
IMAGINE
the IMAGe engINE

KEY FEATURES

ULTRA HIGH SPEED GRAPHICS & IMAGE PROCESSOR

50 and 67 MHz single chip processor
C and C++ compilers.
Optimised Assembly Function library
supporting Windows & X11.5/ X11.6
Performance at 50 MHz:
up to 250 MIPS 32 bit instructions
up to 6000 MIPS 8 bit instructions
upto 100 MFLOPS (block floating point)
350-450.000 X stones @ 8 bit color
>180.000 X stones @ 32 bit color
200 Mbyte/s video memory bandwidth
200 Mbyte/s data memory bandwidth
64 bit optimised instruction word
10 Internal functional units
8 Internal 32 bit data buses
2 External 32 bit data buses
6W at 5V, on chip PLL
299 pin Ceramic Pin Grid Array

Optimised interface to VRAM/DRAM:
Dual & Quad interleaved fast page mode
for high speed vector accesses:
(50MHz: 70ns DRAM, 67MHz: 60ns)
Supports all existing VRAM functions
Specialised multimedia interrupt
 handler: handles up to 4 different
 video formats simultaneously
Hardware polygon mask generation:
convex and complex, based on the
odd/even & winding rules
Hardware shape mask generation
Hardware window clipping
Hardware for 3D graphics Z buffer
Hardware for alpha blending
Hardware for anti-aliasing
Hardware color conversion / dithering:
8:8:8:8 <-> 5:6:5, 5:5:5:1 and 4:4:4:4

The IMAGINE offers a five to twenty fold speed improvement over today's and tomorrow's most powerful
processors like the Pentium, MIPS R4400, HP PA-RISC and DEC Alpha for graphics and image processing
operations (see the benchmark comparison with a 275 MHz DEC Alpha).

The IMAGINE is designed from start to finish to provide the absolute top performance over a very wide
spectrum of graphics and image processing. Extensive support for many functions from elementary BitBlt and
window system graphics to 3D graphics, (Color) Postscript, Desk Top Publishing, Image Processing and
machine vision is included.

The IMAGINE is designed to allow further integration steps in order to reach the mass consumer markets in the
near future (internal caches, synchronous DRAM bus interfaces, video timing).

Several methods are used to reach this level of performance with today's technology:

√ 1 HISC: Hierarchical Instruction Set Computer. The programmers model is hierarchical: The
IMAGINE can be programmed as a RISC or CISC processor at the simplest level. This level assures
compatibility with Graphic and Image processing libraries written in C code. At the most complex level
it can be programmed to operate as a parallel pipeline of functions performing complex operations on
parallel streams of data.

√ 2 This hierarchical model is based on an extremely efficient architecture: each functional unit can
operate on 32 bit words, two 16 bit words or four 8 bit words in parallel. Eg: the multiplier can do
single cycle 32 bit multipication, two 16 bit or four 8 bit multiplications 4x4 8 bit matrix times vector
multiplications and quadruple inproducts, 16 bit single cycle 2D dot and cross products, 16 bit single
cycle complex multiplications, etcetera.

√ 3 Each functional unit can perform single cycle operations, and all at the same time.
√ 4 Parallel conditional operations allow the implementation of a very wide range of algorithms: up to

sixteen decisions can be made each and every cycle.
√ 5 Special hardware generates the outlines of convex and complex polygons and arbitrary scan line

shapes, and utilises the Z-buffer comparison results, window borders etc. This feature greatly adds to
the high speed while simplifying the programmer's job.

√ 6 A highly optimised processor-memory interface: the processor can use low cost DRAM and VRAM
memory while maintaining the very high sustained performance. This is an important feature
concerning the overall system manufacturing costs.

T

IMAGINE APPLICATIONS

The IMAGINE processor provides the processing and memory handling capabilities for a compact 5000 MIPS
graphics and/or image processing board. Only instruction and data RAM, image VRAM and/or DRAM, a DAC
and/or ADC plus some glue logic are needed for a basic system. Important for multimedia systems is the multi
video timing option which allows for example the display of live PAL, SECAM or NTSC pictures on a non
interlaced high resolution screen.

Examples of Single Processor applications

♦ 'World record slashing' X-accelerators/terminals

The IMAGINE can turn the slow, true color X workstations into a comfortable operating environment with
split second reaction times. It will be considerably faster than the current world record for monochrome
and pseudo color! The IMAGINE is designed to optimally process release 11.5 and 11.6 applications and
is therefore the ideal graphics processor for X, PEX and XIE workstations and terminals.

♦ True Color PostScript printers
A single true color page in high resolution occupies image memory ranging from 16 Mbyte to 64 Mbyte;
sometimes even more. An IMAGINE based color PostScript printer has the capability to process these
high resolution, full color images in realtime (a 100 MHz FDDI network interface is advised to keep up
with the processor speed).

♦ Real Time, Photo Realistic 3D graphics boards

For high end IBM-PCs, MacIntoshes and Unix Work Stations.
An IMAGINE added to e.g. your current Intel i860 design propels the speed to 100,000 triangles/s (true
color, 50 pixel, Gouraud Shaded Z -buffered and window clipped).
It does not only make your design 5 to 6 times faster, it also can bring photo realistic quality to the rendered
model by using advanced high quality rendering functions. The IMAGINE will do this faster than the i860
manages to draw plain vanilla Gouraud shaded triangles. Have a look at the benchmark figures for high
quality anti-aliased Phong shaded triangles (Ambient, Diffuse and Specular lighting) and the truly
perspective, full color texture mapped triangles (high quality anti-aliased, transparent and mixed with
Gouraud shading).

