO ”
RD FCR_MI
RD_FCR_MIC 32
A
IPB_Address 1 2:2
IPB_Request RREQ
IPB RW
IPB I Ready Access? WREQ IPB_T_Ready
IPB_Space0
15:6
L 3 » IPB_WE_MC
(to Main Ctrl Regs.)
- , 2 » IPB_WE_IR
59 Write Enable (to Interrupt Ctrl Regs.)
PB BE 4 Generator » IPB_WE_AD
- (to Command Write Address & Data Regs.)
» [PB_WE PB to FIFO
(to Playback Lch & Rch Regs.) Input

» IPB_ WE MO
(to Modem Out. Sample 1,2 Regs.)

» IPB_WE_FCR_PB 3\
(to Playback FIFO Ctrl Regs.)

Z » IPB WE FCR REC

»

(to Recrod FIFO Ctrl Regs.)

2 » IPB WE FCR MO to FIFO
) (to Modem Out FIFO Ctrl Regs.) > Ctrl regs.
» IPB WE FCR MI
(to Modem In FIFO Ctrl Regs.)
Z » IPB WE FCR MIC

User’s Manual 10/2/2008

»

(to MIC FIFO Ctrl Regs.))

page 237

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11 AC’97 Registers

30.11.1 AC’97 Controller base address

IPB_Address

AC’97
AC’97 BASE ——
(1060000000101) -
15[14]13]12[11]10[o[8[7] 6|5 [4]3]2

* AC'97 Controller registers are on IPB_SpaceO.

30.11.2 AC’97 Controller registers memory map

31[30]29]28]27]26[25] 24232221 20 19 18] 17[16151413 12]11]10[9[8[76 [543]2]1]0
AC’97 Main Control
0 Register
AC’97 Command Control Register Access Port
1 R | Command Write Address “00000000” Command Write Data
A
AC’97 Command Control Register Read Return Port
2 ‘0’| Command Address Echo “00000000” Command Read Data
AC’97 Playback Left channel AC’97 Playback Right channel
3 Output Port Output Port
AC’97 Record Left channel AC’97 Record Right channel
4 Input Port Input Port
AC’97 Modem Line AC’97 Modem Line
5 Output Port, Sample 1 Output Port, Sample 2
AC’97 Modem Line AC’97 Modem Line
6 Input Port, Sample 1 Input Port, Sample 2
AC’97 Microphone AC’97 Microphone
7 Input Port, Sample 1 Input Port, Sample 2
AC’97 Interrupt Control
8 Register
AC’97 Input/ Output FIFO
9 Status Register
AC’97 FIFO Input / Output Port
10 Status Register
AC’97 Playback Output FIFO
ontrol / Status Register
11 C 1/S Regi
AC’97 Record Input FIFO
12 Control / Status Register
AC’97 Modem Output FIFO
13 Control / Status Register
AC’97 Modem Input FIFO
14 Control / Status Register
AC’97 Microphone Input FIFO
15 Control / Status Register

N

User’s Manual 10/2/2008 page 238

" IPB_Address[5:2]

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11.3 AC’97 Main Control Registers

This registers totally controls Audio Codec *97 Controller.

Bit 7 is master enable bit of the AC’97 controller (this module). When this bit is set to 0, all functions in this
module are disabled.

Bit 22:18 are Port Enables. controls each ports of audio input/output streams. These registers enables or disable
each ports of FIFO inputs/outputs.

Bit1:0 are reset control bit of the AC’97 analog chip. When bit 1 is 1, AC’97 controller generates a warm AC’97
reset state. When bit 0 is 1, AC’97 controller generates a Cold AC’97 reset state. If Internal Peripheral Bus
asserts (IPB) RESET to 1, this bit is set to 1 (Cold Reset). The reset state is kept until clear the bit.

This registers can be write or read from Internal Peripheral Bus. Bit 22:18 are not initialized.

bit 22: Microphone Port enable
1 =enable / 0 = disable

bit 21: Modem Input Port enable
1 = enable / 0 = disable

bit 0: 1 = Cold
bit 20: Modem Output Port enable AC’97 reset
1 = enable / 0 = disable (When IPB Reset,

this bit is set to 1.)

bit 19: Record Port enable
1 = enable / 0 = disable

bit 1: 1 = Warm

AC’97 t
bit 18: Playback Port enable (When IPBr}iseeset .
1 = enable / 0 = disable ’

this bit is reset to 0.)

bit 7: AC’97 master enable
1 = enable / 0 = disable
(When IPB Reset, this bit is reset to 0.)

