
IMAGINE
the IMAGe engINE

KEY FEATURES

ULTRA HIGH SPEED GRAPHICS & IMAGE PROCESSOR

50 and 67 MHz single chip processor
C and C++ compilers.
Optimised Assembly Function library
supporting Windows & X11.5/ X11.6
Performance at 50 MHz:
up to 250 MIPS 32 bit instructions
up to 6000 MIPS 8 bit instructions
upto 100 MFLOPS (block floating point)
350-450.000 X stones @ 8 bit color
>180.000 X stones @ 32 bit color
200 Mbyte/s video memory bandwidth
200 Mbyte/s data memory bandwidth
64 bit optimised instruction word
10 Internal functional units
8 Internal 32 bit data buses
2 External 32 bit data buses
6W at 5V, on chip PLL
299 pin Ceramic Pin Grid Array

Optimised interface to VRAM/DRAM:
Dual & Quad interleaved fast page mode 
for high speed vector accesses:
(50MHz: 70ns DRAM, 67MHz: 60ns) 
Supports all existing VRAM functions
Specialised multimedia interrupt 
 handler: handles up to 4 different 
 video formats simultaneously
Hardware polygon mask generation:
convex  and  complex,  based  on  the 
odd/even & winding rules
Hardware shape mask generation
Hardware window clipping
Hardware for 3D graphics Z buffer
Hardware for alpha blending
Hardware for anti-aliasing
Hardware color conversion / dithering:
8:8:8:8 <-> 5:6:5, 5:5:5:1 and 4:4:4:4

The IMAGINE offers a five to twenty fold speed improvement over today's and tomorrow's  most powerful 
processors like the Pentium, MIPS R4400, HP PA-RISC and DEC Alpha for graphics and image processing 
operations (see the benchmark comparison with a 275 MHz DEC Alpha).

The IMAGINE is  designed from start  to finish to  provide the  absolute top performance over  a  very  wide 
spectrum of graphics and image processing. Extensive support for many functions from elementary BitBlt and 
window  system  graphics  to  3D  graphics,  (Color)  Postscript,  Desk  Top  Publishing,  Image  Processing  and 
machine vision is included.

The IMAGINE is designed to allow further integration steps in order to reach the mass consumer markets in the 
near future (internal caches, synchronous DRAM bus interfaces, video timing).

Several methods are used to reach this level of performance with today's technology:

√ 1 HISC:  Hierarchical  Instruction  Set  Computer.  The  programmers  model  is  hierarchical:  The 
IMAGINE can be programmed as a RISC or CISC processor at the simplest level. This level assures 
compatibility with Graphic and Image processing libraries written in C code. At the most complex level 
it can be programmed to operate as a parallel pipeline of functions performing complex operations on 
parallel streams of data.

√ 2 This  hierarchical  model  is  based  on  an  extremely  efficient  architecture:  each  functional  unit  can 
operate on 32 bit words, two 16 bit words or four 8 bit words in parallel. Eg: the multiplier can do 
single cycle 32 bit multipication, two 16 bit or four 8 bit multiplications 4x4 8 bit matrix times vector 
multiplications and quadruple inproducts, 16 bit single cycle 2D dot and cross products, 16 bit single 
cycle complex multiplications, etcetera. 

√ 3 Each functional unit can perform single cycle operations, and all at the same time.
√ 4 Parallel conditional operations allow the implementation of a very wide range of algorithms: up to 

sixteen decisions can be made each and every cycle. 
√ 5 Special  hardware  generates  the  outlines  of  convex  and complex  polygons  and  arbitrary  scan  line 

shapes, and utilises the Z-buffer comparison results, window borders etc. This feature greatly adds to 
the high speed while simplifying the programmer's job.

√ 6 A highly optimised processor-memory interface: the processor can use low cost DRAM and VRAM 
memory  while  maintaining  the  very  high  sustained  performance.  This  is  an  important  feature 
concerning the overall system manufacturing costs. 
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IMAGINE APPLICATIONS

The IMAGINE processor provides the processing and memory handling capabilities for a compact 5000 MIPS 
graphics and/or image processing board. Only instruction and data RAM, image VRAM and/or DRAM, a DAC 
and/or ADC plus some glue logic are needed for a basic system. Important for multimedia systems is the multi  
video timing option which allows for example the display of live PAL, SECAM or NTSC pictures on a non 
interlaced high resolution screen. 

Examples of Single Processor applications
 
♦ 'World record slashing' X-accelerators/terminals 

The IMAGINE can turn the slow, true color X workstations into a comfortable operating environment with 
split second reaction times. It will be considerably faster than the current world record for monochrome 
and pseudo color! The IMAGINE is designed to optimally process release 11.5 and 11.6 applications and 
is therefore the ideal graphics processor for X, PEX and XIE workstations and terminals.

♦ True Color PostScript printers 
A single true color page in high resolution occupies image memory ranging from 16 Mbyte to 64 Mbyte; 
sometimes even more. An IMAGINE based color PostScript printer has the capability to process these 
high resolution, full color images in realtime (a 100 MHz FDDI network interface is advised to keep up 
with the processor speed).

 
♦ Real Time, Photo Realistic 3D graphics boards 

For high end IBM-PCs, MacIntoshes and Unix Work Stations.
An IMAGINE added to e.g. your current Intel i860 design propels the speed to 100,000 triangles/s (true 
color, 50 pixel, Gouraud Shaded Z -buffered and window clipped).
It does not only make your design 5 to 6 times faster, it also can bring photo realistic quality to the rendered 
model by using advanced high quality rendering functions. The IMAGINE will do this faster than the i860 
manages to draw plain vanilla Gouraud shaded triangles. Have a look at the benchmark figures for high 
quality  anti-aliased  Phong  shaded  triangles  (Ambient,  Diffuse  and  Specular  lighting)  and  the  truly 
perspective,  full  color  texture  mapped  triangles  (high  quality  anti-aliased,  transparent  and  mixed  with 
Gouraud shading).