♦ Press and pre-press Desk Top Publishing boards

The power of the million dollar costing Image Processor from the eighties now becomes available for each
and every user. The arriving 64 Mbit DRAM generation will provide the capacity to handle full color pages
with integrated photographic images. One IMAGINE performs all the jobs done by boards crowded with
special purpose hardware and arrays of multiprocessors needed in the eighties. This market is expected to
be the biggest single market for computers and graphics and will reach the majority of the middle and even
small companies.

♦ Machine vision boards
Look at your machine vision system: nine out of ten it contains loads of special purpose hardware from
different vendors for all kinds of different image processing functions. Now compare the speed of the
IMAGINE software with the speed of the special purpose hardware and see how it equals the performance
in many cases and, in a number of cases, even surpasses the special purpose hardware in speed. Consider a
product in which the IMAGINE alone handles the image processing functions including intelligent Video I/
O for all those clients who:
- are happy with the functionality of your current product but want it to be much smaller and cheaper.
- have their special image processing functions which turn out to be not supported by your current product.

The IMAGINE processes data in a way which is easy to understand for all of your customers. It does
operations on arbitrary areas in VRAM after data is written there autonomously from the Video source.
The restrictions and complications which arise in systems linked closely with the dot clock speed and the
frame rate do not exist.

Other examples of Single Processor applications:

♦ Real Time Multimedia boards
♦ Medical imaging equipment
♦ Digital Copiers
♦ Digital Signal Processing Applications

which need large amounts of cheap and
fast accessible memory

Multi Processor Options

The IMAGINE software contains functions to allow very simple multi processor systems with an
almost linear performance increase. This opens the possibility to use for example four IMAGINE
graphics boards to get an application almost four times faster. All the programmer has to do is to
modify a few parameters. No additional time has to be invested in special multi processor hardware
and software.

All functions in the IMAGINE library are, and will be, equipped with an 'early window test' function in
order to minimise the loss of time if a given object has no pixel within the visible window.

Four single processor boards may have their analog video outputs linked together while each processes
only a quarter of the screen (the screen should be divided in horizontal bands). Each processor may
perform the complete drawing task without a division of the objects to draw. Each processor will be
effectively close to four times faster because non visible objects are processed with a speed which is 10
to 30 times higher. The processor which is ready first may start with the band which took the longest
time to draw in the previous cycle. This simple load balance mechanism assures a good throughput in
unequally divided scenes.

Examples of Multi Processor applications:

♦ Top end 3D graphics workstations
♦ HDTV real time image manipulation and special effects systems
♦ Interactive multimedia authoring systems
♦ Large multi monitor graphic editing stations
♦ Ultra high performance Flight Simulators and Virtual Reality

Simulators with hundreds of thousands polygons per second
(anti-aliased and perspective texture mapped)

♦ Autonomous land vehicle research
♦ Combined digital signal and image processing

for phased array radar and sonar processing

THE GRAPHICS BENCHMARKS
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM frame buffer and window clipping!)

Elementary BitBlt Graphics:

8 bit graphics 32 bit rgb,cmyk

Rectangle Fill (DRAM) 160 Megapix/s . 40 Megapix/s.
Rectangle Fill (VRAM) 400 Megapix/s. 100 Megapix/s.
Rectangle Fill (TRAM) (block size 4002) 12500 Megapix/s. 3100 Megapix/s.
Rectangle Fill through bitmask image (DRAM) 140 Megapix/s. 35 Megapix/s.
Rectangle Fill through bitmask image (VRAM) 340 Megapix/s. 85 Megapix/s.

Rectangle Copy 75 Megapix/s. 19 Megapix/s.
Rectangle Copy through bitmask image. 64 Megapix/s. 16 Megapix/s.
Rectangle Copy zoom factor 2 125 Megapix/s. 31 Megapix/s.
Rectangle Copy zoom factor 4 150 Megapix/s. 37 Megapix/s.

Logic Operation on two rectangles (C = A op B) 50 Megapix/s. 12.5 Megapix/s.
Add/Subtract two rect with scaling (C = a*A +/- b*B) 50 Megapix/s. 12.5 Megapix/s.
Add/Subtract & saturate two rectangles with scaling 50 Megapix/s. 12.5 Megapix/s.
Minimum/Maximum of two rectangles 50 Megapix/s. 12.5 Megapix/s.

Polygon/Shape Fill (DRAM) 160 Megapix/s. 40 Megapix/s.
Polygon/Shape Fill (VRAM) 400 Megapix/s. 100 Megapix/s.
Polygon/Shape Copy 72 Megapix/s. 18 Megapix/s.

Line draw, any direction 16 Megapix/s. 5 Megapix/s.
Line draw, any direction (VRAM) 20 Megapix/s. 5 Megapix/s.
Line draw, any direction & depth cuing 16 Megapix/s. 5 Megapix/s.
Line draw, any direction & pattern 16 Megapix/s. 5 Megapix/s.

Elementary Window Operations
Comparison between various Graphics processors

Processor: Memory Draw Fill Copy Zoom
Bus Line Rectangle Rectangle Rectangle

Hitachi GDP 32 bit 0.10 ms 37 ms 112.0 ms 600 ms
S3 86C924 32 bit 0.18 ms 19 ms 45.0 ms --- ms
TI 34020 40MHz 32 bit 0.22 ms 5.6 ms 44.0 ms 227 ms
WD 90C31 32 bit 1.2 ms 17 ms 62.0 ms --- ms
Sun 64845 SGX 64 bit 0.12 ms 6.6 ms 25.0 ms --- ms

IMAGINE 50 MHz 32 bit 0.033 ms 1.25 ms 9.5 ms 3.7 ms
IMAGINE 66 MHz 32 bit 0.025 ms 0.94 ms 7.2 ms 2.8 ms

Notes: All benchmarks operate on 8 bit colors, the IMAGINE uses VRAM image memory.
Line drawing: 500 pixel arbitrary direction
Rectangle fill: 750,000 pixel rectangle
Rectangle copy: 750,000 pixel rectangle
Rectangle zoom: 7000 to 150,000 pixel rectangle, arbitrary scaling

X Window 11.5 3D graphics operations

(BOARD LEVEL SIMULATION RESULTS)
(display list stored in image memory, IEEE 754 floating point coordinates)

Display list processing: (------ Single Processor---------).