VVVVY A 4 vVYy
“00000000” ‘O, AC’97 port “00” “OOOOOOOO” IAC “0000()” W] C
97e rst | rst

enables n

[31[30]29]28]27]26]25]24[23[22]21]20]19] 18] 17]16]15[14]13]12]11]10[o [8[7]6[5]4[3]2]1]0]

User’s Manual 10/2/2008 page 239

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11.4 Interrupt Control Register

This register controls two interrupt lines, INT R and INT W. When each parts of FIFO half empty/full state
occurs, this module generates interrupt.

Bit 13:8 are interrupt enables for each FIFO input / output ports (including command write/read ports, which
does not use the FIFO). If some bit of this enables are set to 0, the corresponding FIFO full or empty interrupts
are disabled. These bit are not initialized. This register is able to be written or read from Internal Peripheral Bus
at any time. In case of ports which is written by Internal Peripheral Bus, a change of bit has a effect after the next
AC-link audio output frame. On the other hand, the ports which is read from Internal Peripheral Bus, it has a
effect immediately. Bit 5:0 are interrupt identify registers for checking the interrupt status. This register indicates
which port is in the interrupt state. These bit are able to be only read from Internal Peripheral Bus.

bit 0: Command Write register empty
or Command Read register full interrupt occurs (read only)

|bit 1: Playback FIFO half empty interrupt occurs (read only) I

| bit 2: Record FIFO half full interrupt occurs (read only) [

| bit 3: 1 = Modem Output FIFO half empty interrupt occurs (read [

| bit 4: 1 = Modem Input FIFO half full interrupt occurs (read only) |

| bit 5: 1 = Microphone FIFO half full interrupt occurs (read only) [

bit 8: Command Write Address and Data register empty
or Command Echo Address and Read Data full

linterrupt enable

1 = enable / 0 = disable

bit 9: Playback FIFO half empty interrupt enable
1 = enable / 0 = disable

bit 10: Record FIFO half full interrupt enable
1 = enable / 0 = disable

bit 11: Modem Output FIFO half empty interrupt enable
1 = enable / 0 = disable

bit 12: Modem Input FIFO half full interrupt enable
1 = enable / 0 = disable

bit 13: Microphone FIFO half full interrupt enable
1 = enable / 0 = disable

I YVVYVYY I YVVYVYY
000000007 “00000000” “00” | Interrupt Enable | «00” | Interrupt Identify
Register Register

[31]30]29]28]27[26]25]24]23[22]21]20 1918 [17] 6] 15]14[13[12]11f10] o[8[7 6]5[4]3[2]1]0]

User’s Manual 10/2/2008 page 240

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11.5 Input/Output FIFO Status Register

This registers contains FIFO status. The FIFOs which is separated to five independent blocks have each four
status flags, FIFO empty (FE), FIFO full (FF), FIFO half empty or full (FH), and FIFO interrupt (FI). Bit 2 is
used for Command Read registers full interrupt (II). Bit 0 is used for Command Write registers empty interrupt
(OI). Every FI bit and II, and OI are used for generating interrupts. This registers are able to be only read from
Internal Peripheral Bus at any time. See subsection 2.4 FIFO Input/ Output Registers, for more details.

Record FIFO Status
bit 11: 1 = FIFO empty
Modem Output FIFO Status bit 10: 1 = FIFO full
bit 15: 1 = FIFO empty bit 9: 1 = FIFO half full
bit 14: 1 = FIFO full bit 8: 1 = FIFO half full interrupt
bit 13: 1 = FIFO half empty
bit 12: 1 = FIFO half empty interrupt Playback FIFO Status
bit 7: 1 = FIFO empty
Modem Input FIFO Status bit 6: 1 = FIFO full
bit 19: 1 = FIFO empty bit 5: 1 = FIFO half empty
bit 18: 1 = FIFO full bit 4: 1 = FIFO half empty
bit 17: 1 = FIFO half full interrnnt
bit 16: 1 = FIFO half full interrupt
Command Register Status
Microphone FIFO Status bit 3: reserved ‘0’
bit 23: 1 = FIFO empty bit 2: 1 = read register full interrupt
bit 22: 1 = FIFO full bit 1: reserved ‘0’
bit 21: 1 = FIFO half full bit 0: 1 = write register empty interrupt

bit 20: 1 = FIFO half full interrupt

VYVVYVVYV YVYVVYIYVYVIVYVVVY

: Modem Out Record
. R Microphone | Modem Input Playback FIFO| Command
00000000 FIFO Status | FIFO Status | F1FO Status | FIFO Status Status register Status