 
♦ Press and pre-press Desk Top Publishing boards 

The power of the million dollar costing Image Processor from the eighties now becomes available for each 
and every user. The arriving 64 Mbit DRAM generation will provide the capacity to handle full color pages 
with integrated photographic images. One IMAGINE performs all the jobs done by boards crowded with 
special purpose hardware and arrays of multiprocessors needed in the eighties. This market is expected to 
be the biggest single market for computers and graphics and will reach the majority of the middle and even 
small companies.

♦ Machine vision boards 
Look at your machine vision system: nine out of ten it contains loads of special purpose hardware from 
different vendors for  all  kinds of different image processing functions.  Now compare the speed of the 
IMAGINE software with the speed of the special purpose hardware and see how it equals the performance 
in many cases and, in a number of cases, even surpasses the special purpose hardware in speed. Consider a 
product in which the IMAGINE alone handles the image processing functions including intelligent Video I/
O for all those clients  who:  
- are happy with the functionality of your current product but want it to be much smaller and cheaper.
- have their special image processing functions which turn out to be not supported by your current product. 

The IMAGINE processes data in a way which is easy to understand for all  of your customers. It  does 
operations on arbitrary areas in VRAM after data is written there autonomously from the Video source. 
The restrictions and complications which arise in systems linked closely with the dot clock speed and the 
frame rate do not exist.



Other examples of Single Processor applications:

♦ Real Time Multimedia boards
♦ Medical imaging equipment
♦ Digital Copiers
♦ Digital Signal Processing Applications

which need large amounts of cheap and
fast accessible memory 

Multi Processor Options

The IMAGINE software  contains  functions  to  allow very simple  multi  processor systems with an 
almost linear performance increase. This opens the possibility to use for example four IMAGINE 
graphics boards to get an application almost four times faster.  All the programmer has to do is to 
modify a few parameters. No additional time has to be invested in special multi processor hardware 
and software.

All functions in the IMAGINE library are, and will be, equipped with an 'early window test' function in 
order to minimise the loss of time if a given object has no pixel within the visible window.

Four single processor boards may have their analog video outputs linked together while each processes 
only a quarter of the screen (the screen should be divided in horizontal bands). Each processor may 
perform the complete drawing task without a division of the objects to draw. Each processor will be 
effectively close to four times faster because non visible objects are processed with a speed which is 10 
to 30 times higher. The processor which is ready first may start with the band which took the longest 
time to draw in the previous cycle. This simple load balance mechanism assures a good throughput in 
unequally divided scenes.

Examples of Multi Processor applications:

♦ Top end 3D graphics workstations
♦ HDTV real time image manipulation and special effects systems
♦ Interactive multimedia authoring systems
♦ Large multi monitor graphic editing stations
♦ Ultra high performance Flight Simulators and Virtual Reality

Simulators with hundreds of thousands polygons per second
(anti-aliased and perspective texture mapped)

♦ Autonomous land vehicle research
♦ Combined digital signal and image processing

for phased array radar and sonar processing



THE GRAPHICS BENCHMARKS
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM frame buffer and window clipping!)

Elementary BitBlt Graphics:

8 bit graphics 32 bit rgb,cmyk

Rectangle Fill  (DRAM) 160 Megapix/s . 40 Megapix/s. 
Rectangle Fill  (VRAM) 400 Megapix/s. 100 Megapix/s. 
Rectangle Fill  (TRAM) (block size 4002) 12500 Megapix/s. 3100 Megapix/s. 
Rectangle Fill  through bitmask image (DRAM) 140 Megapix/s. 35 Megapix/s. 
Rectangle Fill  through bitmask image (VRAM) 340 Megapix/s. 85 Megapix/s. 

Rectangle Copy 75 Megapix/s. 19 Megapix/s.
Rectangle Copy  through bitmask image. 64 Megapix/s. 16 Megapix/s.
Rectangle Copy  zoom factor 2 125 Megapix/s. 31 Megapix/s.
Rectangle Copy  zoom factor 4 150 Megapix/s. 37 Megapix/s.

Logic Operation on two rectangles (C = A op B) 50 Megapix/s. 12.5 Megapix/s.
Add/Subtract two rect with scaling (C = a*A +/- b*B) 50 Megapix/s. 12.5 Megapix/s.
Add/Subtract & saturate two rectangles with scaling 50 Megapix/s. 12.5 Megapix/s.
Minimum/Maximum of two rectangles 50 Megapix/s. 12.5 Megapix/s.

Polygon/Shape Fill (DRAM) 160 Megapix/s. 40 Megapix/s.
Polygon/Shape Fill (VRAM) 400 Megapix/s. 100 Megapix/s.
Polygon/Shape Copy 72 Megapix/s. 18 Megapix/s.

Line draw, any direction 16 Megapix/s.  5 Megapix/s.
Line draw, any direction (VRAM) 20 Megapix/s.  5 Megapix/s.
Line draw, any direction & depth cuing 16 Megapix/s. 5 Megapix/s.
Line draw, any direction & pattern 16 Megapix/s.  5 Megapix/s.

Elementary Window Operations
Comparison between various Graphics processors

Processor: Memory Draw Fill Copy Zoom
Bus Line Rectangle Rectangle Rectangle

Hitachi GDP 32 bit 0.10 ms 37 ms 112.0  ms 600 ms
S3 86C924 32 bit 0.18 ms 19 ms 45.0 ms --- ms
TI 34020 40MHz 32 bit 0.22 ms 5.6 ms 44.0 ms 227 ms
WD 90C31 32 bit 1.2 ms 17 ms 62.0 ms --- ms
Sun 64845 SGX 64 bit 0.12 ms 6.6 ms 25.0 ms --- ms

IMAGINE 50 MHz 32 bit 0.033   ms 1.25 ms  9.5 ms 3.7 ms
IMAGINE 66 MHz 32 bit 0.025   ms 0.94 ms  7.2 ms 2.8 ms

Notes: All benchmarks operate on 8 bit colors, the IMAGINE uses VRAM image memory.
Line drawing: 500 pixel arbitrary direction
Rectangle fill: 750,000 pixel rectangle
Rectangle copy: 750,000 pixel rectangle
Rectangle zoom: 7000 to 150,000 pixel rectangle, arbitrary scaling



X Window 11.5 3D graphics operations

(BOARD LEVEL SIMULATION RESULTS)
(display list stored in image memory, IEEE 754 floating point coordinates)

Display list processing:         (------   Single Processor---------).