Vector drawing (polylines) 8 bit pixel 32 bit rgb,cmyk
(10 pixel vectors)
2D vectors (precalculated parameters) 1,200,000/sec 400,000/sec.
2D transformed vectors 600,000/sec. 300,000/sec.
3D transformed vectors 500,000/sec. 250,000/sec.

Gouraud shaded polygons (triangular mesh) 8 bit pixel 32 bit rgb,cmyk
(50 pixel triangles)
Gouraud shaded polygons (precalculated parameters) 500,000/sec. 330,000/sec.
3D transformed Gouraud shaded polygons 260,000/sec 220,000/sec.
Z buffered Gouraud shaded polygons 120,000/sec. 100,000/sec.
3D transformed Z buffered Gouraud shaded polygons 110,000/sec. 90,000/sec.

(Actual completion speed for complex scenes can be up to 50% faster because hidden parts are not drawn at all.)

Raw pixel drawing speeds for various 3D shading algorithms

The sustained speeds are reached during the rendering of very large triangles. The speeds of the Z buffered
functions lay in a range of a minimum and a maximum speed: (min..max). The minimum speed is reached if all
pixels are visible. The maximum speed is reached if all pixels are invisible.

Without Z buffer Peak rates Sustained speed
8 bit color Gouraud shading 200 Megapix/s. 160 Megapix/s.
32 bit color Gouraud shading 50 Megapix/s. 40 Megapix/s.

With 16 bit Z buffer and all pixels visible Peak rates: Sustained speed
8 bit color Gouraud shading 40 Megapix/s. 32 Megapix/s.
32 bit color Gouraud shading 25 Megapix/s. 20 Megapix/s.
Perspective texture mapping/Gouraud shading (32 bit) 12 Megapix/s. 10 Megapix/s.
Anti-aliased/transparent Gouraud shading (32 bit) 12 Megapix/s. 10 Megapix/s.
Texture mapped/anti-aliased Transp. Gour.Shading (32 bit) 9 Megapix/s. 7 Megapix/s.

With 16 bit Z buffer and all pixels invisible Peak rates: Sustained speed
8 bit color Gouraud shading 100 Megapix/s. 80 Megapix/s.
32 bit color Gouraud shading 100 Megapix/s. 80 Megapix/s.
Perspective texture mapping/Gouraud shading (32 bit) 100 Megapix/s. 80 Megapix/s.
Anti-aliased/transparent Gouraud shading (32 bit) 100 Megapix/s. 80 Megapix/s.
Texture mapped/anti-aliased Transp. Gour.Shading (32 bit) 100 Megapix/s. 80 Megapix/s.

Transformed 50 pixel Z buffered, true colored Gouraud shaded polygons
Comparison between various graphics processors

Processor: Memory Polygons/
Bus width second

Intel 860 64 bit 17,000
Intel 860 + four Toshiba HSP's 192 bit 35,000
IMAGINE 50 MHz 32 bit 90,000
IMAGINE 66 MHz 32 bit 120,000

THE GRAPHICS BENCHMARKS
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM frame buffer and window clipping!)

HIGH QUALITY 3D GRAPHICS
Preliminary estimated figures

Phong Shaded Triangles:

Size Triangles/s. Pixels/s.
30 46,500 1.395 Megapix/s. - 32 bit result: RGBx, CMYK
100 23,200 2.320 Megapix/s. - True Phong: Ambient, Diffuse & Specular
300 10,000 3.000 Megapix/s. - Four vector interpolations/pix.(48 bit)
1000 3,450 3.450 Megapix/s. - Two vector inproducts/pixel (16/24 bit)
3000 1,220 3.660 Megapix/s. - One table look-up per pixel

Perspective Texture Mapped and Gouraud Shaded Triangles:

Size Triangles/sec. Pixels/sec.
30 61,000 1.830 Megapix/s. - 32 bit result: RGBx, CMYK
100 38,000 3.800 Megapix/s. - Correct Perspective Texture Mapping of RGBx
300 20,000 6.000 Megapix/s. - or CMYK images (sampling method)
1000 8,300 8.300 Megapix/s. - The texture can be mixed with Gouraud
3000 3,250 9.750 Megapix/s. - shading to mimic reflective objects

Anti-Aliased & Transparent Gouraud Shaded Triangles:

Size Triangles/sec. Pixels/sec.
30 63,000 1.890 Megapix/s. - 32 bit result: RGBx, CMYK
100 40,000 4.000 Megapix/s. - High Quality Anti Aliasing:
300 20,700 6.210 Megapix/s. - Minimum of 9 levels in all directions, which is 1000
8,550 8.550 Megapix/s. - the equivalent of 8x8 sub pixel rendering
3000 3,300 9.900 Megapix/s. - Triangles can be transparent

- (mixed with background, alpha = 0..255)

Anti-Aliased & Transparent Phong Shaded Triangles:

Size Triangles/sec. Pixels/sec.
30 41,000 1.230 Megapix/s. - 32 bit result: RGBx or CMYK
100 20,600 2.060 Megapix/s. - High quality anti-aliasing
300 8,800 2.640 Megapix/s. - True Phong: Ambient, Diffuse & Specular
1000 3,100 3.100 Megapix/s. - Four vector interpolations/pix. (48 bit)
3000 1,100 3.300 Megapix/s. - Two vector inproducts/pixel (16/24 bit)