31]30]29][28[27[26]25] 2423 22212019 18] 17] 16151413] 12]11]10] o8 [7]6[5]4]3][2]1]0]

30.11.6 FIFO Input/Output Port Status Register

This registers contains input/output port (FIFO Input/Output register) status. The five FIFO input or output ports
have each four status flags, higher 16-bit of FIFO input register has data (IH), lower 16-bit of FIFO input register
has data (IL), higher 16-bit of FIFO output register has data (OH), and lower 16-bit of FIFO output register has
data (OL). Command registers’ status indicates the Input Output register has new data or not. These registers are
directly connected with Internal Peripheral Bus and AC-link, not using FIFO. These reglsters able to be only
read from Internal Peripheral Bus at any time. See subsection 2.7 Interrupt G ——

Record FIFO Port Status
bit 11: 1 = input register (high) has data

Modem Output FIFO Port Status bit 10: 1 = input register (low) has data
bit 15: 1 = input register (high) has data bit 9: 1= output register (high) has data
bit 14: 1 = input register (low) has data bit 8: 1= output register (low) has data

bit 13: 1 = output register (high) has data
bit 12: 1 = output register (low) has data

Playback FIFO Port Status
bit 7: 1 = input register (high) has data
bit 6: 1 = input register (low) has data
bit 5: 1 = output register (high) has data
bit 4: 1 = output register (low) has data

Modem Input FIFO Port Status
bit 19: 1 = input register (high) has data
bit 18: 1 = input register (low) has data
bit 17: 1 = output register (high) has data
bit 16: 1 = output register (low) has data

Command Register Port Status
Microphone FIFO Port Status bit 3: input register (high) has data
bit 23: 1 = input register (high) has data bit 2: input register (low) has data
bit 22: 1 = input register (low) has data bit 1: output register (high) has data
bit 21: 1 = output register (high) has data bit 0: 1 = output register (low) has data
bit 20: 1 = output register (low) has data

VYVVYVYVVY YVYYVYIVYVVYIVYY

: Modem Out Record
. R Microphone [Modem Input
00000000 Port Status Port Status Port Status Port Status

Playback Command
Port Status Port Status

31]30]29]28[27[26]25]24] 23|22 2120 19] 18] 17] 161514 13]12]11]1o] o8 [7]6[5]4]3[2]1]0]

User’s Manual 10/2/2008 page 241

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.11.7 FIFO Control/Status Registers

This registers are used for definitions of the FIFO. This registers contains FIFO start address, FIFO end address,
and FIFO watermark. Each FIFO block has one FIFO Control /Status Registers, amount to five registers. These
values are able to be written or read from Internal Peripheral Bus at any time. Bit 30:24 are FIFO read pointer,
Bit 22:16 are FIFO write pointer. These registers are able to be only read from Internal Peripheral Bus. See
subsection 2.6.4 FIFO Controller, for more details.

FIFO Write Pointer FIFO Start Address [6:3]
indicates 7-bit write address (FIFO Start Address [2:0]
of synchronous RAM) are ‘000°.)

FIFO Read Pointer FIFO Water Mark [6:2] FIFO End Address [6:3]
indicates 7-bit read address (FIFO Water Mark [1:0] (FIFO End Address [2:0]
of synchronous RAM) are ‘00°.) are ‘111°))

A A i A y
FIFO Water Mark
. . . FIFO Start FIFO End
‘0’ FIFO Read Point ‘0 FIF P ‘0 ‘0’ ‘0’
O Read Pointer 0 O Write Pointer x 4 Address x 8 Address x 8

31[30]29]28[27]26[25]24[23]22]21]20] 19]18]17] 16 14[3]2[tfo]of8]7][6]s]al3]2]1]o0

—
93
W
[
W

30.12 AC’97 Data Access Ports

In order to communicate with AC’97 digital interface, seven 32-bit registers are prepared. The command
write/read registers are directly connected with Internal Peripheral Bus and with AC-link.

The others are connected via internal FIFO. These registers are read only or write only registers. The status of
registers are able to read the FIFO port status registers.

30.12.1 AC’97 Control register access port

This registers is command write register, from Internal Peripheral Bus to AC-link. It is directly connected with
Internal Peripheral Bus and AC-link. Bit 31 is R/W command bit. This value is used for Audio Output Frame
Slot 1, bit 19. Bit 30:24 are 7-bit Command Control Address. This value is used for Audio Output Frame Slot 1,
bit 18:12 (Control Register Index). Bit 15:0 are 16-bit command write data. When bit 31 is set to 1 (Read), bit
15:0 must be stuffed with 0°s. The value is used for Audio Output Frame Slot 2, bit 19:4 (Control Register Write
Data). This registers is write only registers, and must be written 32-bit simultaneously.