Vector drawing (polylines) 8 bit pixel 32 bit rgb,cmyk
(10 pixel vectors)
2D vectors (precalculated parameters) 1,200,000/sec 400,000/sec.
2D transformed vectors    600,000/sec. 300,000/sec.
3D transformed vectors   500,000/sec. 250,000/sec.       

Gouraud shaded polygons (triangular mesh) 8 bit pixel 32 bit rgb,cmyk 
(50 pixel triangles)                                        
Gouraud shaded polygons (precalculated parameters) 500,000/sec. 330,000/sec.
3D transformed Gouraud shaded polygons 260,000/sec 220,000/sec.
Z buffered Gouraud shaded polygons   120,000/sec. 100,000/sec.
3D transformed Z buffered Gouraud shaded polygons 110,000/sec.  90,000/sec.

(Actual completion speed for complex scenes can be up to 50% faster because hidden parts are not drawn at all.)

Raw pixel drawing speeds for various 3D shading algorithms

The sustained speeds are reached during the rendering of very large triangles. The speeds of the Z buffered 
functions lay in a range of a minimum and a maximum speed: (min..max). The minimum speed is reached if all  
pixels are visible. The maximum speed is reached if all pixels are invisible. 

Without Z buffer Peak rates Sustained speed
8 bit color Gouraud shading 200 Megapix/s. 160 Megapix/s.
32 bit color Gouraud shading  50 Megapix/s.  40 Megapix/s.

With 16 bit Z buffer and all pixels visible Peak rates: Sustained speed
8 bit color Gouraud shading  40 Megapix/s. 32 Megapix/s.
32 bit color Gouraud shading  25 Megapix/s. 20 Megapix/s.
Perspective texture mapping/Gouraud shading (32 bit)  12 Megapix/s. 10 Megapix/s.
Anti-aliased/transparent Gouraud shading (32 bit)  12 Megapix/s. 10 Megapix/s.
Texture mapped/anti-aliased Transp. Gour.Shading (32 bit)   9 Megapix/s.  7 Megapix/s.

With 16 bit Z buffer and all pixels invisible Peak rates: Sustained speed
8 bit color Gouraud shading  100 Megapix/s. 80 Megapix/s.
32 bit color Gouraud shading  100 Megapix/s. 80 Megapix/s.
Perspective texture mapping/Gouraud shading (32 bit)  100 Megapix/s. 80 Megapix/s.
Anti-aliased/transparent Gouraud shading (32 bit)  100 Megapix/s. 80 Megapix/s.
Texture mapped/anti-aliased Transp. Gour.Shading (32 bit)  100 Megapix/s. 80 Megapix/s.

Transformed 50 pixel Z buffered, true colored Gouraud shaded polygons
Comparison between various graphics processors

Processor: Memory Polygons/
Bus width second 

Intel 860 64  bit  17,000
Intel 860 + four Toshiba HSP's 192 bit  35,000
IMAGINE 50 MHz 32  bit  90,000
IMAGINE 66 MHz 32  bit 120,000



THE GRAPHICS BENCHMARKS
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM frame buffer and window clipping!)

HIGH QUALITY 3D GRAPHICS
Preliminary estimated figures

Phong Shaded Triangles:

Size Triangles/s. Pixels/s.
30 46,500 1.395  Megapix/s. -  32 bit result: RGBx, CMYK
100 23,200 2.320  Megapix/s. -  True Phong: Ambient, Diffuse & Specular 
300 10,000 3.000  Megapix/s. -  Four vector interpolations/pix.(48 bit)
1000  3,450 3.450  Megapix/s. -  Two vector inproducts/pixel (16/24 bit)
3000  1,220 3.660  Megapix/s. -  One table look-up per pixel

Perspective Texture Mapped and Gouraud Shaded Triangles:

Size Triangles/sec. Pixels/sec.
30 61,000 1.830  Megapix/s. -  32 bit result: RGBx, CMYK
100 38,000 3.800  Megapix/s. -  Correct Perspective Texture Mapping of RGBx
300 20,000 6.000  Megapix/s. -  or CMYK images (sampling method)
1000  8,300 8.300  Megapix/s. -  The texture can be mixed with Gouraud
3000  3,250 9.750  Megapix/s. -  shading to mimic reflective objects

Anti-Aliased & Transparent Gouraud Shaded Triangles:

Size Triangles/sec. Pixels/sec.
30 63,000 1.890  Megapix/s. -  32 bit result: RGBx, CMYK
100 40,000 4.000  Megapix/s. -  High Quality Anti Aliasing:
300 20,700 6.210  Megapix/s. -  Minimum of 9 levels in all directions, which is 1000  
8,550 8.550  Megapix/s. -  the equivalent of 8x8 sub pixel rendering
3000  3,300 9.900  Megapix/s. -  Triangles can be transparent

-  (mixed with background, alpha = 0..255)

Anti-Aliased & Transparent Phong Shaded Triangles:

Size Triangles/sec. Pixels/sec.
30 41,000 1.230  Megapix/s. -  32 bit result: RGBx or CMYK
100 20,600 2.060  Megapix/s. -  High quality anti-aliasing
300  8,800 2.640  Megapix/s. -  True Phong: Ambient, Diffuse & Specular
1000  3,100 3.100  Megapix/s. -  Four vector interpolations/pix. (48 bit)
3000  1,100 3.300  Megapix/s. -  Two vector inproducts/pixel (16/24 bit)

-  One table look-up/pixel

Anti-Aliased & Transparent, Perspective Texture Mapped & Gouraud Shaded Triangles:

Size Triangles/sec. Pixels/sec.
30 49,500 1.485  Megapix/s. -  32 bit result: RGBx or CMYK
100 30,300 3.030  Megapix/s. -  High quality anti-aliasing
300 15,000 4.500  Megapix/s. -  Correct perspective texture mapping of RGBx
1000  6,000 6.000  Megapix/s. -  or CMYK images (sampling method)
3000  2,250 6.750  Megapix/s. -  The texture can be mixed with Gouraud

-  shading to mimic reflective objects

All these functions are provided with 'early window tests' to decide if the triangle is likely to have pixels within a given window. 
This allows multi processor systems with an almost linear performance increase in the range from 2 to 8 processor. The work 
load is divided on screen region base (screen bands).
Input is a display list of a triangular mesh with transformed IEEE 754 floating point coordinates and normal vectors and in 
some cases vertex colors and/or texture coordinates.  