- One table look-up/pixel

Anti-Aliased & Transparent, Perspective Texture Mapped & Gouraud Shaded Triangles:

Size Triangles/sec. Pixels/sec.
30 49,500 1.485 Megapix/s. - 32 bit result: RGBx or CMYK
100 30,300 3.030 Megapix/s. - High quality anti-aliasing
300 15,000 4.500 Megapix/s. - Correct perspective texture mapping of RGBx
1000 6,000 6.000 Megapix/s. - or CMYK images (sampling method)
3000 2,250 6.750 Megapix/s. - The texture can be mixed with Gouraud

- shading to mimic reflective objects

All these functions are provided with 'early window tests' to decide if the triangle is likely to have pixels within a given window.
This allows multi processor systems with an almost linear performance increase in the range from 2 to 8 processor. The work
load is divided on screen region base (screen bands).
Input is a display list of a triangular mesh with transformed IEEE 754 floating point coordinates and normal vectors and in
some cases vertex colors and/or texture coordinates.

X-STONE (11.4) BENCHMARK PRIMITIVES
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM framebuffer and window clipping!)

8 bit graphics 32 bit rgb,cmyk

Lines (400) 47000 /sec. 17000 /sec.
Lines (100) 170000 /sec. 62000 /sec.
Dashed lines (400) 17000 /sec. 17000 /sec.
Dashed lines (100) 62000 /sec. 62000 /sec.
Wide lines (400) 31000 /sec. 8000 /sec.
Wide lines (100) 87000 /sec. 31000 /sec.
Rectangles (4002) 16000 /sec. 5000 /sec.
Rectangles (1002) 56000 /sec. 18000 /sec.

Filled rectangles (4002) DRAM 1000 /sec. 250 /sec.
Filled rectangles (4002) VRAM 2500 /sec. 625 /sec.
Filled rectangles (4002) TRAM 30000 /sec. 10000 /sec.
Filled rectangles (1002) DRAM 16000 /sec. 5000 /sec.
Filled rectangles (1002) VRAM 40000 /sec. 12500 /sec.
Filled rectangles (1002) TRAM 120000 /sec. 40000 /sec.

Tiled rectangles (4002) 1000 /sec. 250 /sec.
Tiled rectangles (1002) 16000 /sec. 4000 /sec.

Stippled rectangles (4002) DRAM 1000 /sec. 250 /sec.
Stippled rectangles (4002) VRAM 2500 /sec. 625 /sec.
Stippled rectangles (1002) DRAM 16000 /sec. 4000 /sec.
Stippled rectangles (1002) VRAM 40000 /sec. 10000 /sec.

Filled polygons, 5 edge (100) DRAM 8000 /sec. 2500 /sec.
Filled polygons, 5 edge (100) VRAM 20000 /sec. 6000 /sec.

Screen copy (4002) 500 /sec. 125 /sec.
Screen copy (1002) 8000 /sec. 2000 /sec.

Window scroll (640x400) DRAM 312 /sec. 78 /sec.
Window scroll (640x400) TRAM (25000)* /sec. 6250 /sec.

Bit map copy (4002) DRAM 780 /sec. 220 /sec.
Bit map copy (4002) VRAM 12500 /sec. 600 /sec.
Bit map copy (1002) DRAM 12500 /sec 3600 /sec.
Bit map copy (1002) VRAM 20000 /sec. 8000 /sec.

Invert rectangle (4002) DRAM 500 /sec. 125 /sec.
Invert rectangle (4002) TRAM 12500 /sec. 3100 /sec.
Invert rectangle (1002) DRAM 75000 /sec. 2000 /sec.
Invert rectangle (1002) TRAM 44000 /sec. 12500 /sec.

()* : Useful only with multiple of 4 line window scrolls.

X11 graphics example with maximal X11.4 functionality: a portrait with size 23x39 repeated over a 5 side
polygon, XORed with the background and then written through the mask of a bouquet of roses, with writing
disabled in bitplanes 3 and 5, and everything clipped on the window borders:

8 bit graphics 32 bit rgb,cmyk

single chip 50 MHz IMAGINE: 42 Megapixels/sec. 12.5 Megapixels/sec.

THE GRAPHICS BENCHMARKS, continued
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM frame buffer and window clipping!)

Image manipulation operations:

Image merging (RGB, CMYK): 10 Megapixels/sec.
Smooth merging of two images with the
use of an alpha buffer and transparency.

Interpolated affine transformations:
Affine transformation: image rotation, scaling,
skew and translation with the use of sub pixel accuracy.
Bi-linear interpolated affine transformation: 25 Megapixs/sec. (8 bit)
Bi-linear interpolated X and Y scaling only: 37 Megapixs/sec. (8 bit)
Bi-cubic interpolated affine transformation: 10 Megapixs/sec. (8 bit)

Affine transformation on RGB or CMYK images
(Increasing quality, image stored in Data Ram)
Sampled transformation 37 Megapixels/sec.
Bi-sampled transformation (sub-sample filter) 18 Megapixels/sec.
Quad-Sampled Transformation (sub-sample filter) 9 Megapixels/sec.
Bi-linear interpolated transformation 5 Megapixels/sec.
Bi-cubic interpolated transformation 1.2 Megapixels/sec.