30.12.2 AC’97 Control register read return port

This registers is command read register, from AC-link to Internal Peripheral Bus. It is directly connected with
Internal Peripheral Bus and AC-link. Bit 30:24 are 7-bit Command Address echo from AC-link. This value is
read from Audio Input Frame Slot 1, bit 18:12 (Control Register Index). Bit 15:0 are 16-bit command read data.
The value is read from Audio Input Frame Slot 2, bit 19:4 (Control Register Read Data). This registers is read
only registers, and must be read 32-bit simultaneously.

30.12.3 AC’97 Playback output port

This registers are PCM Playback write register, from Internal Peripheral Bus to AC-link. This register is
connected to FIFO Input. Bit 31:16 are 16-bit PCM Playback left channel data. This value is used for Audio
Output Frame Slot 3, bit 19:4. Bit 15:0 are 16-bit PCM Playback right channel data. This value is used for Audio
Output Frame Slot 4, bit 19:4. This registers are write only registers, and must be written 32-bit simultaneously.

User’s Manual 10/2/2008 page 242

Imagine 2 Multi Media Processor 30 The AC97 audio codec

30.12.4 AC’97 Record input port

This registers are PCM Record read registers, from AC-link to Internal Peripheral Bus. This register is
connected to FIFO output. Bit 31:16 are 16-bit PCM Record left channel data. This value is read from Audio
Input Frame Slot 3, bit 19:4. Bit 15:0 are 16-bit PCM Record right channel data. This value is read from Audio
Input Frame Slot 4, bit 19:4. This registers are read only registers, and must be read 32-bit simultaneously.

30.12.5 AC’97 Modem Line output port

This registers are Modem Line codec output write registers, from Internal Peripheral Bus to AC-link. This
registers are connected to FIFO input. Bit 31:16 are 16-bit data (sample 1). Bit 15:0 are 16-bit data sample?2.
These values are used for Audio Output Frame Slot 5, bit 19:4. First, sample 1 is send to AC-link, after sample 2
is send in next Audio Output Frame. This registers are write only registers, and must be written 32-bit
simultaneously.

30.12.6 AC’97 Modem Line input port

This registers are Modem Line codec input read registers, from AC-link to Internal Peripheral Bus. This
registers are connected to FIFO output. Bit 31:16 are 16-bit data (sample 1). Bit 15:0 are 16-bit data sample2.
These values are read from Audio Input Frame Slot 5, bit 19:4. First, sample 1 is read from AC-link, after sample
2 is read from next Audio Output Frame. This registers are read only registers, and must be read 32-bit
simultaneously.

30.12.7 AC’97 Microphone input port

This registers are Microphone input read registers, from AC-link to Internal Peripheral Bus. This registers are
connected to FIFO output. Bit 31:16 are 16-bit data (sample 1). Bit 15:0 are 16-bit data sample2. These values
are read from Audio Input Frame Slot 6, bit 19:4. First, sample 1 is read from AC-link, after sample 2 is read
from next Audio Output Frame. This registers are read only registers and must be read 32-bit simultaneously.

User’s Manual 10/2/2008 page 243

Imagine 2 Multi Media Processor 30 The AC97 audio codec

User’s Manual 10/2/2008 page 244

	4. THE REGISTER FILE
	4.1 introduction
	4.1.1 the control registers
	4.1.2 the vector index generators
	4.1.3 the access modes

	4.2 The control registers
	4.2 Register plus register to register mode:
	4.2.1 accesses to general purpose and control registers
	4.2.2 vector register accesses
	4.2.3 The extended-indexed-accesses

	4.3 Immediate plus register to register mode
	4.4 The 16 bit constant load.
	4.5 The 32 bit constant load / merge.
	4.6 Vector index generators.
	4.6.1 results of the index generators
	4.6.2 control input for the Index generators
	4.6.3 data input for the Index generators
	4.6.4 Index generator calculations
	4.6.5 select the data bus used for the offset data
	4.6.6 select the status for conditional index generation and byte write enables	
	4.6.7 select between the use of the current or delayed status	
	4.6.8 generation of the byte write enables
	4.6.9 generation of the byte presets and byte resets

	4.7 The extended functions.
	4.7.1 byte write enables
	4.7.2 On the fly write Functions
	4.7.3 application of the byte presets and byte resets
	4.7.4 run time programmable data sizes
	4.7.5 preserved for compatibility only