X-STONE (11.4) BENCHMARK PRIMITIVES
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM framebuffer and window clipping!)

8 bit graphics 32 bit rgb,cmyk

Lines (400) 47000 /sec. 17000  /sec.
Lines (100) 170000 /sec. 62000  /sec.
Dashed lines (400) 17000  /sec. 17000  /sec.
Dashed lines (100) 62000  /sec. 62000  /sec.
Wide lines (400) 31000  /sec. 8000   /sec.
Wide lines (100) 87000  /sec. 31000  /sec.
Rectangles (4002) 16000  /sec. 5000   /sec.
Rectangles (1002) 56000  /sec. 18000  /sec.

Filled rectangles (4002) DRAM 1000   /sec.  250    /sec.
Filled rectangles (4002) VRAM 2500   /sec. 625    /sec.
Filled rectangles (4002) TRAM 30000  /sec. 10000  /sec.
Filled rectangles (1002) DRAM 16000  /sec. 5000   /sec.
Filled rectangles (1002) VRAM 40000  /sec. 12500  /sec.
Filled rectangles (1002) TRAM 120000 /sec. 40000  /sec.

Tiled rectangles (4002) 1000   /sec.   250    /sec.
Tiled rectangles (1002) 16000 /sec. 4000   /sec.

Stippled rectangles (4002) DRAM 1000   /sec.   250    /sec.
Stippled rectangles (4002) VRAM 2500   /sec.   625    /sec.
Stippled rectangles (1002) DRAM 16000  /sec. 4000   /sec.
Stippled rectangles (1002) VRAM 40000  /sec. 10000  /sec.

Filled polygons, 5 edge (100) DRAM 8000   /sec.  2500   /sec.
Filled polygons, 5 edge (100) VRAM 20000  /sec. 6000   /sec.

Screen copy (4002) 500    /sec.   125    /sec.
Screen copy (1002) 8000   /sec.  2000   /sec.

Window scroll (640x400) DRAM 312    /sec.    78     /sec.
Window scroll (640x400) TRAM (25000)* /sec. 6250   /sec.

Bit map copy (4002) DRAM 780    /sec.   220    /sec.
Bit map copy (4002) VRAM 12500  /sec. 600    /sec.
Bit map copy (1002) DRAM 12500  /sec  3600   /sec.
Bit map copy (1002) VRAM 20000  /sec. 8000   /sec.

Invert rectangle (4002) DRAM 500    /sec.   125    /sec.
Invert rectangle (4002) TRAM 12500  /sec. 3100   /sec.
Invert rectangle (1002) DRAM 75000  /sec.  2000   /sec.
Invert rectangle (1002) TRAM 44000  /sec. 12500  /sec.

()* : Useful only with multiple of 4 line window scrolls.

X11 graphics  example with maximal  X11.4  functionality:  a  portrait  with size  23x39 repeated over  a  5  side  
polygon, XORed with the background and then written through the mask of a bouquet of roses, with writing  
disabled in bitplanes 3 and 5, and everything clipped on the window borders:

8 bit graphics 32 bit rgb,cmyk

single chip 50 MHz IMAGINE: 42 Megapixels/sec. 12.5 Megapixels/sec.



THE GRAPHICS BENCHMARKS, continued
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM frame buffer and window clipping!)

Image manipulation operations:

Image merging (RGB, CMYK):  10 Megapixels/sec.
Smooth merging of two images with the 
use of an alpha buffer and transparency.

Interpolated affine transformations:
Affine transformation: image rotation, scaling,
skew and translation with the use of sub pixel accuracy.
Bi-linear interpolated affine transformation: 25 Megapixs/sec. (8 bit)
Bi-linear interpolated X and Y scaling only: 37 Megapixs/sec. (8 bit)
Bi-cubic interpolated affine transformation: 10 Megapixs/sec. (8 bit)

Affine transformation on RGB or CMYK images
(Increasing quality, image stored in Data Ram)
Sampled transformation 37 Megapixels/sec.
Bi-sampled transformation (sub-sample filter) 18 Megapixels/sec.
Quad-Sampled Transformation (sub-sample filter)  9 Megapixels/sec.
Bi-linear interpolated transformation  5 Megapixels/sec.
Bi-cubic interpolated transformation  1.2 Megapixels/sec.

Image manipulation using data memory:
Nearest neighbour sampling and quasi random displacement sampling, (RGB and CMYK):

Affine transformation: 40 Megapixels/sec.
Third order image warp: 12.5 Megapixels/sec.
16 term parametrised function for both X and Y:
Free warp with pre-calculated coordinates: 20 Megapixels/sec.
Maps images in an arbitrary way

Curve drawing functions: (to DRAM/VRAM)
Circle, ellipse:  (RGB, CMYK) 6 Megapixels/sec.
Cubic curves:  (RGB,CMYK) 6 Megapixels/sec.

Color space conversions

conversion  RGB to YUV 20 Megapixels/sec.
conversion  YUV to RGB 20 Megapixels/sec.
conversion  RGB to HIS 12.5 Megapixels/sec. *)
conversion  HIS to RGB 10 Megapixels/sec. *)
conversion  CMYK to RGB (tri-linear interp.) 2.2 Megapixels/sec.
conversion  RGB to CMYK (tri-linear interp.) 2.2 Megapixels/sec.
(* with 128 kbyte table in data memory)

Postscript functions
Halftoning: Rendering a color A4 sheet of paper (CMYK) with 600 dots per inch for about 80% of its surface: 

the input  is  a  color photographical  image  of  high resolution in the  printing colors.  The 
output are four rotated rasters of variable sized dots in cyan, magenta, yellow and black ink: 
ca. 0.800 seconds. 