Image manipulation using data memory:
Nearest neighbour sampling and quasi random displacement sampling, (RGB and CMYK):

Affine transformation: 40 Megapixels/sec.
Third order image warp: 12.5 Megapixels/sec.
16 term parametrised function for both X and Y:
Free warp with pre-calculated coordinates: 20 Megapixels/sec.
Maps images in an arbitrary way

Curve drawing functions: (to DRAM/VRAM)
Circle, ellipse: (RGB, CMYK) 6 Megapixels/sec.
Cubic curves: (RGB,CMYK) 6 Megapixels/sec.

Color space conversions

conversion RGB to YUV 20 Megapixels/sec.
conversion YUV to RGB 20 Megapixels/sec.
conversion RGB to HIS 12.5 Megapixels/sec. *)
conversion HIS to RGB 10 Megapixels/sec. *)
conversion CMYK to RGB (tri-linear interp.) 2.2 Megapixels/sec.
conversion RGB to CMYK (tri-linear interp.) 2.2 Megapixels/sec.
(* with 128 kbyte table in data memory)

Postscript functions
Halftoning: Rendering a color A4 sheet of paper (CMYK) with 600 dots per inch for about 80% of its surface:

the input is a color photographical image of high resolution in the printing colors. The
output are four rotated rasters of variable sized dots in cyan, magenta, yellow and black ink:
ca. 0.800 seconds.

THE IMAGE PROCESSING BENCHMARKS
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM frame buffer and window clipping!)

Image Processing Benchmarks

8 bit image processing:
3x3 convolution: 37 Megapixels/s.
4x4 convolution: 25 Megapixels/s.
8x8 convolution/correlation: 8.7 Megapixels/s.
Grey scale histogram table generation: 160 Megapixels/s.
Grey scale table look-up (small table <= 32): 160 Megapixels/s.
Grey scale table look-up (memory based small table): 40 Megapixels/s.
Grey scale table look-up (memory based large table): 80 Megapixels/s.
Sobel edge detection (r only, abs value) 15 Megapixels/s.
Sobel edge detection (r and phi with table): 10.5 Megapixels/s.
Robinson edge detection (r and phi): 6.2 Megapixels/s.
Median filter (5x5 window): 1.85 Megapixels/s.
Minimum rank filter (3x3) window: 15 Megapixels/s.
Maximum rank filter (3x3) window: 15 Megapixels/s.
Discrete cosine transformation (8x8): 33 Megapixels/s.
Discrete cosine transformation (16x16): 17 Megapixels/s.

16 bit high precision image:
3x3 convolution 8 Megapixels/s.
16 bit grey scale histogram table generation: 80 Megapixels/s.
16 bit grey scale memory based table look up: 40 Megapixels/s.
16 bit median filter (5x5 window): 1.0 Megapixels/s.
16 bit min/max filter (3x3) window: 7.5 Megapixels/s.

Fast Fourier Transform (512x512 16 bit) <100 msec.

Color Image processing (RGBa, CMYK, etc.)
3x3 convolution 9 Megapixels/s.
3D or 4D color space range test 20 Megapixels/s.

Binary Image processing
Fill binary image 1250 Megapixels/s.
Copy binary image (arbitrary translation) 625 Megapixels/s.
Logical operation on two images 425 Megapixels/s.

Binary erosion (8 or 4 connected) 125 Megapixels/s.
Binary dilation (8 or 4 connected) 125 Megapixels/s.
Binary contour (8 or 4 connected) 125 Megapixels/s.
Binary salt & pepper filter (8 or 4 conn.) 125 Megapixels/s.
Binary skeleton 25 Megapixels/s.
Binary skeleton plus end & single point filter 25 Megapixels/s.
Feature extraction (hit_miss) 125 Megapixels/s.

Voxel Processing
Extraction of an arbitrary 2D plane
from a 256x256x256 Voxel volume 8 bit 40 Megapixels/s.

Various DSP tasks:

1024 point complex FFT, 16 bit fixed point 400 microseconds.
256 tap complex 200 KHz.
3x3 tap FIR (8 bit) 37 MHz.
3x3 tap FIR (16 bit) 8 MHz.
10x10 matrix multiply (32 bit) 2,2 microseconds.
Complex integer multiply (16 bit) 20 nanoseconds.

8 Bit Finite Impulse Response filters: nr. taps sample speed

Image memory VRAM/DRAM -> output or data memory
 4 128 MHz.

 8 64 MHz.
 16 32 MHz.
 32 16 MHz.

Image Memory VRAM/DRAM -> image memory VRAM/DRAM
 4 64 MHz.

 8 32 MHz.
 16 16 MHz.

DIRECT CONFRONTATION:

275 MHz DEC Alpha against 75 MHz IMAGINE

Desk Top Publishing Benchmarks:

A 'page' is a standard sheet with 600 dpi and contains circa 50 million pixels
A 'display' has a resolution of 1280x1024 with 32 bit colors and contains circa 1.25 million pixels

275 MHz Alpha 75 MHz IMAGINE

RGBa Image Mixing: pixels: 2 Megapixels/s. 15 Megapixels/s.
(with alpha blending) display: 1.5 Hertz refresh 12 Hertz
refresh

pages: 0.04 pages/sec. 0.3 pages/sec.

RGBa Image Filtering: pixels: 0.7 Megapixels/s. 12 Megapixels/s.
(3x3 convolution with overflow display: 0.55 Hertz refresh 10 Hertz refresh
and underflow saturation) pages: 0.015 pages/sec. 0.25 pages/sec.

RGBa Image Rotation / Scaling: pixels: 0.8 Megapixels/s. 7.5 Megapixels/s.
(bi-linear interpolation) display: 0.65 Hertz refresh 6 Hertz
refresh
 pages: 0.015 pages/sec. 0.12 pages/sec.