	4.8 The 7 independent sub units of the register file
	4.8.1 read port A span of control
	4.8.2 read port B span of control
	4.8.3 write port C span of control
	4.8.4 read port A index generator span of control
	4.8.5 read port B index generator span of control
	4.8.6 write port C index generator span of control
	4.8.7 write Select Unit span of control

	4.9 Instruction fields for each of the 7 sub-units of the register file
	4.9.1 default values of instruction code fields

	4.10 Events which modify the Register File’s control registers
	4.10.1 events which modify REG_Control
	4.10.2 events which modify REG_Monitor
	4.10.3 events which modify REG_Vector
	4.10.4 events which modify REG_A_Indices
	4.10.5 events which modify REG_B_Indices
	4.10.6 events which modify REG_C_Indices
	4.10.7 events which modify REG_C_Flags

	4.11 Examples of vector operations with the register file
	4.11.1 Example 1: Vectored 3 operand ROP with an 8x8 pattern
	4.11.2 Example 2: Vectored parallel min/ max function
	4.11.3 Example 3: Vectored parallel table look up function
	4.11.4 Example 4: Vectored parallel histogram function
	4.11.5 Example 5: Vectored parallel add / subtract with saturate functions
	4.11.6 Example 6: Vectored parallel run length encoder

	4.12 Interrupt processing:

	5. BARREL SHIFT/ROTATE UNIT
	5.1 operations
	5.1.1 Operand select
	5.1.2 Barrel shift functions
	5.1.3 Shift direction
	5.1.4 The result register of the Barrel Shifter
	5.1.4 The extended function of the Barrel Shifter

	6. ARITHMETIC & LOGIC UNIT
	6.1 Operand Source select:
	6.2 ALU function:
	6.3 ALU instruction set
	6.4 Three port parametrised logic functions
	6.5 ALU control register: logic_function
	6.6 The ALU status register
	6.7 Conditional Control Flow Processing:
	6.8 using status for conditional register access
	6.9 using status for the range mask:
	6.10 direct control register access to the F bus register:

	7. MULTIPLIER / ACCUMULATOR.
	7.1 Multiplier / Accumulator
	7.1.1 The multiplier accumulator
	7.1.2 The pipeline
	7.1.3 multiplier operand select

	7.2 The basic set of multiplier operations
	7.2.1 The Basic Multiply options
	7.2.2 Multiplications defined in the basic set
	7.2.3 The multiplier operand types
	7.2.4 Internal and output formats
	7.2.5 The Graphics data format

	7.3 The extended multiplier functions
	7.4 Description of the multiplier operations
	7.4.1 Operands for the multiplier
	7.4.2 Basic operations
	7.4.3 8 bit Matrix functions: Quad Inproduct
	7.4.4 8 bit Matrix functions: 8 bit Matrix Vector multiplication
	7.4.5 8 bit Matrix functions: 8 bit Blend function
	7.4.6 Data Pipeline initialisation:
	7.4.7 Accumulator file access
	7.4.8 Reading data from the accumulator file
	7.4.9 Writing data to the accumulator file
	7.4.10 Incremental Functions
	7.4.11 The MAC functions: multiply accumulate (scalar)
	7.4.12 The MAC functions: multiply accumulate (block)
	7.4.13 16 bit vector product
	7.4.14 16 bit complex product

	7.5 Multiplier / accumulator operand formats.
	7.5.1 Multiplier input and output format definitions.
	7.5.2 Internal format definitions

	7.6 The range clip unit
	7.6.1 Operation
	7.6.2 Range clip activation
	7.6.3 Data size and data Type
	7.6.4 Range clip output
	7.6.5 The status word: ALU_RC_Status (=cr15)
	7.6.6 The range mask generator
	7.6.7 Balanced signed compares

	7.7 Overview of the multiplier control registers
	7.8 Multiplier accumulator control register 1
	7.8.1 The vector ram read / write control
	7.8.2 The operand Data Size field
	7.8.3 The Data Type control field.
	7.8.4 The Accumulator input selection
	7.8.5 Output shift factor
	7.8.6 The Range clip unit activation flag .
	7.8.7 The pipeline control field
	7.8.8 Transposer operation

	7.9 Multiplier accumulator control register 2
	7.9.1 blend coefficient selection
	7.9.2 range unit: 32 or 64 bit compares
	7.9.3 range unit:
	 Balanced signed compare:
	7.9.4 range unit:
	 Dynamic Limits
	7.9.5 range unit:
	 Range Mask selection
	7.9.6 range unit:
	 Output clipping