THE IMAGE PROCESSING BENCHMARKS
for a single chip 50 MHz IMAGINE with a 32 bit bus to image memory

(all benchmarks include reading and writing to VRAM/DRAM frame buffer and window clipping!)

Image Processing Benchmarks

8 bit image processing:
3x3 convolution: 37 Megapixels/s.
4x4 convolution: 25 Megapixels/s.
8x8 convolution/correlation: 8.7 Megapixels/s.
Grey scale histogram table generation: 160 Megapixels/s.
Grey scale table look-up (small table <= 32): 160 Megapixels/s.
Grey scale table look-up (memory based small table): 40 Megapixels/s.
Grey scale table look-up (memory based large table): 80 Megapixels/s.
Sobel edge detection (r only, abs value) 15 Megapixels/s.
Sobel edge detection (r and phi with table): 10.5 Megapixels/s.
Robinson edge detection (r and phi): 6.2 Megapixels/s.
Median filter (5x5 window): 1.85 Megapixels/s.
Minimum rank filter (3x3) window: 15 Megapixels/s.
Maximum rank filter (3x3) window: 15 Megapixels/s.
Discrete cosine transformation (8x8): 33 Megapixels/s.
Discrete cosine transformation (16x16): 17 Megapixels/s.

16 bit high precision image:
3x3 convolution 8 Megapixels/s.
16 bit grey scale histogram table generation: 80 Megapixels/s.
16 bit grey scale memory based table look up: 40 Megapixels/s.
16 bit median filter (5x5 window): 1.0 Megapixels/s.
16 bit min/max filter (3x3) window: 7.5 Megapixels/s.

Fast Fourier Transform (512x512 16 bit) <100 msec.

Color Image processing (RGBa, CMYK, etc.)
3x3 convolution 9 Megapixels/s.
3D or 4D color space range test 20 Megapixels/s.

Binary Image processing
Fill binary image 1250 Megapixels/s.
Copy binary image (arbitrary translation) 625 Megapixels/s.
Logical operation on two images 425 Megapixels/s.

                                                                                       
Binary erosion  (8 or 4 connected) 125 Megapixels/s.
Binary dilation (8 or 4 connected) 125 Megapixels/s.
Binary contour  (8 or 4 connected) 125 Megapixels/s.
Binary salt & pepper filter (8 or 4 conn.) 125 Megapixels/s.
Binary skeleton 25 Megapixels/s.
Binary skeleton plus end & single point filter 25 Megapixels/s.
Feature extraction ( hit_miss )  125 Megapixels/s.

Voxel Processing
Extraction of an arbitrary 2D plane
from a 256x256x256 Voxel volume 8 bit 40 Megapixels/s.



Various DSP tasks:

1024 point complex FFT, 16 bit fixed point 400 microseconds.
256 tap complex 200 KHz.
3x3 tap FIR ( 8 bit) 37 MHz. 
3x3 tap FIR (16 bit) 8 MHz. 
10x10 matrix multiply (32 bit) 2,2 microseconds.
Complex integer multiply (16 bit) 20 nanoseconds.

8 Bit Finite Impulse Response filters: nr. taps sample speed

Image memory VRAM/DRAM -> output or data memory
   4 128 MHz.

  8  64 MHz.
  16  32 MHz.
 32  16 MHz.

Image Memory VRAM/DRAM -> image memory VRAM/DRAM
 4  64 MHz.

   8  32 MHz.
  16  16 MHz.



DIRECT CONFRONTATION:

275 MHz DEC Alpha against 75 MHz IMAGINE

Desk Top Publishing Benchmarks:

A 'page' is a standard sheet with 600 dpi and contains circa 50 million pixels
A 'display' has a resolution of 1280x1024 with 32 bit colors and contains circa 1.25 million pixels

275 MHz Alpha 75 MHz IMAGINE

RGBa Image Mixing: pixels: 2 Megapixels/s. 15 Megapixels/s.
(with alpha blending)       display: 1.5 Hertz refresh 12 Hertz 
refresh

pages: 0.04   pages/sec. 0.3 pages/sec.

RGBa Image Filtering: pixels: 0.7 Megapixels/s. 12 Megapixels/s.
(3x3 convolution with overflow display: 0.55 Hertz refresh 10 Hertz refresh
and underflow saturation)     pages: 0.015 pages/sec. 0.25 pages/sec.

RGBa Image Rotation / Scaling: pixels: 0.8 Megapixels/s. 7.5 Megapixels/s.
(bi-linear interpolation) display: 0.65 Hertz refresh 6 Hertz 
refresh
                        pages: 0.015 pages/sec. 0.12 pages/sec.

3D Graphics Benchmarks:

(Triangular mesh of 50 pixel, 3D transformed, lighted, Z-buffered, Gouraud shaded polygons with 24 bit color)

275 MHz DEC Alpha 75 MHz IMAGINE

Gouraud Shaded Polygons: ca. 70.000 polygons /sec. ca. 135.000 polygons /sec.

Medical System Image Processing Benchmarks:

A 'display' has a resolution of 2048 x 1536 with 8 bit grey values and contains 3.2 million pixels. 

275 MHz Alpha 75 MHz IMAGINE

Image Scaling and Rotation: pixels: 4 Megapixels/s. 37 Megapixels/ sec.
(8 bit bi-linear interpolation) display: 1.25 Hertz refresh 11.5 Hertz refresh

Exact Image Scaling/Rotation: pixels: 1.5 Megapixels/s. 15 Megapixels/ sec.
(8 bit bi-qubic interpolation) display: 0.45 Hertz refresh 4.5 Hertz refresh

Grey Scale Histogramming: pixels: 15 Megapixels/s. 80 Megapixels/ sec.
(16 bit / 32 levels) display: 4.7 Hertz refresh 25 Hertz refresh

Grey Scale Equalisation: pixels: ca 15 Megapixels/s. 40 Megapixels/ sec.
(16 bit table look-up) display:ca  4.7 Hertz refresh 12    Hertz refresh
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Chapter 2

THE ARCHITECTURE 

The basic HISC principles which have guided the design of the IMAGINE 
are introduced in this chapter. The hierarchical instruction computing model  
brings a quantum leap in performance improvement with its unequalled level  
of efficiency. The CISC, RISC, HISC... story describes the basic techniques  
and background of the HISC architecture.