3D Graphics Benchmarks:

(Triangular mesh of 50 pixel, 3D transformed, lighted, Z-buffered, Gouraud shaded polygons with 24 bit color)

275 MHz DEC Alpha 75 MHz IMAGINE

Gouraud Shaded Polygons: ca. 70.000 polygons /sec. ca. 135.000 polygons /sec.

Medical System Image Processing Benchmarks:

A 'display' has a resolution of 2048 x 1536 with 8 bit grey values and contains 3.2 million pixels.

275 MHz Alpha 75 MHz IMAGINE

Image Scaling and Rotation: pixels: 4 Megapixels/s. 37 Megapixels/ sec.
(8 bit bi-linear interpolation) display: 1.25 Hertz refresh 11.5 Hertz refresh

Exact Image Scaling/Rotation: pixels: 1.5 Megapixels/s. 15 Megapixels/ sec.
(8 bit bi-qubic interpolation) display: 0.45 Hertz refresh 4.5 Hertz refresh

Grey Scale Histogramming: pixels: 15 Megapixels/s. 80 Megapixels/ sec.
(16 bit / 32 levels) display: 4.7 Hertz refresh 25 Hertz refresh

Grey Scale Equalisation: pixels: ca 15 Megapixels/s. 40 Megapixels/ sec.
(16 bit table look-up) display:ca 4.7 Hertz refresh 12 Hertz refresh

Imagine Processor 2. The Architecture

Chapter 2

THE ARCHITECTURE

The basic HISC principles which have guided the design of the IMAGINE
are introduced in this chapter. The hierarchical instruction computing model
brings a quantum leap in performance improvement with its unequalled level
of efficiency. The CISC, RISC, HISC... story describes the basic techniques
and background of the HISC architecture.

The functional units of the IMAGINE are introduced one by one in a tour
through the chip's architecture.

Imagine Processor 2. The Architecture

The Hierarchical Instruction Set Computer (HISC) Principle
CISC, RISC, HISC

10 times the Efficiency = 10 times the Performance

The HISC principle has been developed by Arcobel
Graphics B.V. to tackle the issue of efficiency and thus of
performance of application specific processors. For a wide
range of graphics and image processing functions an
increase of efficiency in excess of 1000% can be achieved
compared with the fastest available RISC and CISC
processors.

HISC recognises the fact that performance and efficiency
are inextricably linked and that a lack of performance is
essentially a lack of efficiency. It offers a set of principles
which dramatically improve the efficiency and thus the
performance of the processor.

The implementation of HISC principles uses advanced
and novel arithmetic hardware design techniques to
combine a "faster than RISC" processor with a very wide
range of ultra high speed graphics and image processing
functionality. The compatibility of HISC with super-
pipelining and super-scalar design techniques will ensure
leading edge performance levels for many years.

In retrospect it has become apparent that, in reality, the
efficiency of general purpose processors has decreased by
a factor of 10 in the last 15 years. To illustrate this point
consider the dominant family of Complex Instruction Set
Computers (CISC) processors over the last 20 years, the
Intel 80XXX family.

In 1974, when Intel introduced the 8080 processor, some
5000 transistors were integrated into the device. By 1993,
and the launch of the Pentium processor, this figure had
rocketed to over
3 million. That is 600 times more than its predecessor.
However, not only did the gate count increase
dramatically, but so also did the clock frequency, which
multiplied by a factor of around 33.

If one ignores the internal usage of the transistors it would
be reasonable to expect (though perhaps somewhat
naively) a performance improvement of around 20000
(600x33). In reality however, the actual performance
improvement (as bench-marked) over the 19 year period,
is only in the order of several hundred, not twenty
thousand times. Why? Because the main obstacle in fully
exploiting increasing hardware densities, shrinking
geometries and increasing gate counts,lies in making the
most efficient use of

these available hardware resources. Then what about the
Reduced Instruction Set Computer (RISC)?

A (still growing) set of design techniques is embodied by the
RISC concept. One of the original RISC goals of achieving
single cycle operations was a big step forward towards more
efficient hardware use - the Arithmetic Logic Unit (ALU)
could be activated every cycle instead of once every three to
six cycles.
A logical development of this technique is that of super-
pipelining, for which the same logic can be used two or more
times by incorporating intermediate pipeline registers. The
first part of the logic can start a new operation whilst the rest is
still finishing the previous operation(s).

The RISC concept is therefore based on using as few
instructions as possible. The idea behind this is that it will
enable the fastest hardware and thus the fastest processors.
However, many of the most useful instructions are deliberately
omitted because this would make the hardware too complex
and therefore too slow. This principle has been shown to be
erroneous during the initial design stages of the IMAGINE
(the device which will become the tangible implementation of
the HISC principle). Hardware efficiency presents almost no
problems for special purpose hardware since it is designed to
perform a single or a few closely related tasks. Good examples
of this type of hardware are image processing and
compression/ decompression chips which can reach speeds of
billions of operations per second (BOPS) easily.

If, however, a more general set of operations has to be
performed, devices have to be added for each and every
operation; the efficiency dilemma strikes back in another way.
Dedicated special purpose hardware is only truly effective in
situations which require limited functionality. Typical special
purpose hardware is 25 to 100 times faster than general
purpose processors with as many or less transistors, depending
on the type of operation being performed. This means that a
general purpose processor executes graphics and image
processing functions with a relative efficiency of only 1% to
4%. In other words, the transistors in the device are only used
1% to 4% of the time or, when they are used, 96% to 99% of
the time they are used "in the wrong way". Although it would
be unfair to take this statement too literally, it does highlight
the fact that there is

considerable scope for the development of innovative
hardware design techniques, which can produce
spectacular performance gains.