	7.10 Multiplier accumulator pointer control register
	7.10.1 Vector register ram read and write pointers
	7.10.2 Coefficient read and write pointers
	7.10.3 The data type and signs used for macs()

	7.11 Multiplier accumulator coefficient register entry
	7.12 Multiplier accumulator 8 bit data pipeline output
	7.13 The state save and restore register

	8. UNARY FUNCTION UNIT
	8.1 UNARY FUNCTION UNIT
	8.1.1 The result register of the UFU
	8.1.2 The instructions of the UFU

	8.2 The basic unary functions
	8.2.1 Binary to Unary conversion: U = unary(A)
	8.2.2 Unary to Binary conversion: U = binary(A) (priority encoder)
	8.2.3
	Absolute value: U = abs(A), U = abs(F)
	8.2.4 Sign function: U = sign(A), U = sign(F)
	8.2.5 Not zero function: U = notzero(A), U = notzero(F)
	8.2.6 Swap bits function: U = swap(A), U = swap(F)

	8.3 IEEE 754 floating point operations
	8.3.1 Handling of floating point numbers:
	8.3.2 IEEE 754 32 bit floating point definition
	8.3.3 IEEE 754 32 bit floating point macro functions

	8.4 IEEE 754 floating point operation support register cr33
	8.4.1 Float To Fix offset. cr33 [7:0]
	8.4.2 Fix To Float offset. cr33 [15:8]
	8.4.3 The H exponent. cr33 [23:16]
	8.4.4 EL: exponent offset usage in U = fixed() (see the Float to Fix offset)
	8.4.5 EX: exponent offset usage in U = floatFd() (see the Fix to Float offset)
	8.4.6
	UH: Use H exponent
	8.4.7 MUL: Use H exponent for add or multiply
	8.4.8 NAN: Not a Number error flag
	8.4.9 UNF: Underflow error flag
	8.4.10 OVF: Overflow error flag
	8.4.11 ERR: Floating point error flag
	8.5 IEEE-754 floating point conversions
	8.5.1 The pass instruction
	8.5.2 The IEEE 754 conversion instructions
	8.5.3 IEEE 32 bit floating point to integer
	8.5.4
	IEEE 32 bit floating point to fixed
	8.5.5 Integer to IEEE 32 bit floating point
	8.5.6 Fixed to IEEE 32 bit floating point
	8.5.7 Some examples of floating point to integer conversions

	9. DATA I/O UNIT
	9.1 general
	9.1.1 Data memory organisation
	9.1.2 Data memory address types
	9.1.3 Internal data representation

	9.2 Data Access function
	9.2.1 The use of the 3D graphics pipeline

	9.3 The Data transport function
	9.3.1 The data store functions
	9.3.2 The data load functions
	9.3.3 The internal zero and sign extend functions

	9.4 Data I/O control registers
	9.4.1 The D bus register
	9.4.2 The DIO_Control register
	9.4.3 The DIO_Address register
	9.4.4 The DIO_offset register

	9.5 Data access unit: detailed operation description
	9.5.1 Selected Address
	9.5.2 Higher dimensional addressing via the cache
	9.5.3 The use of the 3D graphics pipeline with the extended function
	9.5.4 Vector accesses with the extended function
	9.5.5 Scratch pad accesses

	10. VECTOR I/O UNIT
	10.1 Image I/O function select
	10.2 Output operation
	10.2.1 Output source selection
	10.2.2
	Byte selection
	10.2.3 True color to 16 bit error diffusion:
	10.2.4 True color to 16 bit color conversion:
	10.2.5 True color to 8 bit pseudo color
	10.2.6 True color to 8 bit dithering
	10.2.7 True color to 8 bit dither matrix
	10.2.8 True color to 8 bit error correction
	10.2.9 Alpha Compare Test
	10.2.10 Alpha Dithering
	10.2.11 Write Disable
	10.2.10 Transparency color

	10.3 Input instruction.
	10.3.1 16 bit input c
	olor conversion:
	10.3.2 8 bit input color conversion
	10.3.3 Alpha generation by color key range
	10.3.4 Byte selection:
	10.3.5 Data Size definition:

	10.4 Feedback instruction
	10.5 Simultaneous input and output
	10.6 Setting up the translation tables
	10.6.1 The contents of the pseudo color to true color table.
	10.6.2 The contents of the true color to pseudo color table.