The functional units of the IMAGINE are introduced one by one in a tour  
through the chip's architecture.
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The Hierarchical Instruction Set Computer (HISC) Principle
CISC, RISC, HISC ....

10 times the Efficiency = 10 times the Performance

The  HISC  principle  has  been  developed  by  Arcobel 
Graphics B.V. to tackle the issue of efficiency and thus of 
performance of application specific processors. For a wide 
range  of  graphics  and  image  processing  functions  an 
increase of efficiency in excess of 1000% can be achieved 
compared  with  the  fastest  available  RISC  and  CISC 
processors.

HISC recognises the fact that performance and efficiency 
are inextricably linked and that a lack of performance is 
essentially a lack of efficiency. It offers a set of principles 
which  dramatically  improve  the  efficiency  and  thus  the 
performance of the processor.

The implementation  of  HISC principles  uses  advanced 
and  novel  arithmetic  hardware  design  techniques  to 
combine a "faster than RISC" processor with a very wide 
range of ultra high speed graphics and image processing 
functionality.  The  compatibility  of  HISC  with  super-
pipelining and super-scalar design techniques will ensure 
leading edge performance levels for many years.

In retrospect it has become apparent that,  in reality, the 
efficiency of general purpose processors has decreased by 
a factor of 10 in the last 15 years. To illustrate this point 
consider the dominant family of Complex Instruction Set 
Computers (CISC) processors over the last 20 years, the 
Intel 80XXX family.

In 1974, when Intel introduced the 8080 processor, some 
5000 transistors were integrated into the device. By 1993, 
and the launch of the Pentium processor, this figure had 
rocketed to over
3 million. That is  600 times more than its  predecessor. 
However,  not  only  did  the  gate  count  increase 
dramatically,  but so also did the clock frequency, which 
multiplied by a factor of around 33.

If one ignores the internal usage of the transistors  it would 
be  reasonable  to  expect  (though  perhaps  somewhat 
naively)  a  performance  improvement  of  around  20000 
(600x33).  In  reality  however,  the  actual  performance 
improvement (as bench-marked) over the 19 year period, 
is  only  in  the  order  of  several  hundred,  not  twenty 
thousand times. Why? Because the main obstacle in fully 
exploiting  increasing  hardware  densities,  shrinking 
geometries and increasing gate counts,lies in making the 
most efficient use of

these  available  hardware  resources.  Then  what  about  the 
Reduced Instruction Set Computer (RISC)?

A (still growing) set of design techniques is embodied by the 
RISC concept.  One of the original RISC goals  of achieving 
single cycle operations was a big step forward towards more 
efficient  hardware  use  -  the  Arithmetic  Logic  Unit  (ALU) 
could be activated every cycle instead of once every three to 
six cycles. 
A  logical  development  of  this  technique  is  that  of  super-
pipelining, for which the same logic can be used two or more 
times  by  incorporating  intermediate  pipeline  registers.  The 
first part of the logic can start a new operation whilst the rest is 
still finishing the previous operation(s).

The  RISC  concept  is  therefore  based  on  using  as  few 
instructions  as  possible.  The idea behind this  is  that  it  will 
enable  the  fastest  hardware  and thus  the  fastest  processors. 
However, many of the most useful instructions are deliberately 
omitted because this would make the hardware too complex 
and therefore too slow. This principle has been shown to be 
erroneous during the initial  design stages  of the IMAGINE 
(the device which will become the tangible implementation of 
the HISC principle). Hardware efficiency presents almost no 
problems for special purpose hardware since it is designed to 
perform a single or a few closely related tasks. Good examples 
of  this  type  of  hardware  are  image  processing  and 
compression/ decompression chips which can reach speeds of 
billions of operations per second (BOPS) easily.

If,  however,  a  more  general  set  of  operations  has  to  be 
performed,  devices  have  to  be  added  for  each  and  every 
operation; the efficiency dilemma strikes back in another way. 
Dedicated special purpose hardware is only truly effective in 
situations which require limited functionality. Typical    special 
purpose  hardware  is  25  to  100  times  faster  than  general 
purpose processors with as many or less transistors, depending 
on the type of operation being performed. This means that a 
general  purpose  processor  executes  graphics  and  image 
processing functions with a relative efficiency of only 1% to 
4%. In other words, the transistors in the device are only used 
1% to 4% of the time or, when they are used, 96% to 99% of 
the time they are used "in the wrong way". Although it would 
be unfair to take this statement too literally, it does highlight 
the fact that there is



considerable  scope  for  the  development  of  innovative 
hardware  design  techniques,  which  can  produce 
spectacular performance gains.

Hierarchical levels

The HISC approach starts  at  the level of the functional 
units  which  are  embodied  in  every  RISC  and  CISC 
processor. These represent the most basic programming 
level  and  at  this  level  compatibility  with  standard 
processor design, languages and operating systems can be 
found. A complete set of basic units  is  provided at this 
level and will certainly include an arithmetic logic unit, a 
barrel shifter and a multiplier/accumulator.
However,  although  residing  at  the  lowest  program  ming   
level,  these  functional  units  are  formed from sub-units, 
these sub-units from other sub-units, and so on, down to 
transistor level. At these sub-unit levels techniques can be 
applied to make most efficient use of the hardware, with a 
minimum overhead in terms of additional hardware (i.e. 
transistors).

As mentioned above, The design rule associated with the 
RISC concept of omitting a large number of instructions 
has been found to be erroneous during initial design of 
the IMAGINE.
33% Faster cycle times have been achieved then some of 
the mainstream RISC processors, like the SUN 2 SPARC 
and  the  non-superpipelined  MIPS  R3000  (after 
cancellation process parameters of these somewhat older 
designs).  It  has  become  apparent  that  the  techniques 
developed  have  enabled  the  production  of  faster 
functional units, in spite of their much richer instruction 
set.