Hierarchical levels

The HISC approach starts at the level of the functional
units which are embodied in every RISC and CISC
processor. These represent the most basic programming
level and at this level compatibility with standard
processor design, languages and operating systems can be
found. A complete set of basic units is provided at this
level and will certainly include an arithmetic logic unit, a
barrel shifter and a multiplier/accumulator.
However, although residing at the lowest program ming
level, these functional units are formed from sub-units,
these sub-units from other sub-units, and so on, down to
transistor level. At these sub-unit levels techniques can be
applied to make most efficient use of the hardware, with a
minimum overhead in terms of additional hardware (i.e.
transistors).

As mentioned above, The design rule associated with the
RISC concept of omitting a large number of instructions
has been found to be erroneous during initial design of
the IMAGINE.
33% Faster cycle times have been achieved then some of
the mainstream RISC processors, like the SUN 2 SPARC
and the non-superpipelined MIPS R3000 (after
cancellation process parameters of these somewhat older
designs). It has become apparent that the techniques
developed have enabled the production of faster
functional units, in spite of their much richer instruction
set.

In order to better understand how this improvement has
been achieved, an overview of some of the used
techniques is presented below, together with some details
on how they can be implemented in a general purpose
imaging and graphics processor.

Wordlength partitioning

A good example of low efficiency usage is when
operations are performed on short wordlength operands
(8 or 16 bit) by 32 bit functional units. A 32 bit processor
is not faster when handling 8 bit operations, even though
only a proportion of the hardware is utilised. This inability
of general purpose processors to deal efficiently with short
wordlenghts is one of the key reasons for the performance
gap between special purpose and general purpose
hardware. The hardware incorporated in a typical 32 bit
ALU or barrel
shifter could, if the transistor elements would

have been re-arranged and extra control logic would have
been added, perform four 8 bit operations or two 16 bit
operations per cycle. This efficiency increase would be of a
linear nature.

However, a 32 bit multiplier requires approximately 16 times
as many transistors than an 8 bit multiplier. Consequently,
performing four 8 bit multiplications in parallel would only
utilize some 25% of the available gates. Using the internal
Wallace tree and intelligent control logic, the 32 bit multiplier
could perform sixteen 8 bit multiplications and twelve 8 bit
additions in a single cycle. These operations can represent
matrix x vector multiplications (specifically 4x4 matrices) or
quadruple 4x1 inproducts. Functions of this type are
particularly useful in both graphics and image processing.

A conventional 32 bit multiplier thus contains almost all the
logic required to perform twenty-eight 8 bit operations instead
of only one. In effect, we may conclude that something like
96% of the hardware is left unused if a 32 bit multiplier is used
for 8 bit multiplications.

In the IMAGINE a 32 bit word can represent a single 32 bit
word, two 16 bit words or four 8 bit words. All the functional
sub-units can perform SIMD type operations on these parallel
data types. The multiplier has internal data and co-efficient
pipelines to supply the operands for matrix x vector
operations. The ALU can generate four 8 bit based status flags
or two 16 bit based status flags. The internal 32 bit register file
can be accessed for independent 8 bit and 16 bit words.
Conditional accessing and write enabling are possible on an 8
bit and 16 bit basis. The efficiency gain possible by wordlenght
partitioning is exploited to the full by the IMAGINE in a way
which is optimised for graphics and image processing.

Heterogeneous partitioning

A conventional device has several sections each with its own
functionality, for example the ALU, the barrel shifter, the
multiplier/accumulator etc. Only one of these sections is used
per operation, while the other ones stay idle. Many functions,
however, can be mapped on a model in which these sections
are separated into distinct and independent functional units.
Each functional unit has its own output bus. The inputs to
each functional unit are provided by multiplexers which are
capable of selecting the input from other functional units. The
result from each unit is stored into a register which drives the
output bus belonging to that specific unit.

Concatenation of functional units which enables multiple
instruction per cycle is especially effective for vector type
operations.

The IMAGINE has eight internal buses and eight internal
functional units. The functionality and interconnectivity
provided are the result of analyzing a very broad range of
graphics and image processing functions. Each unit is
represented by its own, relatively small, field in the 64 bit
instruction word which encodes the basic instruction for
that specific unit.

This means that all the units can operate in parallel which,
in effect, makes the instruction word a "moderate sized"
Very Long Instruction Word (VLIW). This level can be
seen as the second programming level, with the first and
simplest, being the RISC level. Newer optimising
compilers which have sufficient data dependency analysis
capabilities, can exploit these to generate faster and more
efficient code.

Heterogenous Vector/Stream operations

Processing vectors or streams of data mean that an
instruction is repeated a number of times. Typically this
will range from 8 to 32 times in continuous bursts, up to
several million times in repeated bursts. In this situation
there is no need for the instruction to be supplied on each
and every cycle.

The IMAGINE will be equipped with more than 600 bits
devoted to extended instructions which are stored in
control registers located within the various functional
units. The basic 64 bit instruction word can select
extended functions which use information stored in these
control registers. The actual instruction word length for
these extended operations is thus much longer.

This level can be viewed as the third and most complex
programming level. It turns the ineffective functional unit
found in standard RISC and CISC processors into an
ultra high speed heterogenous multi-vector processor that
can perform intelligent conditional operations on parallel
streams of data.

Parallel Conditional Processing
(General and Application Specific)

It is clear that the most practical ways of obtaining
optimum efficiency from arithmetic hardware leads to
SIMD and vector type operations. In graphics and image
processing terms these can be translated to blocks of
pixels which are processed with identical instructions. The
pixel is no longer treated as an individual (i.e. point
operation)

but as an element in a group, upon which certain operations
are performed. In many cases however, it is necessary to
handle individual pixels without loosing the inherent
parallelism provided by this approach.