	10.7 The control registers of the VIO
	10.6.1 The Vector I/O Control register no. 1
	10.6.2 The Vector I/O Control register no. 2
	10.6.3 The alpha test and alpha generation control register
	10.6.4 The pseudo  true color conversion tables entry
	10.6.5 The transparent output color
	10.6.6 The transparent color input range

	11. THE PROGRAM SEQUENCER
	11.1 The program sequencer instruction word
	11.2 Sequencer control registers
	11.3 The control register functions
	11.4 The control flow instructions
	11.4.1 The jump instructions
	11.4.2 The call instructions
	11.4.3 The return instructions
	11.4.5 The repeat instruction

	11.5 Sequencer usage
	11.5.1 The branch delay slots in the instruction address generation
	11.5.2 The usage of the internal program counter stack
	11.5.3 Using the Imagine's ALU status for conditional control flow
	11.5.4 The usage of the immediate data in the instruction field

	11.6 The program sequencer mnemonics
	11.7 Vector processing control flow
	11.7.1 Variable length vector processing
	11.7.2 The repeat instruction
	11.7.3 Vector processing functional units
	11.7.4 Vector type data storage access

	11.8 The multimedia interrupt handler in the Imagine 2
	11.8.1 Programmers view:
	11.8.2 Multiple interrupts without repeated state saving and restoring:

	11.9 The status / control register
	11.10 Direct read and write accesses to the instruction cache

	12. THE MASK GENERATOR
	12.1 introduction
	12.1.1 The image masks
	12.1.2 The vector access unit
	12.1.3 The usage of the image mask
	12.1.4 The image mask and its construction

	12.2 The image mask control registers
	12.2.1 The mask generation control registers:
	12.2.2 The Window mask control registers
	12.2.3 The Spanline mask control registers
	12.2.4 The Range mask control registers
	12.2.5 The Complex mask control registers
	12.2.6 The Result mask registers

	12.3 The function specific mask generators
	12.3.1 The Window mask generator
	12.3.2 The Spanline mask generator
	12.3.3 The Range mask generator
	12.3.4 The Complex mask generator.

	 VLC DECODER / DEQUANTIZER
	15. MOTION ESTIMATOR.
	24. VIDEO TIMING GENERATORS
	24.1 The I/O signals of the Video Timing Generator
	24.1.1 schematic overview
	24.1.2 signal definitions

	24.2 Module overview of the Video Timing Generator (VTG)
	24.2.1 The IPB_interface
	24.2.2 The counters
	24.2.3 The Decoder
	24.2.4 The Instruction RAM
	24.2.5 The Read multiplexer

	24.3 Functional description of the Video Timing Generator
	24.3.1 Video Timing Generator instruction description

	24.4 Sample program for the Video Timing Generator
	24.5 Function Table of the Video Timing Generator
	24.6 Interfacing with the Video Timing Generator through the IP
	24.6.1 The Control register
	24.6.1.1 The Unit control register
	24.6.1.2 The Program counter
	24.6.1.3 The Decoder signals
	24.6.2 The Counter register
	24.6.3 The Instruction RAM

	24.7 Programmers Notes

	25. VIDEO OUTPUT UNIT
	25.1 The Input / Output Signals of RAMDAC (digital circuit)
	25.1.1 Input/ Output signals definitions

	25.2 RAMDAC module overview
	
	25.3 Read FIFO (fifoctrl.v)
	25.3.1 The timing of read from FIFO and ReadNext signal
	25.3.2 Input Data Format
	25.3.3 Block diagrams

	25.4 Pixel select and 16 bit to 32 bit color expansion (divpix.v)
	25.4.1 Block diagrams
	25.4.2 16-bit to 32-bit color expansion

	25.5 Read Look-up Table RAM (c_tbl.v)
	25.6 Cursor Generation (cur_gen.v)
	25.6.1 Block diagrams (cur_gen.v)
	25.6.2 Cursor modes definitions
	25.6.3 Cursor RAM
	25.6.4 Cursor positioning

	25.7 Color Data out (colorout.v)
	25.8 Internal Peripheral Bus I/F
	25.8.1 RAMDAC base address
	25.8.2 RAMDAC registers memory map

	25.9 Control Registers
	25.9.1 Color Control Registers
	25.9.2 Cursor Control Register
	25.9.3 FIFO Control Register
	25.9.4 Test Control Register
	25.9.5 Test Registers
	25.9.6 Cursor Position x, y Registers
	25.9.7 Count x, Count y Registers
	25.9.8 Cursor Color 0, 1 Registers
	25.9.9 Cursor Plane 0, 1 entries
	25.9.10 Color Look-up Table RAM entries