In order to better understand how this improvement has 
been  achieved,  an  overview  of  some  of  the  used 
techniques is presented below, together with some details 
on how they can be implemented in a general  purpose 
imaging and graphics processor.

Wordlength partitioning

A  good  example  of  low  efficiency  usage  is  when 
operations are performed on short wordlength operands 
(8 or 16 bit) by 32 bit functional units. A 32 bit processor 
is not faster when handling 8 bit operations, even though 
only a proportion of the hardware is utilised. This inability 
of general purpose processors to deal efficiently with short 
wordlenghts is one of the key reasons for the performance 
gap  between  special  purpose  and  general  purpose 
hardware. The hardware incorporated in a typical 32 bit 
ALU or barrel
shifter could, if the transistor elements would

have  been  re-arranged  and  extra  control  logic  would  have 
been  added,  perform  four  8  bit  operations  or  two  16  bit 
operations per cycle. This efficiency increase would be of a 
linear nature.

However, a 32 bit multiplier requires approximately 16 times 
as  many  transistors  than  an  8  bit  multiplier.  Consequently, 
performing four 8 bit  multiplications in parallel  would only 
utilize  some 25%  of  the  available  gates.  Using  the  internal 
Wallace tree and intelligent control logic, the 32 bit multiplier 
could perform sixteen 8 bit  multiplications and twelve 8 bit 
additions  in  a  single  cycle.  These  operations  can  represent 
matrix  x vector multiplications (specifically  4x4 matrices)  or 
quadruple  4x1  inproducts.  Functions  of  this  type  are 
particularly useful in both graphics and image processing.

A conventional 32 bit multiplier thus contains almost all the 
logic required to perform twenty-eight 8 bit operations instead 
of only one. In effect, we may conclude that something like 
96% of the hardware is left unused if a 32 bit multiplier is used 
for 8 bit multiplications.

In the IMAGINE a 32 bit word can represent a single 32 bit 
word, two 16 bit words or four 8 bit words. All the functional 
sub-units can perform SIMD type operations on these parallel 
data  types.  The multiplier  has  internal  data  and co-efficient 
pipelines  to  supply  the  operands  for  matrix  x  vector 
operations. The ALU can generate four 8 bit based status flags 
or two 16 bit based status flags. The internal 32 bit register file 
can  be  accessed  for  independent  8  bit  and  16  bit  words. 
Conditional accessing and write enabling are possible on an 8 
bit and 16 bit basis. The efficiency gain possible by wordlenght 
partitioning is exploited to the full by the IMAGINE in a way 
which is optimised for graphics and image processing.

Heterogeneous partitioning

A conventional device has several sections each with its own 
functionality,  for  example  the  ALU,  the  barrel  shifter,  the 
multiplier/accumulator etc. Only one of these sections is used 
per operation, while the other ones stay idle. Many functions, 
however, can be mapped on a model in which these sections 
are separated into distinct and independent  functional units. 
Each functional  unit  has  its  own output  bus.  The inputs  to 
each functional unit  are provided by multiplexers which are 
capable of selecting the input from other functional units. The 
result from each unit is stored into a register which drives the 
output bus belonging to that specific unit.



Concatenation of functional units which enables multiple 
instruction per cycle is especially effective for vector type 
operations.

The IMAGINE has eight internal buses and eight internal 
functional  units.  The  functionality  and  interconnectivity 
provided are the result of analyzing a very broad range of 
graphics  and  image  processing  functions.  Each  unit  is 
represented by its own, relatively small, field in the 64 bit 
instruction word which encodes the basic instruction for 
that specific unit.

This means that all the units can operate in parallel which, 
in effect,  makes the instruction word a "moderate sized" 
Very Long Instruction Word (VLIW). This level can be 
seen as the second programming level, with the first and 
simplest,  being  the  RISC  level.  Newer  optimising 
compilers which have sufficient data dependency analysis 
capabilities, can exploit these to generate faster and more 
efficient code.

Heterogenous Vector/Stream operations

Processing  vectors  or  streams  of  data  mean  that  an 
instruction is repeated a number of times. Typically this 
will range from 8 to 32 times in continuous bursts, up to 
several million times in repeated bursts. In this situation 
there is no need for the instruction to be supplied on each 
and every cycle.

The IMAGINE will be equipped with more than 600 bits 
devoted  to  extended  instructions  which  are  stored  in 
control  registers  located  within  the  various  functional 
units.  The  basic  64  bit  instruction  word  can  select 
extended functions which use information stored in these 
control  registers.  The  actual instruction word length  for 
these extended operations is thus much longer.

This level can be viewed as the third and most complex 
programming level. It turns the ineffective functional unit 
found  in  standard  RISC  and  CISC processors  into  an 
ultra high speed heterogenous multi-vector processor that 
can perform intelligent conditional operations on parallel 
streams of data.

Parallel Conditional Processing
(General and Application Specific)

It  is  clear  that  the  most  practical  ways  of  obtaining 
optimum  efficiency  from  arithmetic  hardware  leads  to 
SIMD and vector type operations. In graphics and image 
processing  terms  these  can  be  translated  to  blocks  of 
pixels which are processed with identical instructions. The 
pixel  is  no  longer  treated  as  an  individual  (i.e.  point 
operation)

but as an element in a group, upon which certain operations 
are  performed.  In  many  cases  however,  it  is  necessary  to 
handle  individual  pixels  without  loosing  the  inherent 
parallelism provided by this approach.

It is essential to be able to perform if-then-else type operations 
in  a  parallel  way.  For  SIMD  and  vector  processing  type 
operations, the program control flow is identical for all pixels. 
This means that typical conditional control flow, with condi-
tional program jumps and calls, cannot be used.

However, HISC can use parallel conditional data flow instead 
of  serial  conditional  control  flow and considerably  enhance 
the flexibility of the functional  units. Many more algorithms 
can thus be implemented in high speed parallel versions. A 
general type of parallel conditional processing is implemented 
within the address generator of the three port register file. Up 
to  sixteen  parallel  conditional  data  flow  operations  can  be 
performed  and  twelve  register  addresses  can  be  calculated 
with conditional offsets and increments. Four conditional write 
enables are generated each cycle, depending of parallel status 
information.