It is essential to be able to perform if-then-else type operations
in a parallel way. For SIMD and vector processing type
operations, the program control flow is identical for all pixels.
This means that typical conditional control flow, with condi-
tional program jumps and calls, cannot be used.

However, HISC can use parallel conditional data flow instead
of serial conditional control flow and considerably enhance
the flexibility of the functional units. Many more algorithms
can thus be implemented in high speed parallel versions. A
general type of parallel conditional processing is implemented
within the address generator of the three port register file. Up
to sixteen parallel conditional data flow operations can be
performed and twelve register addresses can be calculated
with conditional offsets and increments. Four conditional write
enables are generated each cycle, depending of parallel status
information.

Application level parallel conditional processing is used to
support a number of algorithms which are typical for many
graphics operations. Special hardware is included to generate
two-dimensional masks which determine if pixels are inside or
outside lines, polygons or other arbitrary shapes.

Functional Completeness

When dealing with low-level efficiency gains, small details
become extremely important in sustaining high efficiency
levels under many different circumstances. If the basic
efficiency level is high, then functional completeness becomes
of critical importance.

For example:

The C commands P=A<<B and P=A>>B use the barrel shifter
available in almost all of the newer RISC processors. Doing so
the command can be executed in a single cycle. In C the
operand B can be both positive and negative - when it is
negative "shift left" becomes "shift right" and vice versa.

However, popular processors (SPARC, MIPS...) have
"copied" the shift left and shift right operations from earlier
CISC processors, where B is always positive. Consequently
the C compiler has no option but to insert extra code to check
the sign of B, perform a conditional branch and then carry out
one of the two shift instructions.

Despite the larger number of transistors used to integrate
a barrel shifter, the omission of a few extra gates to check
the sign of B unfortunately causes the efficiency for this
type of operation to drop to around 25%.

Although these extra instructions have relatively little
impact on CISC processors (which needed up to 32+
cycles merely for the shifting operation) they cripple the
much more efficient RISC processor.

To make matters worse both the SPARC and the MIPS
processors only look at the five least significant bits of the
B operand in order to determine the number of positions
to shift (the 8086 microcode keeps on shifting for
thousends of cycles if B is large). This implies, however,
that a shift over 35 positions has the same end result as a
shift over only 3 positions. This also conflicts with the
definition of the C shift functions and the compiler, yet
again, has to add extra code to check if operand B is out
of range. This obviously compounds the problem and as a
result, the efficiency level now drops below 10%. This
means that the processor with a barrel shifter is only 2 to 3
times faster than a processor without one.

It is obviously very difficult to predict exactly how
hardware will be used in practice and to provide
capabilities to address all possible problems. However, by
consistently applying the general principle of functional
completeness, much can be done to improve efficiency at
this level. Thus in the IMAGINE, the barrel shifter will be
capable of shifting by a range-tested 2's complement
operand.

Completeness is essential in multiplicative operations and
so the multiplier in the IMAGINE can orthogonally
perform signed, unsigned and mixed mode
multiplications for all word sizes and modes. Furthermore
words can be interpreted as integers, fixed point and
normalised fixed point numbers. All these cases appear
frequently in graphics and image processing functions.
(The number of basic multiplications is 786!)

In order to achieve functional completeness, it is
sometimes necessary to sacrifice pure mathematical
integrity in order to produce a product which will operate
satisfactorily over a wide range of functions. For example,
a typical mathematical inconsistency can be found in many
international graphics and image processing standards,
where normalised numbers lie in the range of N = 0.0 to
1.0 (including N = 1.0) and where the numbers are
represented by unsigned fixed point numbers in the range
of 0 to 255. In this case there are 256 discrete values but
the maximum value which may be represented is
effectively 255/256 (i.e. less than 1).

Therefore multiplying a value N by the nearest
approximation to 1 (255/256) will result in an erroneous
value.

Taking the example further, a pixel's transparency value
can be represented by an 8 bit unsigned number in the
range 0 to 255. Thus 0.0 is (correctly) represented by 0,
but 1 will be represented by 255 instead of by 256. this
means that 0.11111111 times 0.nnnnnnnnn, which should
always be equal to 0.nnnnnnnn, will in fact be equal to
255/256 times 0.nnnnnnnnn (i.e. 0.99609370 times
0.nnnnnnnn).

Repeated operations in which such differences are neglected
will show visible errors. A good example is the fading of the
background of a picture scene constructed with high quality
alpha plane merging.

Since we cannot change standards to be mathematically
consistent it is often necessary to add some "non-
mathematical" compensation. The IMAGINE multiplier
employs user selectable rounding logic to deal with this kind
of effect.

Conclusions

The HISC principle recognises that the lack of performance
of CISC and RISC processors compared to special purpose
hardware, is essentially a lack of efficiency. It specifies a set of
design principles such as wordlength partitioning,
heterogenous partitioning and stream processing which can
potentially increase performance by a factor of 15 to 35 times
for a number of functions. In order to broaden the range of
functions which can be implemented, HISC also makes use of
the principles of parallel conditional processing and functional
completeness.

The IMAGINE is the first processor based extensively on
HISC principles and will result in multi-functional arithmetic
hardware units which are capable of supporting many different
functions, without incurring the performance degradation
associated with RISC. In fact design testing shows that
IMAGINE provides faster functional units than the leading
RISC processors, while retaining the same process technology.

The HISC concept is compatible with super pipelined and
super scalar design techniques which it can fully exploit for its
own purposes and which will ensure a competitive edge for
many years to come.

HISC and IMAGINE are trademarks of
Arcobel Graphics B.V.
Pentium, 8086 and 8080 are trademarks of Intel.
SPARC is a trademark of SPARC International,
all other trademarks acknowledged.