	26. VIDEO INPUT UNIT
	26.1 The Input/Output Signals of the Video Input Unit
	26.1.1 Signal definitions

	26.2 Module overview of the Video Input Unit (VIN)
	26.2.1 The IPB_interface
	26.2.2 Stage0 (Input stage)
	26.2.3 Stage1 (4:2:2 to A:4:4:4 conversion)
	26.3.4 Stage2 (Down sampling)
	26.3.5 Stage3 (Colour conversion)
	26.3.6 FIFO (128 deep by 32-bit wide)

	26.4 Functional description of the Video Input Unit
	26.4.1 Stage0 (Input stage)

	26.5 The control registers
	26.6 Interfacing with the Video Input Unit through the IPB

	29. THE I2S AUDIO INTERFACE
	29.1 The Input/Output Signals of I2S Interface Unit
	29.1.1 Input/ Output signals definitions

	29.2 I2S Bus Interface Unit overview
	
	29.3 Serial Timing Generator (I2S_TGEN.v)
	29.3.1 Block Diagram (for I2S I/O Port 0)
	29.3.2 Serial Timing (Slave, I2S format)
	29.3.3 Serial Timing (Slave, Japanese format)
	29.3.4 Serial Timing (Master, I2S format)
	29.3.5 Serial Timing (Master, Japanese format)
	29.3.6 Serial Data Format

	29.4 FIFO Input/Output Registers (I2S_FR.v)
	29.4.1 Block Diagram (FIFO Input Registers)
	29.4.2 Block Diagram (FIFO Output Registers)

	29.5 128 x 32 bit FIFO (F_I2S.v)
	29.5.1 Block Diagram 1/2 (FIFO block)
	29.5.2 Block Diagram 1/2 (Controller & Arbiter block)
	29.5.3 FIFO Arbiter (I2SFABT.v)
	29.5.4 FIFO Controller (I2SFCTRL.v)

	29.6 Interrupt Generator (I2S_IGEN.v)
	29.7 Internal Peripheral Bus I/F (I2SIPBIO.v)
	29.8 I2S Registers
	29.8.1 I2S Controller base address
	29.8.2 I2S Controller registers memory map
	29.8.3 I2S Main Control Registers
	29.8.4 Interrupt Control Register
	29.8.5 Input/Output FIFO Status Register
	29.8.6 FIFO Input/Output Port Status Register
	29.8.7 FIFO Control/Status Registers
	29.8.8 Frame Size registers

	29.9 I2S Data Access Ports
	29.9.1 I2S FIFO input port registers
	29.9.2 I2S FIFO output port registers

	30. THE AC97 AUDIO CODEC
	30.1 The Input/Output Signals of AC’97 Controller
	30.1.1 Input/ Output signals definitions

	30.2 AC’97 controller module overview
	
	30.3 AC’97 Serial Timing Generator (T_GEN.v)
	30.3.1 The timing of Serial Timing Generator
	30.3.2 Block Diagram

	30.4 AC’97 Serial Data Enable Generator (SE_GEN.v)
	30.4.1 Block diagram
	30.4.2 Set/Reset Conditions of Serial enables

	30.5 AC’97 Serial Output Generator (SO_GEN.v)
	30.5.1 Block Diagram

	30.6 FIFO Input/Output Registers (F_REGS.v)
	30.6.1 Block Diagram (AC’97 Commend R/W Registers)
	30.6.2 Block Diagram (FIFO Input Registers)
	30.6.3 Block Diagram (FIFO Output Registers)

	30.7 Read Input Tags (R_TAG.v)
	30.8 128 x 32 bit FIFO (F_AC97.v)
	30.8.1 Block Diagram 1/2 (Controller & Arbiter block)
	30.8.2 Block Diagram 2/2 (FIFO block)
	30.8.3 FIFO Arbiter (F_ABT.v)
	30.8.4 FIFO Controller (F_CTRL.v)

	30.9 Interrupt Generator (INT_GEN.v)
	30.10 Internal Peripheral Bus I/F (ACIPBIO.v)
	30.11 AC’97 Registers
	30.11.1 AC’97 Controller base address
	30.11.2 AC’97 Controller registers memory map
	30.11.3 AC’97 Main Control Registers
	30.11.4 Interrupt Control Register
	30.11.5 Input/Output FIFO Status Register
	30.11.6 FIFO Input/Output Port Status Register
	30.11.7 FIFO Control/Status Registers

	30.12 AC’97 Data Access Ports
	30.12.1 AC’97 Control register access port
	30.12.2 AC’97 Control register read return port
	30.12.3 AC’97 Playback output port
	30.12.4 AC’97 Record input port
	30.12.5 AC’97 Modem Line output port
	30.12.6 AC’97 Modem Line input port
	30.12.7 AC’97 Microphone input port