Application  level  parallel  conditional  processing  is  used  to 
support a number of algorithms which are typical  for many 
graphics operations. Special hardware is included to generate 
two-dimensional masks which determine if pixels are inside or 
outside lines, polygons or other arbitrary shapes.

Functional Completeness

When  dealing  with  low-level  efficiency  gains,  small  details 
become  extremely  important  in  sustaining  high  efficiency 
levels  under  many  different  circumstances.  If  the  basic 
efficiency level is high, then functional completeness becomes 
of critical importance.

For example:

The C commands P=A<<B and P=A>>B use the barrel shifter 
available in almost all of the newer RISC processors. Doing so 
the  command  can  be  executed  in  a  single  cycle.  In  C the 
operand  B  can  be  both  positive  and  negative  -  when  it  is 
negative "shift left" becomes "shift right" and vice versa.

However,  popular  processors  (SPARC,   MIPS...)  have 
"copied" the shift  left  and shift  right  operations from earlier 
CISC processors,  where  B is  always  positive.  Consequently 
the C compiler has no option but to insert extra code to check 
the sign of B, perform a conditional branch and then carry out 
one of the two shift instructions.



Despite the larger number of transistors used to integrate 
a barrel shifter, the omission of a few extra gates to check 
the sign of B unfortunately causes the efficiency for this 
type of operation to drop to around 25%.

Although  these  extra  instructions  have  relatively  little 
impact  on  CISC  processors  (which  needed  up  to  32+ 
cycles merely for the shifting operation) they cripple the 
much more efficient RISC processor.

To make matters worse both the SPARC and the MIPS 
processors only look at the five least significant bits of the 
B operand in order to determine the number of positions 
to  shift  (the  8086  microcode  keeps  on  shifting  for 
thousends of cycles if B is large). This implies, however, 
that a shift over 35 positions has the same end result as a 
shift  over  only  3  positions.  This  also  conflicts  with  the 
definition of the C shift  functions and the compiler, yet 
again, has to add extra code to check if operand B is out 
of range. This obviously compounds the problem and as a 
result,  the  efficiency  level  now drops  below  10%.  This 
means that the processor with a barrel shifter is only 2 to 3 
times faster than a processor without one.  

It  is  obviously  very  difficult  to  predict  exactly  how 
hardware  will  be  used  in  practice  and  to  provide 
capabilities to address all possible problems. However, by 
consistently  applying  the  general  principle  of  functional 
completeness, much can be done to improve efficiency at 
this level. Thus in the IMAGINE, the barrel shifter will be 
capable  of  shifting  by  a  range-tested  2's  complement 
operand.

Completeness is essential in multiplicative operations and 
so  the  multiplier  in  the  IMAGINE  can  orthogonally 
perform  signed,  unsigned  and  mixed  mode 
multiplications for all word sizes and modes. Furthermore 
words  can  be  interpreted  as  integers,  fixed  point  and 
normalised fixed point numbers. All these cases appear 
frequently in graphics and image processing functions.
(The number of basic multiplications is 786!)

In  order  to  achieve  functional  completeness,  it  is 
sometimes  necessary  to  sacrifice  pure  mathematical 
integrity in order to produce a product which will operate 
satisfactorily over a wide range of functions. For example, 
a typical mathematical inconsistency can be found in many 
international  graphics  and  image  processing  standards, 
where normalised numbers lie in the range of N = 0.0 to 
1.0  (including  N  =  1.0)  and  where  the  numbers  are 
represented by unsigned fixed point numbers in the range 
of 0 to 255. In this case there are 256 discrete values but 
the  maximum  value  which  may  be  represented  is 
effectively 255/256 (i.e. less than 1). 

Therefore   multiplying  a  value  N  by  the  nearest 
approximation to 1 (255/256) will result in an erroneous 
value.

Taking the example further, a pixel's transparency value 
can be represented by an 8 bit unsigned number in the 
range 0 to 255. Thus 0.0 is (correctly) represented by 0, 
but 1 will be represented by 255 instead of by 256. this 
means that 0.11111111 times 0.nnnnnnnnn, which should 
always be equal  to 0.nnnnnnnn, will  in fact  be equal  to 
255/256  times  0.nnnnnnnnn  (i.e.  0.99609370  times 
0.nnnnnnnn).

Repeated operations in which such differences are neglected 
will show visible errors. A good example is the fading of the 
background of a picture scene constructed with high quality 
alpha plane merging.

Since  we  cannot  change  standards  to  be  mathematically 
consistent  it  is  often  necessary  to  add  some  "non-
mathematical"  compensation.  The  IMAGINE  multiplier 
employs user selectable rounding logic to deal with this kind 
of effect.

Conclusions

The HISC principle recognises that the lack of performance 
of CISC and RISC processors compared to special purpose 
hardware, is essentially a lack of efficiency. It specifies a set of 
design  principles  such  as  wordlength  partitioning, 
heterogenous  partitioning  and  stream processing  which  can 
potentially increase performance by a factor of 15 to 35 times 
for a number of functions. In order to broaden the range of 
functions which can be implemented, HISC also makes use of 
the principles of parallel conditional processing and functional 
completeness.

The  IMAGINE  is  the  first  processor  based  extensively  on 
HISC principles and will result in multi-functional arithmetic 
hardware units which are capable of supporting many different 
functions,  without  incurring  the  performance  degradation 
associated  with  RISC.  In  fact  design  testing  shows  that 
IMAGINE provides faster  functional  units  than the  leading 
RISC processors, while retaining the same process technology.

The HISC concept  is  compatible with  super pipelined and 
super scalar design techniques which it can fully exploit for its 
own purposes and which will  ensure a competitive edge for 
many years to come.

HISC and IMAGINE are trademarks of 
Arcobel Graphics B.V.
Pentium, 8086 and 8080 are trademarks of Intel.
SPARC is a trademark of SPARC International,
all other trademarks acknowledged.






